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Abstract

In this contribution we study the distribution of the present value function of a series of random payments in a
stochastic financial environment. Such distributions occur naturally in a wide range of applications within fields of
insurance and finance. We obtain accurate approximations by developing upper and lower bounds in the convex-
order sense for present value functions. Technically speaking, our methodology is an extension of the results of
Dhaene et al. [Insur. Math. Econom. 31(1) (2002) 3–33, Insur. Math. Econom. 31(2) (2002) 133–161] to the case
of scalar products of mutually independent random vectors.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Within the fields of finance and actuarial science one is often confronted with the problem of determining
the distribution function of a scalar product of two random vectors of the form

S =
n∑
i=1

XiVi . (1)
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In this contribution we will interpret the random variablesXi as future payments/liabilities due at times
i= t1, t2, . . . , tn andVi as random discount factors equal to e−Y (ti ), where the processY (t) represents the
return on investment in period(0, t). Notice that here the random vector�X=(X1, X2, . . . , Xn)may reflect
e.g. the insurance or credit risk while the vector�V = (V1, V2, . . . , Vn) represents the financial/investment
risk. In general we assume that these vectors are mutually independent.

In practical applications the independence assumption may be often violated, e.g. due to an inflation
factor which strongly influences both payments and investment results. One can however tackle this
problem by considering sums of the form

S =
n∑
i=1

X̃iṼi ,

whereX̃i=Xi/Zi andṼi=ViZi are the adjusted values expressed in real terms (Zi denotes here an inflation
factor over period(0, ti)). For this reason the assumption of independence between the insurance risk
and the financial risk is in most cases realistic and can be efficiently deployed to obtain various quantities
describing risk within financial institutions, e.g. discounted insurance claims or the embedded/appraisal
value of a company.

Distributions of sums of form (1) are often encountered in practice and need to be analyzed thoroughly
by actuaries and other practitioners involved in the risk management process. Not only the basic summary
measures (like the first few moments) have to be computed, but also more sophisticated risk measures
which require much deeper knowledge about the underlying distributions (e.g. the Value-at-Risk).

Unfortunately there are no analytical methods to compute distribution functions for random variables
of this form. That’s why usually one has to rely on volatile and time consuming Monte Carlo simulations.
Despite the enormous increase in computational power observed within last few years, the computational
time remains a serious drawback of Monte Carlo simulations, especially when one is interested in es-
timating very high values of quantiles (note that a solvency capital of an insurance company may be
determined e.g. as the 99.95%-quantile, which is extremely difficult to estimate within reasonable time
by simulation methods).

In this contribution we propose an alternative solution. By extending the methodology of Dhaene et
al. [3,4] to the case of scalar products of independent random vectors, we obtain convex upper and lower
bounds for sums of form (1). As we demonstrate by means of a series of numerical illustrations, the
methodology provides an excellent framework to get accurate and easily obtainable approximations of
distribution functions for random variables of form (1).

The structure of the paper is as follows. In Section 2 we briefly revise the theoretical concepts on which
our methodology is based. Next, we demonstrate in Section 3 how to obtain the bounds for (1) in the
convex order sense in case when�V follows the log-normal law. Section 4 contains several applications
for discounted claim processes under the Black and Scholes setting. Finally, we conclude the paper in
Section 5.

2. Methodology

2.1. Convex order and comonotonicity

In this subsection we briefly recapitulate some theoretical results of Dhaene et al.[3].
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Definition 1. A random variableX is said to precede a random variableY in the convex order sense,
notationX�cxY , if and only ifE[X] = E[Y ] andE[(X − d)+]�E[(Y − d)+] for any retentiond.

Roughly speaking, the convex order corresponds to the intuition of riskiness. Indeed,X�cxY means
thatY is more likely to take on extreme values thanX. Note that Definition 1 is equivalent to the statement
thatX is preferred by all risk-averse decision makers in the framework of utility theory. It can be also
proved that the same holds for the dual theory of choice under risk ofYaari[14]—see e.g.[3]. Thus from
the viewpoint of an insurer it will be always a prudent strategy to replace a random variableXby a riskier
random variableY.

Definition 2. Let �X = (X1, X2, . . . , Xn) be a random vector with marginal distributions given by
FXi (t) = Pr[Xi� t]. Then �X is said to be comonotonic if there exist a random variableZ and non-
decreasing (nonincreasing) functionsg1, g2, . . . , gn : R → R such that

�X d=(g1(Z), g2(Z), . . . , gn(Z)),

where
d= means equality in distribution.

If a random variableSconsists of a sum of random variables(X1, . . . , Xn), replacing the copula of
(X1, . . . , Xn) by the comonotonic copula yields an upper bound forS in the convex order. On the other
hand, applying Jensen’s inequality toSprovides us a lower bound. This is formalized in the following
theorem, which is taken from[3,10].

Theorem 1. Consider a sum of random variablesS = X1 + X2 + · · · + Xn and define the following
related random variables:

Su = F−1
X1
(U)+ F−1

X2
(U)+ · · · + F−1

Xn
(U), (2)

Sl = E[X1|�] + E[X2|�] + · · · + E[Xn|�], (3)

withUaUniform(0,1) randomvariable and�anarbitrary randomvariable.Then the following relations
hold:

Sl�cxS�cxS
u.

Proof. See e.g.[3]. �

The comonotonic upper bound changes the original copula, but keeps the marginal distributions un-
changed. The comonotonic lower bound on the other hand, changes both the copula and the marginals
involved. Intuitively, one can expect that an appropriate choice of the conditioning variable� will lead
to much better approximations compared to the upper bound. This observation has been confirmed em-
pirically in numerous illustrations (see e.g.[4,5]).
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2.2. Convex upper and lower bounds for scalar products of random vectors

As mentioned in the beginning we want to find accurate approximations for sums of the following
form:

S =
n∑
i=1

XiVi , (4)

where the random vectors�X= (X1, X2, . . . , Xn) and �V = (V1, V2, . . . , Vn) are assumed to be mutually
independent. In deriving lower and upper bounds for sums of the form (4) we recall a helpful lemma.

Lemma 1. Let �X=(X1, X2, . . . , Xn), �V =(V1, V2, . . . , Vn) and �W=(W1,W2, . . . ,Wn) be nonnegative
random vectors and assume that�X is mutually independent of the vectors�V and �W . If for all possible
outcomesx1, x2, . . . , xn of �X one has

n∑
i=1

xiVi�cx

n∑
i=1

xiWi ,

then the corresponding scalar products are ordered in the convex order sense, i.e.
n∑
i=1

XiVi�cx

n∑
i=1

XiWi .

Proof. See[7]. �

Theorem 2. Consider a sum of random variables of form(4).Define the following quantities:

Su =
n∑
i=1

F−1
Xi
(U1)F

−1
Vi
(U2), (5)

Sl =
n∑
i=1

E[Xi |�]E[Vi |�], (6)

whereU1 andU2 are independent standard Uniform random variables, � is a random variable indepen-
dent of �V and� and the second conditioning random variable� is independent of�X and�. Then, the
following relation holds:

Sl�cxS�cxS
u.

Proof. The proof is based on a multiple application of Lemma 1.

1. First, we prove that
∑n
i=1XiVi�cx

∑n
i=1F

−1
Xi
(U1)F

−1
Vi
(U2).

From Theorem 1 it follows that for all possible outcomes(x1, x2, . . . , xn)of �X the following inequality
holds:

n∑
i=1

xiVi�cx

n∑
i=1

F−1
xiVi
(U2)=

n∑
i=1

xiF
−1
Vi
(U2).
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Thus from Lemma 1 it follows that
∑n
i=1XiVi�cx

∑n
i=1XiF

−1
Vi
(U2). The same reasoning can be

applied to show that

n∑
i=1

XiF
−1
Vi
(U2)�cx

n∑
i=1

F−1
Xi
(U1)F

−1
Vi
(U2).

2. In a similar way, one can show—using Theorem 1—that

n∑
i=1

E[Xi |�]E[Vi |�]�cx

n∑
i=1

XiE[Vi |�]�cx

n∑
i=1

XiVi. �

Remark 1. Notice that
∑n
i=1F

−1
Xi
(U1)F

−1
Vi
(U2)�cx

∑n
i=1F

−1
XiYi

(U). Therefore the upper bound (5) im-
proved compared to the comonotonic upper bound (2). It takes efficiently into account information that
the vectors�X and �V are mutually independent.

We remark also that having obtained the convex upper and lower bounds one can construct a new
approximation, called the moments-based approximationSm defined by the distribution function as
follows:

FSm(t)= zFSl (t)+ (1 − z)FSu(t), (7)

where

z= Var[Su] − Var[S]
Var[Su] − Var[Sl] . (8)

This approximation results inE[Sm] = E[S] and Var[Sm] = Var[S]. For more details we refer to[13].

3. Convex bounds for log-normal discount factors

In a lot of financial and actuarial problems one encounters sums of the form

S =
n∑
i=1

Xie
Zi , (9)

with �Z = (Z1, Z2, . . . , Zn) following the multivariate normal law. In this section we use the following
notations:

�i = E[Zi], �2
i = Var[Zi] and �ij = Cov(Zi, Zj ).

Further we assume that the random vectors�X and �Z are mutually independent.
In this section we consider the problem in general, without imposing any conditions on the random

variablesXi . In particular we do not discuss the choice of conditioning variable�—we will demonstrate
it by means of some special cases in the next two sections. The upper and lower bound can be calculated
by means of a three step approach which is described in the following two subsections.



28 A. Ahcan et al. / Journal of Computational and Applied Mathematics 186 (2006) 23–42

3.1. The upper bound

From Theorem 2 it follows that for the case of log-normally distributed discount factors the upper
bound can be expressed as

Su =
n∑
i=1

F−1
Xi
(U1)F

−1
eZi
(U2)=

n∑
i=1

F−1
Xi
(U1)e

�i+�i�−1(U2), (10)

whereU1 andU2 are independent standard Uniform random variables.
The cumulative distribution function ofSu is computed in three steps:

1. Suppose thatU1 = u1 is fixed. Then from (10) it follows that conditional quantiles can be computed
as

F−1
Su|U1=u1

(p)=
n∑
i=1

F−1
Xi
(u1)e

�i+�i�−1(p); (11)

2. Obviously for anyu1 the function given by (11) is continuous and strictly increasing. Thus for any
y�0 one can compute the value of the conditional distribution function using one of the well-known
numerical methods (e.g. Newton–Raphson) as a solution of

n∑
i=1

F−1
Xi
(u1)e

�i+�i�−1(FSu|U1=u1
(y)) = y; (12)

3. The cumulative distribution function ofSu can now be derived as

FSu(y)=
∫ 1

0
FSu|U1=u1(y)du1.

3.2. The lower bound

Although the computations for the lower bound are performed in a similar way as in the case of the upper
bound, one should note that the quality of the bound heavily depends on the choice of the conditioning
random variables.

Recall that from Theorem 2 one has that

Sl =
n∑
i=1

E[Xi |�]E[eZi |�], (13)

where the first conditioning variable� is independent of� and �Z and where the second conditioning
variable� is independent of� and �X. In this section the choice of� will not be discussed, whereas the
choice of� is given by the following equation:

� =
n∑
i=1

E[Xi]e�i+(1/2)�2
i Zi . (14)
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Then the lower bound (13) can be written out as

Sl =
n∑
i=1

E[Xi |�]E[eZi |�] =
n∑
i=1

E[Xi |�]e�i+(1/2)�2
i (1−r2i )+�i ri�−1(U2), (15)

with U2 a standard uniform random variable and correlationri given by

ri = Corr(Zi,�)= Cov(Zi,�)√
Var[Zi]√Var[�]

=
∑n
j=1E[Xi]e�j+(1/2)�2

j �ij

�i

√∑
1�k,l�n E[Xk]E[Xl]e�k+�l+(1/2)(�2

k+�2
l )�kl

. (16)

Note that in case�X is nonnegative and�Z has nonnegative correlations, the random variableSl is (given a
value�=�) a sum of the components of a comonotonic vector. Thus the cumulative distribution function
of the lower boundSl can be computed as for the case of the upper boundSu, in three steps:

1. From (15) it follows that the conditional quantiles (given� = �) can be computed as

F−1
Sl |�=�

(p)=
n∑
i=1

E[Xi |� = �]e�i+(1/2)�2
i (1−r2i )+�i ri�−1(p); (17)

2. The conditional distribution function is computed as the solution of
n∑
i=1

E[Xi |� = �]e�i+(1/2)�2
i (1−r2i )+�i ri�−1(F

Sl |�=�(y)) = y; (18)

3. Finally, the cumulative distribution function ofSl can be derived as

FSl (y)=
∫ 1

0
F
Sl |�=F−1

� (u1)
(y)du1. (19)

4. Present value of stochastic cash flows

In this section we derive convex upper and lower bounds for general discounted cash flowsSof the
form

S =
n∑
i=1

Xie
−Y (i),

where the random variablesXi denote future (nonnegative) payments due at timei. We model the returns
in this paper by means of a Brownian motion (the Black and Scholes model; see[2]) described by the
following equation:

Y (t)= �t + �Bt ,

whereBt denotes a standard Brownian motion.
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Note that the mean and variance functions are given by

E[Y (i)] = �i,

Cov(Y (i), Y (j))= �2 min(i, j)
not= �ij .

We use the notation�2
i = �ii and give explicit results in three specific cases:

1. The vector ln( �X) = (lnX1, lnX2, . . . , lnXn) has a multivariate normal distribution and hence the
losses are log-normally distributed;

2. The vector�X=(X1, X2, . . . , Xn) has a multivariate elliptical distribution whereE[Xi]/√Var[Xi]?0.
Formally the described methodology is valid only in the case whenXi >0. However if we assure that
the probabilities Pr[Xi <0] are very small then the influence of the negative outcomes of�X on the
overall distribution will be negligible;

3. The yearly paymentsXi are independent and identically distributed.

4.1. Log-normally distributed payments

4.1.1. Convex upper and lower bounds
Consider a sum of the form

SLN =
n∑
i=1

eNie−Y (i), (20)

where �N = (N1, N2, . . . , Nn) = (lnX1, lnX2, . . . , lnXn) is a normally distributed random vector with

mean�� �N = (�N1
, �N2

, . . . , �Nn) and covariance matrix� �N = [� �N
ij ]1� i,j �n; we denote� �N

ii by �2
Ni

.
There are two different approaches to derive convex upper and lower bounds forSLN as defined in

(20). In the first approach independent parts of the scalar product are treated separately. In the second
approach we treatSLN unidimensionally, by noticing that it can be written as

SLN =
n∑
i=1

X̂i =
n∑
i=1

eN̂i , (21)

where �̂
N = (N̂1, N̂2, . . . , N̂n) = (N1 − Y (1), N2 − Y (2), . . . , Nn − Y (n)) has a multivariate normal

distribution with

�� �̂
N

= (�
N̂1
, �
N̂2
, . . . , �

N̂n
) and � �̂

N
= [� �̂

N
ij ]1� i,j �n

(
�

�̂
N
ii

not= �2
N̂i

)
, (22)

with

�
N̂i

= �Ni − i� and �
�̂
N
ij = �

�N
ij + �ij . (23)

Thus one can derive convex upper and lower bounds of (20) just by adapting the methodology described
in Section 3. Below we work out both approaches explicitly. Note that the second method is much less
time-consuming because of unidimensionality.
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(i) In the first approach the upper bound can be written as

SuLN =
n∑
i=1

e�Ni+�Ni�
−1(U1)−i�+�i�−1(U2)

and its distribution function computed as described in Section 3.1.
To compute the lower bound we propose to define a conditioning random variable� analogously to
the conditioning variable�, i.e.

� =
n∑
i=1

E[e−Y (i)]e�Ni+(1/2)�2
Ni Ni =

n∑
i=1

e
�Ni−i�+(1/2)(�2

Ni
+�2

i )Ni . (24)

The conditioning variable� is chosen as in (14), which gives after the obvious substitution

� = −
n∑
i=1

e
�Ni−i�+(1/2)(�2

Ni
+�2

i )Y (i). (25)

Now the corresponding lower bound can be written as

Sl1LN =
n∑
i=1

e
�Ni−i�+(1/2)�2

Ni
(1−r2Ni )+(1/2)�

2
i (1−r2i )+�Ni rNi�

−1(U1)+�i ri�−1(U2),

where correlationsri = Corr(−Y (i),�) are defined as in (16) and

rNi = Corr(Ni,�)=
∑n
j=1 e

�Nj−j�+(1/2)(�2
Nj

+�2
j )�

�N
ij

�Ni

√∑n
k,l=1 e

�Nk+�Nl−k�−l�+(1/2)(�2
Nk

+�2
Nl

+�2
k+�2

l )�
�N
kl

.

Its distribution function can be computed by conditioning onU1 as described in Section 3.2.
(ii) From Remark 1 it follows that

Su�cx

n∑
i=1

F−1

eN̂i
(U),

and thus we do not consider the comonotonic upper bound for (21). To compute the lower bound we
take as conditioning random variable

�̂ =
n∑
i=1

e
�
N̂i

+(1/2)�2
N̂i N̂i . (26)

Then the lower bound is given explicitly by the following formula:

Sl2LN =
n∑
i=1

e
�
N̂i

+(1/2)�2
N̂i
(1−r2

N̂i
)+�

N̂i
r
N̂i

�−1(U)
,
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where

r
N̂i

= Corr(N̂i, �̃)=
∑n
j=1 e

�
N̂j

+(1/2)�2
N̂j �

�̂
N
ij

�
N̂i

√∑n
k,l=1 e

�
N̂k

+�
N̂l

+(1/2)(�2
N̂k

+�2
N̂l
)
�

�̂
N
kl

.

Note that to obtain a comonotonic lower bound one has to assure additionally thatr
N̂i
>0 for all i.

Thus quantiles of this (comonotonic) lower bound are given by the following closed-form expression:

F−1
LNl2(p)=

n∑
i=1

e
�
N̂i

+(1/2)�2
N̂i
(1−r2

N̂i
)+�

N̂i
r
N̂i

�−1(p)
,

from which one can easily find values of the corresponding cumulative distribution function e.g. by means
of the Newton–Raphson method.

4.1.2. A numerical illustration
In this subsection we study the performance of the derived approximations for a cash flow with

log-normally distributed payments. For purpose of this numerical illustration we chose parameters
�Ni =− ln(1.01)/2 and�2

Ni
= ln(1.01) (note that under this choice one hasE[Xi]=1 and Var[Xi]=0.01).

Moreover, we allow for some level of dependency between the payments by imposing correlations
between the normal exponents given by

r(Ni,Nj )=




1 if i = j,
0.5 if |i − j | = 1,
0.2 if |i − j | = 2,
0 if |i − j |>2.

Regarding discounting factors, we assume that the returns follow the Black and Scholes model with drift
parameter� = 0.05 and volatility� = 0.1.

We compare the distribution functions of the upper boundSuLN and the lower boundsSl1LN andSl2LN
to the empirical distribution function ofSLN obtained through a Monte Carlo (MC) simulation based on
generating 500× 100 000 sample paths.

The performance of the derived approximations is illustrated inFig. 1. One can see that the upper bound
SuLN gives quite poor approximation. The main reason for that is a relatively weak dependence between
payments, for which the comonotonic approximation significantly overestimates the tails (it is very clear
both from the plot of cdf’s and from theQQ-plot). On the other hand, both lower boundsSl1LN andSl2LN
give excellent approximations (the correspondingQQ-plots form almost a perfect diagonal). One may
be surprised especially with the performance of the second lower bound—it turns out that the results are
not less accurate for 1 conditioning random variable than in case of 2 conditioning random variables. The
latter lower bound has even slightly higher variance—10.2450 compared to 10.2230 computed for the
first distribution.

These visual observations are confirmed by the numerical values of some upper quantiles displayed in
Table 1(in the table we include also two moment-based approximations, which also perform excellent).
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Fig. 1. The convex upper boundSuLN (triangles) and the lower boundsSl1LN (solid circles) andSl2LN (inverse triangles) versus
the simulated distribution ofSLN (solid line)—the cdf’s and theQQ-plot.

Table 1
Approximations of upper quantiles ofSLN for some probability levelsp

p SLN (s.e.×103) Sl1LN Sl2LN Sm1
LN Sm2

LN SuLN

0.75 14.6795 (0.71) 14.6818 14.6822 14.6847 14.6839 15.0295
0.90 17.1019 (1.06) 17.0976 17.1024 17.1067 17.1078 18.0976
0.95 18.7769 (1.45) 18.7642 18.7723 18.7788 18.7815 20.2580
0.975 20.3881 (2.08) 20.3631 20.3753 20.3843 20.3882 22.3610
0.995 24.0237 (4.59) 23.9603 23.9823 24.0032 24.0082 27.1914

4.2. Elliptically distributed payments

4.2.1. Definition
The class of elliptical distributions is a natural extension of the normal law. We say that a random vector

�X= (X1, X2, . . . , Xn) has ann-dimensional elliptical distribution with parameters�� = (�1, �2, . . . , �n),
� = [�ij ]1� i,j �n (symmetric and positive definite matrix) and characteristic generator�(·) if the char-
acteristic function of�X is given by

� �X(�t)= ei�tT���(�tT	�t).
We write �X ∼ En(��,�,�). Obviously the normal distribution satisfies this definition, with�(y)=e−(1/2)y .
Elliptical distributions are very useful for several reasons. First of all they are very easy to manipulate
because they inherit surprisingly many properties from the normal law. On the other hand the normal
distribution is not very flexible in modelling tails (in practice we often encounter much heavier tails
than the Gaussian ones). The class of elliptical laws offers a full variety of random distributions, from
very heavy-tailed ones (like Cauchy or stable distributions), distributions with tails of the polynomial-type
(t-Student), through the exponentially tailed Laplace and logistic distributions to the light-tailed Gaussian
distribution.
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Below we give a brief overview of the properties of elliptical distributions. More information about
elliptical distributions can be found e.g. in[12].

1. E[Xi]=�i , Var[Xi]=−2�′(0)�ii and Cov(Xi,Xj )=−2�′(0)�ii if only the corresponding moments
exist;

2. Let �Y=A �X+�b, whereA denotem×n-matrix and�b is a vector inRn. Then�Y ∼ Em(A��+�b,A�AT,�);
3. If the density functionf �X(·) exists, it is given by the formula

f �X(�x)=
c√

det[	] g((�x − ��)T	−1(�x − ��))

for any nonnegative functiong satisfying

0<
∫ ∞

0
z(1/2)d−1g(z)dz<∞

andcbeing a normalizing constant. The functiong(·) is called the density generator of the distribution
Em(��,�,�);

4. Let �X = ( �X1, �X2) denote aEn+m(��,�,�)-random vector, where�� = (��1, ��2) and

� =
(

�11 �12
�21 �22

)
.

Then, given conditionally that�X2 = �x2, the vector�X1 has theEn(��1|2,�11|2,�x2
)-distribution with

parameters given by

��1|2 = ��1 + �12�
−1
22 (�x2 − ��2)

and

�11|2 = �11 − �12�
−1
22 �21.

Notice that in general (unlike in the normal case) the characteristic generator of the conditional
distribution is not known explicitly and depends on the value ofx2.

4.2.2. Convex upper and lower bounds
Consider a sum of the form

Sel =
n∑
i=1

Xie
−Y (i),

where the return processY (t) is, like in the previous example, described by the Black and Scholes
model and�X = (X1, X2, . . . , Xn) is elliptically distributed with parameters�� �X = (�X1

, �X2
, . . . , �Xn),

� �X = [� �X
ij ]1� i,j �n and characteristic generator�(·). Here we note only that for�(u)= e−u/2 one gets a

multivariate normal distribution with mean parameter equal to�� �X and the covariance matrix� �X.
Note that elliptical random variables take both positive and negative values and therefore one cannot

apply immediately Theorem 2. Therefore we propose to consider pragmatically only the cases where the
probability Pr[Xi <0] is very small. This can be achieved by chosing the parameters in such a way that

�Xi/�Xi?0. (�2
Xi

not= �
�X
ii ).
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The upper bound. The computation of the upper bound is straightforward if the inverse distribution
function for the specific elliptical distribution is available in the used software package. We take

Suel =
n∑
i=1

F−1
En(�Xi ,�

2
Xi
,�)
(U1)e

−i�+�i�−1(U2). (27)

Note that for the most interesting case of a multivariate normal distribution, one gets

SuN =
n∑
i=1

(�Xi + �Xi�
−1(U1))e

−i�+�i�−1(U2).

The lower bound. To compute the lower bound, we define the conditioning random variable� as
follows:

� =
n∑
j=1

E[e−Y (j)]Xj =
n∑
j=1

e−j�+(1/2)�2
j Xj .

Then a random vector(Xi,�) has a bivariate elliptical random variable, with parameters���,i=(�Xi , ��)

and��,i = [��,i
kl ]1�k,l�2, where

�� =
n∑
j=1

e−j�+(1/2)�2
j �Xj ,

��,i
11 = �2

Xi
, ��,i

12 = ��,i
21 =

n∑
j=1

e−j�+(1/2)�2
j �

�X
ij

and

�2
� = ��,i

22 =
n∑
j=1

n∑
k=1

e−j�−k�+(1/2)(�2
j+�2

k)�
�X
jk.

From Section 4.2.1, item (4), it follows that, given� = �,Xi has a univariate elliptical distribution with
parameters

�Xi,� = �Xi + ��,i
12

�2
�

(� − ��), �2
Xi,�

= �2
Xi

− (��,i
12 )

2

�2
�

(28)

and unknown characteristic generator�a(·) depending ona = (� − ��)
2/�2

�.
Note that for the multivariate normal case the conditional distribution remains normal. In our application

it does not really matter that the characteristic generator�a(·) is not known—it suffices to notice that

E[Xi | �] = �Xi,� = �Xi + ��,i
12

�2
�

(� − ��).
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The second conditioning random variable is chosen analogously as in (25), i.e.

� = −
n∑
i=1

E[Xi]e−i�+(1/2)�2
i Y (i)= −

n∑
i=1

�Xie
−i�+(1/2)�2

i Y (i).

Applying the results of Section 3.2, the lower bound is given by the following expression:

Slel =
n∑
i=1

(
�Xi + ��,i

12

�2
�

(F−1
� (U1)− ��)

)
e−i�+(1/2)�2

i (1−r2i )+ri�i�−1(U2), (29)

where the correlationsri = Corr(−Y (i),�) are defined as in (16) (withE[Xi] substituted by�Xi ). Note
that expression (29) simplifies in the normal case to

SlN =
n∑
i=1

(�Xi + rXi�Xi�−1(U1))e
−i�+(1/2)�2

i (1−r2i )+ri�i�−1(U2),

where

rXi = Corr(Xi,�)=
∑n
j=1 �Xje

−j�+(1/2)�2
j �

�X
ij

�Xi

√∑n
k,l=1 �Xk�Xle

−k�−l�+(1/2)(�2
k+�2

l )�
�X
kl

.

4.2.3. A numerical illustration
Now we evaluate numerically the case when future payments are normally distributed, with mean

parameter�Xi =1 and variance�2
Xi

=0.01 (note that mean and variance are the same as in the log-normal
case, see Section 4.1.2). Like in the log-normal case, we also impose some positive dependencies between
payments, given by

r(Ni,Nj )=




1 if i = j,
0.5 if |i − j | = 1,
0.2 if |i − j | = 2,
0 if |i − j |>2.

As in Section 4.1.2, we work in the framework of the Black and Scholes model with drift parameter
� = 0.05 and volatility� = 0.1. We compare the distributions of the lower boundSlN, the upper bound
SuN and the moment-based approximationSmN to the empirical distribution ofSN obtained by means of
a Monte Carlo simulation based on 500× 100 000 simulated paths.

The performance of the approximations is illustrated inFig. 2. Note that the graphs look almost exactly
the same as in the log-normal case—the upper boundSuN gives a quite poor approximation, while the
lower boundSlN and the moments-based approximation perform excellent. These visual observations are
confirmed by the numerical values obtained for some upper quantiles displayed inTable 2.

4.3. Independent and identically distributed payments

Finally we consider the case where the paymentsXi are independent and identically distributed. The
independence assumption accounts for more flexibility in modelling the underlying marginal distributions,
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Fig. 2. The convex upper boundSuN (triangles), the lower boundSlN (inverse triangles) and the moment-based approximation
SmN (solid circles) versus the simulated distribution ofSN (solid line)—the cdf’s and theQQ-plot.

Table 2
Approximations of upper quantiles ofSN for some probability levelsp

p SN (s.e.×103) SlN SmN SuN

0.75 14.6820 (0.70) 14.6820 14.6849 15.0368
0.90 17.1025 (1.02) 17.0978 17.1068 18.0992
0.95 18.7789 (1.46) 18.7642 18.7787 20.2522
0.975 20.3895 (2.11) 20.3630 20.3840 22.3456
0.995 24.0354 (4.61) 23.9599 24.0020 27.1468

however—unlike in the log-normal and elliptical cases—it imposes a rigid condition on the dependence
structure. We start with defining the class of tempered stable distributions for which the methodology
works particularly efficient.

4.3.1. Tempered stable distributions
The Tempered Stable lawTS(
, a, b) for a, b >0 and 0< 
<1 is a one-dimensional distribution

given by the characteristic function:

�TS(t; 
, a, b)= eab−a(b1/
−2it)
 . (30)

(See e.g.[11].) This distribution has one very special property, i.e. namely one has that

(�TS(t; 
, a, b))n = �TS(t; 
, na, b).

Therefore, a sum ofn independent and identically distributed tempered stable random variables is again
tempered stable, with the only difference that the parametera is transformed tona.

The first two moments of a random variableX ∼ TS(
, a, b) are given byE[X] = 2a
b(
−1)/
 and
Var[X] = 4a
(1 − 
)b(
−2)/
.

In the sequel we provide more details about two well-known special cases: the gamma distribution and
the inverse Gaussian distribution.
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The gammadistribution. The gamma distribution�(a, b) corresponds to the limiting case when
 → 0.
Therefore, the characteristic function of the�-distribution is given by

��(t; a, b)=
(

1 − it

b

)−a
,

what corresponds to the density function

f�(x; a, b)= ba

�(a)
xa−1e−bx, x >0.

Note thatX ∼ �(a, b) one hasE[X] = a/b and Var[X] = a/b2.
The inverse gaussian distribution. The inverse Gaussian distribution is a member of the class of Tem-

pered Stable distributions with
 = 1
2. Thus, the characteristic function is given by

�IG(t; a, b)= e
−a
(√−2it+b2−b

)
,

what corresponds to the density function

fIG(x; a, b)= a√
2�
x−3/2eab−(1/2)(a2/x+b2x), x >0.

Moreover the mean and variance ofX ∼ IG(a, b) are given byE[X] = a/b and Var[X] = a/b3.
Tempered stable random variables are very useful in our application because of the following result:

Lemma 2. If Xi are i.i.d. random variablesTS(�, a, b)-distributed fori = 1,2, . . . , n, then their sum
X1 +X2 + · · · +Xn isTS(�, na, b)-distributed.

Proof. Consider the corresponding characteristic functions. We get

�X1+X2+···+Xn(t)= (�TS(t; �, a, b))n = e(na)b−(na)(b1/�−2it)� = �TS(t; �, na, b). �

4.3.2. Convex upper and lower bounds
We consider sums of the form

Sind =
n∑
i=1

Xie
−Y (i),

where the processY (i) is defined like in the previous examples whereas paymentsXi are independent
and follow the law defined by the cdfFX(·).
The upper bound. The computation of the upper bound is straightforward:

Suind = F−1
X (U1)

n∑
i=1

e−i�+�i�−1(U2)

as described in Section 3.1.
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The lower bound. We begin with defining conditioning random variables� and� to compute the lower
bound. Let

� =X1 +X2 + · · · +Xn.
It is well-known that if we know distributions ofXi , the distribution of� is also known. Indeed, it can
be defined e.g. by a characteristic function as

��(t)= (�X(t))n.
Note that under some integrability conditions the distribution function can be expressed by means of a
characteristic function (see e.g.[6] for details). However ifXi are tempered stable random variables with
known distribution functions then the distribution function of� is of the same type and a time-consuming
procedure of transforming the characteristic function can be avoided. In particular, forXi �-distributed the
sum� remains�-distributed and forXi IG-distributed the random variable� remainsIG-distributed.

Next, the conditional random variable� is chosen, like in previous examples, as

� = −
n∑
i=1

E[Xi]e−i�+(1/2)�2
i Y (i). (31)

Then the lower bound can be written as

Slind = 1

n
F−1

� (U1)

n∑
i=1

e−i�+(1/2)(1−r2i )�2
i+ri�i�−1(U2),

where the correlationsri = Corr(−Y (i),�) are defined as in (16).
Cumulative distribution functions. In this case there is a more efficient method to compute the distri-

bution functions than the one described in Sections 3.1 and 3.2. We use the following result.

Lemma 3. LetW be a random variable of the formW = X̃Ṽ ,whereX̃ andṼ are independent. Then the
distribution function of W can be derived as

FW(y)=
∫ ∞

−∞
F
X̃

(y
v

)
dF
Ṽ
(v)=

∫ 1

0
F
X̃

(
y

F−1
Ṽ
(u2)

)
du2. (32)

Proof. See Appendix B in[7]. �

Therefore one can compute the cumulative distribution functions of the upper and the lower bound as

FSuind
(y)=

∫ 1

0
FX

(
y

F−1
S̃u
(u2)

)
du2

and

FSlind
(y)=

∫ 1

0
F 1
n
�

(
y

F−1
S̃l
(u2)

)
du2,
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Fig. 3. The convex upper boundSu� (triangles), the lower boundSl� (inverse triangles) and the moment-based approximationSm�
(solid circles) versus the simulated distribution ofS� (solid line)—the cdf’s and theQQ-plot.

where

S̃u =
n∑
i=1

e−i�+�i�−1(U2), S̃l =
n∑
i=1

e−i�+(1/2)(1−r2i )�2
i+ri�i�−1(U2)

and

F−1
S̃u
(u2)=

n∑
i=1

e−i�+�i�−1(u2), F−1
S̃l
(u2)=

n∑
i=1

e−i�+(1/2)(1−r2i )�2
i+ri�i�−1(u2).

4.3.3. A numerical illustration
Now we present a numerical application of the method to the case when future payments are inde-

pendent,�-distributed, with parametersa = b = 100. Note that this choice of parameters implies that
E[X]= 1 and Var[X]= 0.01—i.e. we take the same mean and variance of liabilities as in the log-normal
(Section 4.1.2) and normal (Section 4.2.3) cases. As before we work in the Black and Scholes setting
with drift � = 0.05 and volatility� = 0.1. We compare the obtained distributions ofSl�, Su� andSm� to the
empirical distribution of valueS� obtained in the same fashion as in previous cases.

The results are very similar to the normal and log-normal case. It is worth noticing that the variance
of S� (10.1489) s a bit lower that in the log-normal case (10.2789) and in the normal case (10.2792). It
is a consequence of independence between consecutive�-payments while before we imposed a slight
positive dependence.

The quality of the approximations is illustrated inFig. 3. One can see that the fit of the upper bound is
quite poor. The lower boundSl� and the moments based approximationSm� perform very well, but a bit
poorer than in the log-normal and normal cases (probably because the conditioning random variable�
does not take discounting factors into account). These visual observations are confirmed by the numerical
values of some upper quantiles, contained inTable 3.
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Table 3
Approximations of upper quantiles ofS� for some probability levelsp

p S� (s.e.×103) Sl� Sm� Su�

0.75 14.6820 (0.70) 14.6709 14.6723 15.0320
0.90 17.1025 (1.02) 17.0767 17.0810 18.0984
0.95 18.7789 (1.46) 18.7372 18.7443 20.2563
0.975 20.3895 (2.11) 20.3309 20.3412 22.3560
0.995 24.0354 (4.61) 23.9183 23.9390 27.1762

5. Conclusion

In this paper we present a methodology that allows us to obtain accurate approximations for distribution
functions of scalar products of independent random vectors for which no direct analytical expression exist.
The approach is based on deriving upper and lower bounds in a sense of convex order for the underlying
distribution, which has a very natural economical interpretation in terms of the utility theory or Yaari’s
dual theory of choice under risk. Our methodology is an extension of results obtained in[3,4,7,8].

As demonstrated in a series of numerical examples, the technique provides a very useful tool to evaluate
cash flows of future stochastic payments. The distributions of the lower bound and the moment-based
approximation are almost indistinguishable from the empirical distribution, obtained by means of a Monte
Carlo simulation. It should be noted however that a Monte Carlo simulation is much more time consuming
than our approximations, and despite that the simulated values of upper quantiles are still quite volatile.

The methodology finds much wider range of applications than the ones presented in the paper. In[9]
a similar approach is employed to find an approximate distribution of a life annuity. The same technique
is also applied in[1] to find an optimal asset mix in the multi-period portfolio selection problem.
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