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Abstract

This paper proves the existence of relative extremal projectors. An infinite factorization is

given as well as a summation formula.
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1. Introduction

Generalizing work of Ašerova et al. [1], Zhelobenko developed the notion of an
extremal projector [9,10]. Roughly speaking, the extremal projector is the operator
on the universal Verma module that projects onto the highest weight space along all
other weight spaces. It admits very nontrivial and powerful factorization theorems.
Moreover, it has a wide variety of applications such as the study of K-types of
irreducible admissible representations (via the Mickelsson step algebra), the study of
branching rules, the description of homorphisms between Verma modules, the
construction of special bases of representations (e.g., generalized Gelfand–Tsetlin
bases), the calculation of Clebsch–Gordan coefficients, the construction of general-
ized harmonic polynomials, and others [2–6,8–10].
This paper develops the notion of a relative extremal projector. Roughly speaking,

if lDg is a regular reductive subalgebra of a complex reductive Lie algebra, then the
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relative extremal projector is the operator on the universal Verma module that
projects onto the highest l-subrepresentation of g: An existence theorem (Theorem
5), an infinite commutative factorization theorem (Theorem 7), and a summation
formula (Theorem 8) for relative extremal projectors are proved in this paper. These
theorems also shed additional light on the original extremal projector (Lemma 3)
and provide new factorizations for it (Theorem 6). In a future paper we will study
finite noncommutative factorizations of relative extremal projectors generalizing the
original work of Ašerova et al. [1].

2. Extremal projectors

We begin by summarizing some of the relevant facts about extremal projectors
needed later in this paper. The theorems in this section are all due to Ašerova et al.
[1] and Zhelobenko [9,10]. The reader is referred to their work for details.
We begin with the usual notation. Let g be a reductive Lie algebra over C and fix a

Cartan subalgebra h:Write D ¼ Dðg; hÞ for the root system of g with respect to h; fix

Dþ ¼ Dþðg; hÞ a positive root system, and write g ¼ n�"h"nþ for the correspond-

ing triangular decomposition of g: If aADþ; choose a standard slð2;CÞ basis
e�a; ha; ea in g where e7a are weight vectors corresponding to the roots 7a: Thus
½ea; e�a� ¼ ha and aðhaÞ ¼ 2: Write UðgÞ for the universal enveloping algebra of g:
Recall UðhÞ is naturally isomorphic to the symmetric algebra on h which is

isomorphic to the set of polynomials on the dual space hn: Define %UðhÞ to be the
fraction field of UðhÞ;

%UðhÞ ¼ FracUðhÞ:

%UðhÞ is isomorphic to the field of rational functions on hn: Write %UðgÞ for the
extension of UðgÞ by %UðhÞ;

%UðgÞ ¼ UðgÞ #
UðhÞ

%UðhÞ:

For lAhn; write %UðgÞl for the l weight space of %UðgÞ: If Dþ ¼ fa1; a2;y; amg; the
Poincaré–Birkhoff–Witt theorem implies %UðgÞl is spanned over %UðhÞ by monomials
of the form

erm
�am

?er2
�a2e

r1
�a1e

s1
a1e

s2
a2?esm

am
; ð2:1Þ

where l ¼
Pm

i¼1 ð�ri þ siÞai: Define %FðgÞl to be the vector space of all formal series

over %UðhÞ in these monomials (with fixed weight l). Let

%FðgÞ ¼ "
l

%FðgÞl:

It is a theorem that %FðgÞ is an algebra with respect to the multiplication of formal
series. We will see that one way of looking at the extremal projector places it as an
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element of %FðgÞ: If PA %FðgÞ0; we say that its constant term is its summand coming

from %UðhÞ:
Another important piece of this story is the universal Verma module. It is defined

as

MðgÞ ¼ UðgÞ=UðgÞnþ

which is both a left g-module and a two-sided h-module. Write %MðgÞ for its extension
by %UðhÞ;

%MðgÞ ¼ MðgÞ #
UðhÞ

%UðhÞ;

and %MðgÞl for the l weight space of %MðgÞ: It is a critical theorem that elements of
%FðgÞ act by left multiplication on %MðgÞ: In general, let Endl %MðgÞ ¼
fTAEnd %UðhÞ %MðgÞ j ½h;T � ¼ lðhÞT for all hAhg; where the subscript %UðhÞ denotes
right %UðhÞ-linearity, and let

Endh %MðgÞ ¼ "
l
Endl %MðgÞ:

In other words, Endh %MðgÞ is the span of the right %UðhÞ-linear endomorphisms of
%MðgÞ with well-defined weights under the adjoint h-action. We will see that another

way of looking at the extremal projector is as an element of Endh %MðgÞ: The relevant
theorem follows.

Theorem 1 (Zhelobenko [9]). %FðgÞ is isomorphic to Endh %MðgÞ: The isomorphism

maps fA %FðgÞ to the operator on %MðgÞ given by left multiplication by f :

Definition 1. The extremal projector, Pðg; hÞ; is the element of Endh %MðgÞ projecting
%MðgÞ to its highest weight space, %MðgÞ0D %UðhÞ; along its lower weight spaces.

Also crucial to this discussion is the Shapovalov form. Let ð�Þn be the Hermitian
anti-involution of UðgÞ that is �1 times the Cartan involution on g: ð�Þn clearly
extends to a Hermitian anti-involution of %UðgÞ and %FðgÞ acting trivially on %UðhÞ: The
Shapovalov form on UðgÞ is the right h-bilinear UðhÞ-valued form

/x; yS ¼ HCg;h xny;

where HCg;h is the Harish-Chandra projection from UðgÞ to UðhÞ along n�UðgÞ þ
UðgÞnþ: /�; �S clearly extends to a form on %UðgÞ: By (Shapovalov) [7], this form
descends to a nondegenerate right %UðhÞ-bilinear %UðhÞ-valued form on %MðgÞ:
In light of Theorem 1, we may alternately view Pðg; hÞ as an element of %FðgÞ:
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Theorem 2 (Ašerova et al. [1]; Zhelobenko [9]). Pðg; hÞn ¼ Pðg; hÞ ¼ Pðg; hÞ2 so that

Pðg; hÞ is a Hermitian projector with respect to the Shapovalov form. Moreover, Pðg; hÞ
is the unique element P in %FðgÞ0 with constant term 1 satisfying

eaP ¼ 0

for all aADþ: Alternately, Pðg; hÞ is the unique element P in %FðgÞ with constant term 1

satisfying

eaP ¼ 0 ¼ Pe�a

for all aADþ:

Viewed as an element of %FðgÞ; there are two relevant formulas for Pðg; hÞ: The first
is a remarkable noncommutative finite factorization. In the case of g ¼ slð2;CÞ; a
formula for Pðg; hÞ is easy. Namely let F ;H;E be the standard basis of slð2;CÞ: It is
straightforward to check

Pðslð2;CÞ; hÞ ¼
XN
k¼0

ð�1Þk

k!
FkEk 1

ðH þ 2ÞðH þ 3Þ?ðH þ k þ 1Þ:

For general g; fix any normal ordering a1; a2;y; am of Dþ; i.e., whenever ai þ aj is a

root ak for ioj; then iokoj: For tAC define

PtðaiÞ ¼
XN
k¼0

ð�1Þk

k!
ek
�ai

ek
ai

1

ðhai
þ t þ 1Þðhai

þ t þ 2Þ?ðhai
þ t þ kÞ:

Writing rg for the semisum of positive roots, a formula for Pðg; hÞ is now possible.

Theorem 3 (Ašerova et al. [1]; Zhelobenko [9]).

Pðg; hÞ ¼
Ym

i¼1
Prgðhai

ÞðaiÞ:

The second formula for Pðg; hÞ is an infinite factorization. Write OðgÞ for the
Casimir element of g and define

Oðg; hÞ ¼ HCg;hOðgÞ:

Given any nAhn and QA %UðhÞ; view Q as a rational function on hn to define QnA %UðhÞ
by

QnðlÞ ¼ Qðlþ nÞ
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for all lAhn: In other words, if uA %UðgÞn; then Qu ¼ uQn: Alternately, this is the
algebra isomorphism induced by the map h-h þ nðhÞ for hAh: We employ the
notation DðUðnþÞnþÞ for the set of weights of UðnþÞnþ with respect to h: In general,
given a representation V of h; we write DðVÞ for the set of weights of V with respect
to h:

Theorem 4 (Zhelobenko [10]).

Pðg; hÞ ¼
Y

nADðUðnþÞnþÞ
1� OðgÞ � Oðg; hÞ

Oðg; hÞn � Oðg; hÞ

� �
:

3. The relative extremal projector

Let l+h be a regular reductive subalgebra of g: Thus l ¼ l�"h"lþ is a triangular

decomposition of l with l7 ¼ n7-l; g ¼ u�"l"uþ with n7 ¼ l7"u7; and q7 ¼
l"u7 is the Levi decomposition of a parabolic subalgebra of g: Given uA %UðgÞ;
write %u for the image of u in %MðgÞ: Let Ml ¼ %UðlÞ%1D %MðgÞ: Ml is an l-invariant

subspace of %MðgÞ isomorphic to %MðlÞ:We say Ml is the highest l-subrepresentation of
%MðgÞ:

Definition 2. The relative extremal projector of g to l; Pðg; lÞ; is the Hermitian
projector in Endh %MðgÞ whose image is the highest l-subrepresentation. Thus

Pðg; lÞn ¼ Pðg; lÞ ¼ Pðg; lÞ2:

Theorem 5. Pðg; lÞ exists and commutes with l: Moreover, Pðg; lÞ is the unique

Hermitian element P in %FðgÞ0 with constant term 1 satisfying

ebP ¼ 0 and eaP ¼ Pea

for all bADðuþÞ and all simple aADþðlÞ: Alternately, Pðg; lÞ is the unique element P in
%FðgÞ0 with constant term 1 satisfying

Pe�b ¼ 0 and e7aP ¼ Pe7a

for all bADðuþÞ and all simple aADþðlÞ:

Proof. Let M>
l ¼ fuA %MðgÞ j/u;mS ¼ 0 for all mAMlg: Since /�; �S is nonde-

generate on both %MðgÞ and Ml; %MðgÞ ¼ Ml"M>
l : Consider the operator in

Endh %MðgÞ given by projection onto the Ml component with respect to this

decomposition. It is clearly Hermitian and so Pðg; lÞ exists and is clearly uniquely
defined.
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Now suppose PA %FðgÞ0 satisfies the hypothesis of the theorem. The weight zero
condition and the constant term condition imply P%1 ¼ %1: The weight zero condition,

the Hermitian condition (in the first case), and the DþðlÞ condition imply P

commutes with l: Hence P acts trivially on Ml:We simply need to show PM>
l ¼ 0 to

finish the proof.

For this, recall the Poincaré–Birkhoff–Witt theorem implies UðgÞ ¼
Uðu�Þ#UðlÞ#UðuþÞ: Since %MðgÞ ¼ %UðgÞ%1 and Ml ¼ %UðlÞ%1; it is clear

Uðu�Þ#Uðl�Þ# %UðhÞ maps bijectively onto %MðgÞ and Uðl�Þ# %UðhÞ maps bijectively
onto Ml: Thus %MðgÞ ¼ Ml"½u�Uðu�Þ#Uðl�Þ# %UðhÞ�%1: We claim M>

l ¼
½u�Uðu�Þ#Uðl�Þ# %UðhÞ�%1: In the first case, P is Hermitian so that the condition
ebP ¼ 0 implies Pe�b ¼ 0: Thus in either case, assuming the previous claim, we see

PM>
l ¼ 0: This finishes the proof that P ¼ Pðg; lÞ:
To prove the claim that M>

l ¼ ½u�Uðu�Þ#Uðl�Þ# %UðhÞ�%1; let u�Au�Uðu�Þ and
l7AUðl7Þ: It suffices to show HCg;hðlþu�l�Þ ¼ 0: But since ½l; u��Du�; it is possible

to write lþu�l� ¼
P

u�
i l�i lþi hi where u�

i Au�Uðu�Þ; l7AUðl7Þ; and hiAUðhÞ: &

The existence of relative extremal projectors gives rise to many finite commutative

factorizations of the original extremal projector. They all follow from the next
theorem.

Theorem 6. If hDl1Dl2Dg is a chain of regular reductive subalgebras, then

Pðg; l1Þ ¼ Pðg; l2Þ Pðl2; l1Þ ¼ Pðl2; l1Þ Pðg; l2Þ:

Proof. Since every Pðg; lÞ is Hermitian, it suffices to prove Pðg; l1Þ ¼ Pðl2; l1Þ Pðg; l2Þ:
For this use Theorem 5 and let bADðuþ

1 Þ and aADþðl1Þ: Then Pðl2; l1Þ Pðg; l2Þe�b ¼
Pðl2; l1Þ0 ¼ 0 since Dðuþ

1 ÞDDðuþ
2 Þ: Also eaPðl2; l1Þ Pðg; l2Þ ¼ Pðl2; l1ÞeaPðg; l2Þ ¼

Pðl2; l1Þ Pðg; l2Þea since Dþðl1ÞDDþðl2Þ: The argument for e�a is similar. Finally,
Pðl2; l1Þ Pðg; l2Þ is clearly weight 0 and has constant term 1: &

4. Infinite factorization of the relative extremal projector

Let HCg;l be the Harish-Chandra projection from UðgÞ to UðlÞ along u�UðgÞ þ
UðgÞuþ and let

Oðg; lÞ ¼ HCg;lOðgÞ:

It is an element of ZðlÞ; the center of UðlÞ; since it is easy to verify that left and right
multiplication by elements of l commute with HCg;l:

Theorem 7 gives an infinite factorization of Pðg; lÞ as a commutative product of
elements in %FðgÞl: To properly interpret it, recall HCl;h defines the Harish-Chandra
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isomorphism from ZðlÞ to UðhÞWðlÞ;�; the l-Weyl group invariants of UðhÞ under the
dot action of WðlÞ; where the dot action is given by

w � Q ¼ wðQw�1rl�rlÞ

for wAWðlÞ and QAUðhÞ: Note also wðQnÞ ¼ ðwQÞwn: In Theorem 7, the notation

HC�1
l;h

Y
wAW ðlÞ

1� OðgÞ � Oðg; lÞ
Oðg; hÞwn � Oðg; hÞ

� �
ð4:1Þ

appears and is understood as follows. Write

Y
wAW ðlÞ

1� OðgÞ � Oðg; lÞ
Oðg; hÞwn � Oðg; hÞ

� �
¼

XjWðlÞj

k¼0

pk

q
½OðgÞ � Oðg; lÞ�k ð4:2Þ

for uniquely determined pkAUðhÞ with q ¼
Q

wAW ðlÞ ðOðg; hÞ
wn � Oðg; hÞÞ: Eq. (4.1) is

then defined to be

XjW ðlÞj

k¼0

HC�1
l;h pk

HC�1
l;h q

½OðgÞ � Oðg; lÞ�k: ð4:3Þ

It will be shown in the proof of Theorem 7 that this is well defined in the sense that

pk; qAUðhÞW ðlÞ;�:
Before proving Theorem 7, we must show elements of ZðlÞ are invertible as

elements of Endh %MðgÞ: Towards this end, we need the following lemma. It also
justifies the terminology that refers to Ml as the highest l-subrepresentation.

Lemma 1. As an l-representation, %MðgÞ is a direct sum of copies of %MðlÞ: Pðg; lÞ
projects %MðgÞ onto the unique copy of %MðlÞ generated by the highest weight space,
%UðhÞ%1: In particular, if fug;igng

i¼1 is a basis of Uðu�Þg then

%MðgÞ ¼ "
gADðUðu�ÞÞ;
1pipng

%Uðl�ÞPðl; hÞ %ug;i:

Each subspace %Uðl�ÞPðl; hÞ %ug;i is l-invariant and isomorphic to %MðlÞ as an l-module.

Proof. First observe Uðl�ÞPðl; hÞ %UðhÞ %ug;i is clearly an l-invariant subspace of %MðgÞ
since UðlÞ ¼ Uðl�Þ#UðhÞ#UðlþÞ and lþPðl; hÞ ¼ 0: Also recall there is a bijection

f : %Uðl�Þ#Uðu�Þ- %MðgÞ induced by fðl#uÞ ¼ lu%1 for lA %Uðl�Þ and uAUðu�Þ:
Viewing Pðl; hÞA %FðlÞ0 and using the fact that ½lþ; u��Du�; it is easy to verify

f�1ðPðl; hÞ %ug;iÞ ¼ 1#ug;i þ X where XAl� %Uðl�Þ#Uðu�Þ and the Uðu�Þ-components
of X have strictly higher weight than ug;i:
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In particular, Pðl; hÞ %ug;i is nonzero. Moreover, left multiplication by a nonzero

element of Uðn�Þ on Uðn�Þ is injective (for instance by looking at top filtration
degrees and using the Poincaré–Birkhoff–Witt theorem). Since Pðl; hÞ %ug;i is nonzero

and lþPðl; hÞ ¼ 0; it is therefore clear the mapping of %Uðl�Þ to %Uðl�ÞPðl; hÞ %ug;i given

by l/lPðl; hÞ %ug;i induces an l-isomorphism from %MðlÞ to %Uðl�ÞPðl; hÞ %ug;i:

Now let l1; l2A %Uðl�Þ: Then

/l1Pðl; hÞ %ug1;i1 ; l2Pðl; hÞ %ug2;i2S ¼HCg;hðun

g1;i1
Pðl; hÞln1 l2Pðl; hÞug2;i2Þ

¼HCg;hðun

g1;i1
Pðl; hÞHCl;hðln1 l2ÞPðl; hÞug2;i2Þ

¼HCg;hðun

g1;i1
Pðl; hÞug2;i2ÞHCl;hðln1 l2Þ:

In particular, l1Pðl; hÞ %ug1;i1>l2Pðl; hÞ %ug2;i2 unless perhaps /l1; l2Sa0 and g1 ¼ g2:
Thus to show the modules %Uðl�ÞPðl; hÞ %ug;i form a direct sum, it is enough to show

they are direct for fug;igng
i¼1 for a fixed g: So suppose %0 ¼

Png
i¼1 liPðl; hÞ %ug;i: Apply f

�1

to see 0 ¼
Png

i¼1 li#ug;i þ Xi where XiAðlil� %Uðl�Þ#Uðu�ÞÞg and the Uðu�Þ-
components of Xi have strictly higher weight than g: In particular, looking only at
the terms with Uðu�Þ-components in Uðu�Þg; 0 ¼

Png
i¼1 li#ug;i: Since fug;igng

i¼1 is

independent, it is easy to see li ¼ 0:

To finish the proof, we show the modules %Uðl�ÞPðl; hÞ %ug;i span %MðgÞ: As %MðgÞ ¼
ðUðl�Þ#Uðu�Þ# %UðhÞÞ%1; it suffices to show each lug;i is a contained in a finite sum of

modules of the form %Uðl�ÞPðl; hÞ %ug0;i0 : The above discussion shows lPðl; hÞ %ug;i matches

l %ug;i up to lower weight spaces in the first factor of %Uðl�Þ#Uðu�Þ and higher weight
spaces in the second. As the weights of Uðu�Þ are bounded from above, an inductive
procedure finishes the proof. &

Lemma 2. If zAZðlÞ; then z is invertible viewed as an element of Endh %MðgÞ: In

particular, the element z�1 acts on %Uðl�ÞlPðl; hÞ %ug;i as multiplication by

1

ðHCl;hzÞ�l:

Proof. Decompose %MðgÞ as in Lemma 1. For zAZðlÞ and lAUðl�Þl;

zlPðl; hÞ %ug;i ¼ lðHCl;hzÞPðl; hÞ %ug;i

¼ðHCl;hzÞ�l
lPðl; hÞ %ug;i:

Therefore, for zAZðlÞ; define z�1 as the element of Endh %MðgÞ that acts by

1

ðHCl;hzÞ�l
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on %Uðl�ÞlPðl; hÞ %ug;i: It is straightforward to check this is a well defined element of

Endh %MðgÞ and zz�1 ¼ z�1z ¼ Id %MðgÞ: &

The next theorem gives an infinite commutative factorization of the relative
extremal projector analogous to Theorem 4. Notice the factors are polynomials in
OðgÞ over FracZðlÞ and so each term commutes with l:

Theorem 7.

Pðg; lÞ ¼
Y

nADðuþUðuþÞÞ;
l-dominant

HC�1
l;h

Y
wAW ðlÞ

1� OðgÞ � Oðg; lÞ
Oðg; hÞwn � Oðg; hÞ

� �
: ð4:4Þ

Proof. Denote by P the right-hand side of the formula of Eq. (4.4). To see P is well

defined and commutes with l; we show the pk; q from Eq. (4.3) are in UðhÞW ðlÞ;�: We

already know Oðg; hÞAUðhÞW ðgÞ;� so

Oðg; hÞ ¼ wðOðg; hÞw�1rg�rgÞ

for all wAWðgÞ: But w�1rg � rg ¼ ½w�1ðrlÞ � rl� þ ½w�1ðruþÞ � ruþ � so that if

wAWðlÞ

Oðg; hÞ ¼ wðOðg; hÞw�1rl�rlÞ

since wðruþÞ ¼ ruþ : In particular, Oðg; hÞAUðhÞWðlÞ;�: More generally,

w � Oðg; hÞn ¼wðOðg; hÞnþw�1rl�rlÞ

¼ ½wðOðg; hÞw�1rl�rlÞ�wn ¼ Oðg; hÞwn:

Letting rw ¼ Oðg; hÞwn � Oðg; hÞ; we see w � rw0 ¼ rww0 for w;w0AWðlÞ: Since q ¼Q
wAW ðlÞ rw; we see w � q ¼ q so that qAUðhÞWðlÞ;�: Finally, enumerate WðlÞ ¼

fw1;w2;y;wsg so that

pk ¼ ð�1Þk
Xs

k¼0

Y
1pi1oi2o?ois�kps

rwi1
rwi2

?rwis�k
:

Thus w � pk ¼ pk so pkAUðhÞWðlÞ;�:

It now suffices to show P acts by 1 on Ml and by 0 on M>
l : Note OðgÞ acts on

%MðgÞg as Oðg; hÞ
�g and that Lemma 2 implies Oðg; lÞPðl; hÞ ¼ HCl;hOðg; lÞPðl; hÞ ¼
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Oðg; hÞPðl; hÞ: So if lAUðl�Þ;

HC�1
l;h

Y
wAW ðlÞ

1� OðgÞ � Oðg; lÞ
Oðg; hÞwn � Oðg; hÞ

� �2
4

3
5lPðl; hÞ %ug;i

¼ lHC�1
l;h

Y
wAW ðlÞ

1� OðgÞ � Oðg; lÞ
Oðg; hÞwn � Oðg; hÞ

� �2
4

3
5Pðl; hÞ %ug;i

¼ l
Y

wAWðlÞ
1� OðgÞ � Oðg; lÞ

Oðg; hÞwn � Oðg; hÞ

� �
Pðl; hÞ %ug;i

¼ l
Y

wAWðlÞ
1� Oðg; hÞ�g � Oðg; hÞ

Oðg; hÞwn � Oðg; hÞ

� �
Pðl; hÞ %ug;i:

On Ml; g ¼ 0 so P acts by 1: On M>
l ; gADðu�Uðu�ÞÞ so there exists wAWðlÞ and

nADðuþUðuþÞÞ that is l-dominant with �g ¼ wn: In particular, P acts by 0 on

M>
l : &

5. Summation formulas for relative extremal projectors

This section gives a summation formula for Pðg; lÞ in terms of Pðg; hÞ which is in
turn given by Theorems 3 and 4.

Recall Dþ ¼ fa1; a2;y; amg: Given sequences of nonnegative integers r ¼
ðr1; r2;y; rmÞ and s ¼ ðs1; s2;y; smÞ; define

Er ¼
Ym

i¼1
eri
ai
; Fr ¼ En

r ; and wtðFrEsÞ ¼
Xm

i¼1
ð�ri þ siÞai:

Lemma 3. For wtðFrEsÞ ¼ 0; there exist unique pr;sA %UðhÞ so

1 ¼
X

wtðFrEsÞ¼0
Fr Pðg; hÞ Es pr;s:

The coefficient of Pðg; hÞ is 1 and the coefficients are symmetric, i.e., pr;s ¼ ps;r: When a
is simple, the coefficient of ek

�a Pðg; hÞ ek
a is

1

k! ðha þ k þ 1Þðha þ k þ 2Þ?ðha þ 2kÞ
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for all kAN: Finally, if fuigNi¼1 is a weight basis of Uðn�Þ and fũigNi¼1 is the dual basis

under the Shapovalov form

1 ¼
XN
i¼1

ui Pðg; hÞ ũn

i :

Proof. Fix l a weight of Uðn�Þ: Let u1;y; uN be any basis for Uðn�Þl where N is the

value of the Kostant partition function at �l: By the nondegeneracy of the

Shapovalov form, choose ũ1;y; ũN in %Uðn�Þl to be its dual basis. Consider the
expression

X ¼
XN

i;j¼1
ui Pðg; hÞ ũn

j pi;j;

where pi;jA %UðhÞ: Then X acts by zero on any weight space %MðgÞm when mal:
Furthermore, X acts as the identity on %MðgÞl if and only if X uk ¼ uk for all k;

regarded as an equality in %MðgÞ: However, ui Pðg; hÞ ũn
j pi;j uk ¼ ui /ũj; ukS pl

i;j and

so X uk ¼
PN

i¼1 ui pl
i;k: Therefore X acts as the identity on %MðgÞl if and only if

pi;j ¼ di;j; the Dirac delta function. In other words, if and only if

X ¼
XN

i¼1
ui Pðg; hÞ ũn

i :

Of course ui and ũn
i may be expanded uniquely in terms of any particular basis of

Uðn�Þl and UðnþÞ�l; respectively. This finishes the existence and uniqueness parts of
the lemma. The statement regarding the coefficient of Pðg; hÞ is obvious. The
statement regarding ek

�a Pðg; hÞ ek
a follows by a simple calculation of /ek

�a; ek
�aS

which may be easily carried out in a copy of slð2;CÞ: The statement regarding
symmetry follows by uniqueness. &

It is easy to see Pðl; hÞ ¼ Pðlss; h-lssÞ; where lss is the semisimple part of l: Then
Lemma 3 can be applied to the special case of g ¼ l to write

1 ¼
X

wtðF l
rEl

sÞ¼0
F l

r Pðl; hÞ El
sp

l
r;s; ð5:1Þ

where now the F l
r and the El

s are the corresponding basis elements for Uðl�Þ and
UðlþÞ; respectively, and pl

r;sA %Uðh-lssÞ:

Theorem 8. With the notation from Eq. (5.1),

Pðg; lÞ ¼
X

wtðF l
rEl

sÞ¼0
F l

rPðg; hÞEl
sp

l
r;s:
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Proof. Apply Pðg; lÞ to both sides of Eq. (5.1) and use Theorems 5 and 6. &

Corollary 1. If lssCslð2;CÞ and corresponds to the simple root a; then

Pðg; lÞ ¼
XN
k¼0

ek
�aPðg; hÞek

a
1

k!ðha þ k þ 1Þðha þ k þ 2Þ?ðha þ 2kÞ:
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