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This paper proves the existence of relative extremal projectors. An infinite factorization is
given as well as a summation formula.
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1. Introduction

Generalizing work of ASerova et al. [1], Zhelobenko developed the notion of an
extremal projector [9,10]. Roughly speaking, the extremal projector is the operator
on the universal Verma module that projects onto the highest weight space along all
other weight spaces. It admits very nontrivial and powerful factorization theorems.
Moreover, it has a wide variety of applications such as the study of K-types of
irreducible admissible representations (via the Mickelsson step algebra), the study of
branching rules, the description of homorphisms between Verma modules, the
construction of special bases of representations (e.g., generalized Gelfand—Tsetlin
bases), the calculation of Clebsch—Gordan coefficients, the construction of general-
ized harmonic polynomials, and others [2-6,8—10].

This paper develops the notion of a relative extremal projector. Roughly speaking,
if =g is a regular reductive subalgebra of a complex reductive Lie algebra, then the

*Corresponding author.
E-mail addresses: conley@unt.edu (C.H. Conley), mark_sepanski@baylor.edu (M.R. Sepanski).
"Partially supported by a Baylor Summer Sabbatical Grant.

0001-8708/03/$ - see front matter © 2003 Elsevier Science (USA). All rights reserved.
PII: S0001-8708(02)00031-2


https://core.ac.uk/display/82165912?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

156 C.H. Conley, M.R. Sepanski | Advances in Mathematics 174 (2003) 155-166

relative extremal projector is the operator on the universal Verma module that
projects onto the highest [-subrepresentation of g. An existence theorem (Theorem
5), an infinite commutative factorization theorem (Theorem 7), and a summation
formula (Theorem 8) for relative extremal projectors are proved in this paper. These
theorems also shed additional light on the original extremal projector (Lemma 3)
and provide new factorizations for it (Theorem 6). In a future paper we will study
finite noncommutative factorizations of relative extremal projectors generalizing the
original work of ASerova et al. [1].

2. Extremal projectors

We begin by summarizing some of the relevant facts about extremal projectors
needed later in this paper. The theorems in this section are all due to ASerova et al.
[1] and Zhelobenko [9,10]. The reader is referred to their work for details.

We begin with the usual notation. Let g be a reductive Lie algebra over C and fix a
Cartan subalgebra ). Write 4 = A(g,})) for the root system of g with respect to b, fix
AT = A% (g,h) a positive root system, and write g = n~ @h@n* for the correspond-
ing triangular decomposition of g. If aed™, choose a standard sl(2,C) basis
e_q,hy, e, in g Where e, are weight vectors corresponding to the roots +o. Thus
[ex, e_y] = hy and a(h,) = 2. Write U(qg) for the universal enveloping algebra of g.

Recall U(h) is naturally isomorphic to the symmetric algebra on b which is
isomorphic to the set of polynomials on the dual space h*. Define (D) to be the
fraction field of (D),

1(h) = Fracl(b).

U(h) is isomorphic to the field of rational functions on h*. Write U(g) for the

extension of U(g) by (D),

U(g) = U(g) ® HU(D).
u(h)
For Leb*, write 1(g), for the 1 weight space of A(g). If 4™ = {0, 02, ..., 0}, the

Poincaré-Birkhoff-Witt theorem implies 2(g), is spanned over 2(h) by monomials
of the form

Fmo L 02 P oSU S L Sm
e e?, el ener e (2.1)

— 0y —0 0 O ?

where =37, (—r; + s;)o;. Define §(g); to be the vector space of all formal series
over (D) in these monomials (with fixed weight 1). Let

50) = @ (o)

It is a theorem that &(g) is an algebra with respect to the multiplication of formal
series. We will see that one way of looking at the extremal projector places it as an
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element of §(g). If PeF(g),, we say that its constant term is its summand coming
from (b).

Another important piece of this story is the universal Verma module. 1t is defined
as

M(g) = U(g)/U(g)n"

which is both a left g-module and a two-sided h-module. Write M(g) for its extension
by (D),

and M(g), for the A weight space of M(g). It is a critical theorem that elements of
&(g) act by left multiplication on M(g). In general, let End; M(g) =
{T eEndyy, M(g) | [h, T] = A(W)T for all heb}, where the subscript U(h) denotes
right U(D)-linearity, and let

Endy M(g) = @ End, M(g).
p

In other words, Endy M(g) is the span of the right (h)-linear endomorphisms of
M(g) with well-defined weights under the adjoint h-action. We will see that another
way of looking at the extremal projector is as an element of Endy, M(g). The relevant

theorem follows.

Theorem 1 (Zhelobenko [9]). &(g) is isomorphic to Endy M(g). The isomorphism
maps f € §(g) to the operator on M(g) given by left multiplication by f .

Definition 1. The extremal projector, P(g,}), is the element of Endy M(g) projecting
M(g) to its highest weight space, M(g),=1I(h), along its lower weight spaces.

Also crucial to this discussion is the Shapovalov form. Let (-)* be the Hermitian
anti-involution of [(g) that is —1 times the Cartan involution on g. (-)* clearly
extends to a Hermitian anti-involution of 1[(g) and ¥(g) acting trivially on 2(}). The
Shapovalov form on (g) is the right h-bilinear U(h)-valued form

<X,y> = Hcg,l) x*y,

where HCy is the Harish-Chandra projection from 2I(g) to U(h) along n~2(g) +
U(g)n™. {-,-> clearly extends to a form on (g). By (Shapovalov) [7], this form
descends to a nondegenerate right 1[(h)-bilinear 1 (})-valued form on M(g).

In light of Theorem 1, we may alternately view P(g,}) as an element of &(g).
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Theorem 2 (Aserova et al. [1]; Zhelobenko [9]). P(g,b)* = P(g,h) = P(g, b)2 so that
P(g,b) is a Hermitian projector with respect to the Shapovalov form. Moreover, P(g,})
is the unique element P in §(g), with constant term 1 satisfving

e, P =0
for all e A™. Alternately, P(g,b) is the unique element P in §(g) with constant term 1
satisfying
e, P=0= Pe_,

for all ned™.

Viewed as an element of &(g), there are two relevant formulas for P(g, b). The first
is a remarkable noncommutative finite factorization. In the case of g =sl(2,C), a
formula for P(g,b) is easy. Namely let F, H, E be the standard basis of s1(2, C). It is
straightforward to check

0 k
(=1)" ko 1
P(sl(2,C),h) = F*'E .
(s1(2,€), ) ; k! (H+2)(H+3)-(H+k+1)
For general g, fix any normal ordering o, 05, ..., 0, of A™; i.e., whenever o; + o; is a

root o for i<j, then i<k <j. For teC define

N - (—l)k ko k
P,(oc,)—z 7 e, e

k=0

1
(hoyy + 1+ 1) (hyy + 1+ 2) -+ (hy, + 1+ k)

Writing p, for the semisum of positive roots, a formula for P(g,}) is now possible.

Theorem 3 (Aserova et al. [1]; Zhelobenko [9]).

P(g,b) = H Ppg(hii)(oci)'
i=1

The second formula for P(g,}) is an infinite factorization. Write Q(g) for the
Casimir element of g and define

Q(g,h) = HCypQ(g).

Given any vebh* and Qell(}), view Q as a rational function on b* to define Q" e 1(h)
by

0'(2) = QUi +)
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for all Zebh*. In other words, if uell(g),, then Qu = uQ". Alternately, this is the
algebra isomorphism induced by the map h—/h+ v(h) for helh. We employ the
notation A(QU(n")n™) for the set of weights of U(n™)nt with respect to h. In general,
given a representation V of ), we write A(V) for the set of weights of 7 with respect
to b.

Theorem 4 (Zhelobenko [10]).

P(g,h) = Q(g) — Q(s,h) >

H (1 B v
ve AQU(nt)nt) Q(s, b) - Q(g, I))

3. The relative extremal projector

Let [2] be a regular reductive subalgebra of g. Thus [ = [ @h@I" is a triangular
decomposition of [ with [* =n* Al g =u~ @I@u* with n* =1* Qu*, and qF =
[®u¥ is the Levi decomposition of a parabolic subalgebra of g. Given uell(g),
write @ for the image of u in M(g). Let M; = U()T1< M(g). M is an l-invariant
subspace of M(g) isomorphic to M(1). We say M, is the highest l-subrepresentation of

M(g).

Definition 2. The relative extremal projector of g to I, P(g,I), is the Hermitian
projector in Endy M(g) whose image is the highest [-subrepresentation. Thus

P(gal)* = P(g’I) = P(g7l)2'

Theorem 5. P(g,l) exists and commutes with 1. Moreover, P(g,1) is the unique
Hermitian element P in §(9)0 with constant term 1 satisfying

epP =0 and e,P = Pe,

Sor all Be A(u") and all simple ae A™(1). Alternately, P(g,1) is the unique element P in
&(8), with constant term 1 satisfying

Pe_g=0 and ey,P = Pe,,
Sor all Be A(u") and all simple oe A™(1).

Proof. Let M = {ueM(g)| Cu,m) =0 for all me M}. Since {-,-» is nonde-
generate on both M(g) and M, M(g) = M{@® M;-. Consider the operator in
Endy M(g) given by projection onto the M; component with respect to this

decomposition. It is clearly Hermitian and so P(g,1) exists and is clearly uniquely
defined.
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Now suppose Pe @(g)o satisfies the hypothesis of the theorem. The weight zero
condition and the constant term condition imply P1 = 1. The weight zero condition,
the Hermitian condition (in the first case), and the A*(I) condition imply P
commutes with I. Hence P acts trivially on M;. We simply need to show PM* = 0 to
finish the proof.

For this, recall the Poincaré-Birkhoff-Witt theorem implies U(g) =
U ) QUMD @U(uT). Since M(g) =U(g)l and M;=U1, it is clear
U(u™) @U(IT) ®U(h) maps bijectively onto M(g) and U(I7) ® U(h) maps bijectively
onto M. Thus M(g) =M@ u Uu )RU(I)RUD)T. We claim ML =
=A™ ) @ U(IT)®U(H)]1. In the first case, P is Hermitian so that the condition
epP = 0 implies Pe_g = 0. Thus in either case, assuming the previous claim, we see
PM;+ = 0. This finishes the proof that P = P(g,1).

To prove the claim that Mt = [uU(u") @ U(I") @ U(H)]T, let u~ eu~U(u~) and
1% e N(1F). It suffices to show HCy(/Tu~1~) = 0. But since [[,u~]Su~, it is possible
to write I*u~ I~ = > u7 7 [;'h; where u7 eu”U(u”), [T eU(1F), and h;e(h). O

The existence of relative extremal projectors gives rise to many finite commutative
factorizations of the original extremal projector. They all follow from the next
theorem.

Theorem 6. If h<=1, =1, =g is a chain of regular reductive subalgebras, then

P(g,1;) = P(g,1s) P(I,1;) = P(r, ;) P(g,2).

Proof. Since every P(g, 1) is Hermitian, it suffices to prove P(g,1;) = P(I,1;) P(g,11).
For this use Theorem 5 and let fe4(u]) and xe A (I;). Then P(L,1;) P(g,l)e_p =
P(,,1;))0 =0 since A(uj)=4(uy). Also e, P(lh,1;) P(g,1) = P(l,1))e,P(g, 1) =
P(I,,1;) P(g,1h)e, since A7(I}))=A*(l;). The argument for e, is similar. Finally,
P(I,,1;) P(g,1) is clearly weight 0 and has constant term 1. [

4. Infinite factorization of the relative extremal projector

Let HCy; be the Harish-Chandra projection from 2U(g) to U(I) along u=2U(g) +
U(g)u™ and let

Q(g,1) = HCy12(g).

It is an element of 3(1), the center of U(I), since it is easy to verify that left and right
multiplication by elements of [ commute with HC,.
Theorem 7 gives an infinite factorization of P(g,1) as a commutative product of

elements in {?(g)l. To properly interpret it, recall HC;y defines the Harish-Chandra
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isomorphism from 3(I) to 2A(h)” V", the -Weyl group invariants of 2((h) under the
dot action of W(l), where the dot action is given by

w-Q= W(Qlt"‘ﬂhﬂr)

for we W(1) and Qel(h). Note also w(Q") = (wQ)"". In Theorem 7, the notation

. Q(g) — (g,
HCL[) \MEIZV[(I) <1 - Q(ga b)wv - Q(g? b)) (41)

appears and is understood as follows. Write

2@ -26) .
wel;[u) (1 Q(g,b)“"’ﬂ(g,b)) - ; q[Q(g) Q(g,1)] (4.2)

for uniquely determined px € U(h) with ¢ =[],y (2(g,H)"" — Q(g,D)). Eq. (4.1) is
then defined to be

PO HC py

k
2 W[Q(g) - Q(g,D]". (4.3)

It will be shown in the proof of Theorem 7 that this is well defined in the sense that
pk,qell(l))Wa)“.

Before proving Theorem 7, we must show elements of 3(I) are invertible as
elements of Endy M(g). Towards this end, we need the following lemma. It also
justifies the terminology that refers to M; as the highest [-subrepresentation.

Lemma 1. As an l-representation, M(g) is a direct sum of copies of M(l). P(g,])
projects M(g) onto the unique copy of M(l) generated by the highest weight space,

U(H)1. In particular, if {u,;}7" | is a basis of U(u~), then

Mg = @ UI)Pb)a,.
yeAQ(u)),
l<i<n7.

Each subspace W(I")P(1,b)it, ; is l-invariant and isomorphic to M(1) as an l-module.

Proof. First observe (") P(I, h)(h)i,; is clearly an l-invariant subspace of M(g)
since U(1) = A7) @U(H) @U(I") and [T P(I,h) = 0. Also recall there is a bijection
¢: ()@ U(u")— M(g) induced by ¢(I®u) =l for [eU(l") and uell(u).
Viewing P(I,h)eF(l), and using the fact that [[*,u”]<u", it is easy to verify
o (P(LY)t,;) = 1®u,,; + X where X e[ U([") ®U(u~) and the U(u")-components
of X have strictly higher weight than u, ;.
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In particular, P(1,h)a,; is nonzero. Moreover, left multiplication by a nonzero
element of U(n~) on U(n") is injective (for instance by looking at top filtration
degrees and using the Poincaré-Birkhoft-Witt theorem). Since P(I, )i, ; is nonzero

and [T P(I,h) = 0, it is therefore clear the mapping of (17 to U(I7)P(1, )i, given
by I+ IP(1,})it,; induces an I-isomorphism from M(I) to W(I")P(L, ), .
Now let ll,lzel_I(If). Then

ChP(LD)ity, i, LPLY)ay, , > =HCqy(u; ; P(LY)FLP(LD)uy, i)
=HCyy (e ; P(LH)HCy(Ff1) P(L,h)uy, 1)
= HCQJ’)(“; ,i1P(I7 b)u“/zﬁiz)HCLh(lTb)'

In particular, 1, P(1,b)a, ; LLP(L,b)a,, ; unless perhaps {/;,L)#0 and y; = 7,.
Thus to show the modules (") P(1, b)i,; form a direct sum, it is enough to show
they are direct for {u,;};", for a fixed y. So suppose 0 = 37, LP(I, )i, ;. Apply ¢
to see 0=>7", i®u,;+X; where X;e(IU(C)@U(u")), and the U )-
components of X; have strictly higher weight than y. In particular, looking only at
the terms with U(u~)-components in U(u"),, 0= SV L ®uy. Since {u, ), is
independent, it is easy to see [; = 0.

To finish the proof, we show the modules (1) P(I, )@, ; span M(g). As M(g) =
UIT) @U(u™) ®U(H))1, it suffices to show each /u,, is a contained in a finite sum of
modules of the form (17) P(, )i, ». The above discussion shows /P(1, h)i, ; matches
lit,; up to lower weight spaces in the first factor of U(I”) @ U(u~) and higher weight
spaces in the second. As the weights of U(u~) are bounded from above, an inductive
procedure finishes the proof. [

Lemma 2. If ze 3(1), then z is invertible viewed as an element of Endy M(g). In
particular, the element z=' acts on W(I"), P(1,h)i,; as multiplication by

1
(HCL[)Z) -

Proof. Decompose M(g) as in Lemma 1. For ze 3(I) and /e(I7),,
zIP(L )ity = (HCyyz) P(L, b)
= (HCyyz) “IP(L, b)a, ;.
Therefore, for ze 3(I), define z~! as the element of Endy, M(g) that acts by

1
(HCpyz) ™
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on (1), P(L,h)a,,;. It is straightforward to check this is a well defined element of
Endy M(g) and zz7' = z7 'z = Id ). O

The next theorem gives an infinite commutative factorization of the relative
extremal projector analogous to Theorem 4. Notice the factors are polynomials in
Q(g) over Frac3(l) and so each term commutes with [.

Theorem 7.
_ Q(g) — Q(g,1)
Pe)= ] HCy ] (1 - S . (4.4)
ved(utU(ut)), ) we W (1) Q(g’ b) - Q(g’ I))
[-dominant

Proof. Denote by P the right-hand side of the formula of Eq. (4.4). To see P is well
defined and commutes with [, we show the py, ¢ from Eq. (4.3) are in u(b)W(I)". We
already know Q(g, ) elI(b)W(g)" $0

Q(g,) = w(Q(g, b)" )

for all weW(g). But w'p, —p, = [w'(p) = pi] + [w ' (py+) — py+] so that if
we W(I)

Q(g.b) = w(Q(g,b)" ")

since w(p,+) = p,+- In particular, (g, I))ell(b)W<I)". More generally,
W Qg.h)" =w(Q(a b))

= [W(Q(g, I))wi]pl_pl)]wv — 9(97 [))wv.

Letting r,, = Q(g,H)"" — Q(g,h), we see w-ry =ry,» for w,w' e W(l). Since ¢ =

w(l),

[Tvewq v, we see w-g=gq so that gel(b) . Finally, enumerate W(I) =

{wi,wy, ..., ws} so that

S

iSO DI | G

k=0 1<ij<ir<--<igp<s

Thus w - pr = pr so pr e (D) W,

It now suffices to show P acts by 1 on M; and by 0 on M;*. Note Q(g) acts on
M(g), as Q(g,h)"" and that Lemma 2 implies (g,1)P(I,h) = HC1y2(g,1)P(,b) =
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Q(g,H) P, ). Soif e(1),

o _ Q(g) —Q(g,]) -

T WETWI([) <1 (a.0)" = s, b)ﬂ o
_ 2(g) —2(g1) ]

“ral I, <1 2(a.b)" — ,b)ﬂ o

= Q) — (g1

N lu el;/[([) <1 Q(Qa b)w - Q(q, [)))P(Ia b)u}’l

— Q(g,h) " — Q(g,h) -

N luel;/[]) ( (g, b)wv — Q(g’ b))P(Ia b) Vi

On My, y=0so P acts by 1. On M, yeA(u U(u~)) so there exists we W (I) and
veA(utU(u")) that is [-dominant with —y = wv. In particular, P acts by 0 on

Mt O

5. Summation formulas for relative extremal projectors

This section gives a summation formula for P(g,I) in terms of P(g,}h) which is in

turn given by Theorems 3 and 4.
Recall A" = {00, ...,0,}. Given sequences of nonnegative integers
(r1,r2, ... 1) and s = (51,82, ..., Sm), define

m
E =[] ¢, F=E, and wi(FE) Z —1i + 5i)2

Lemma 3. For wt(F,E;) = 0, there exist unique p,s€l(h) so

1= Z Fr P(g,b) Espr,s-

Wt(E‘Es):O

ryr =

The coefficient of P(g,b) is 1 and the coefficients are symmetric, i.e., pys = ps,. When o

is simple, the coefficient of ek, P(g,b) e is

1
K (hy + k + V) (hy + k +2) - (hy + 2k)
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Sor all keN. Finally, if {u;},2, is a weight basis of W(n") and {i1;},°, is the dual basis
under the Shapovalov form

0
1= u P(g,bh)af
i=1

Proof. Fix A a weight of U(n™). Let u, ..., uy be any basis for U(n~), where N is the
value of the Kostant partition function at —A. By the nondegeneracy of the
Shapovalov form, choose #, ...,y in fI(n*) ;, to be its dual basis. Consider the
expression

N
X = Z u; P(g,9) & piy,
s

where p;;el(h). Then X acts by zero on any weight space M(g)
Furthermore, X acts as the identity on M(g),

A

when p#/.
if and only if X ux = uy for all k,
regarded as an equality in M(g). However, u; P(g,b) @ pijur = u; {1, uk>pfd- and
SO X u, = Zf\il u,—pf:k. Therefore X acts as the identity on M(g); if and only if
pij =10

14

the Dirac delta function. In other words, if and only if

N
:Zuzp(g b)ﬁ*
i=1

Of course u; and #F may be expanded uniquely in terms of any particular basis of
U(n~), and H(n*)ﬂ, respectively. This finishes the existence and uniqueness parts of
the lemma. The statement regarding the coefficient of P(g,h)) is obvious. The
statement regarding ¢* P(g,b) et ¢ follows by a simple calculation of ek ek >
which may be easily carrled out in a copy of sl(2,C). The statement regarding
symmetry follows by uniqueness. [J

ijs

It is easy to see P(I,h) = P(I, hnl), where I is the semisimple part of I. Then
Lemma 3 can be applied to the special case of g = [ to write

= > FPLYEP, (5.1)

Wi(FLE!)=0

where now the F! and the E! are the corresponding basis elements for U(I”7) and
U(I7), respectively, and p}  e(hn ).

Theorem 8. With the notation from Eq. (5.1),

P(g,1) = Z F'P(g.b)Elp,.,.
(FIEI
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Proof. Apply P(g,]) to both sides of Eq. (5.1) and use Theorems 5 and 6. [

Corollary 1. If [~sl(2,C) and corresponds to the simple root o, then

© 1
— § k K
P(g,]) = 2 e_aP(gvb)eoc KNhy +k+ 1) (hy +k+2)--(hy —|—2k).
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