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Abstract

Accurate estimates of the dependence of soil shear strength parameters (including cohesion and friction angle) play a crucial role in
decision making by civil engineers in terms of geotechnical engineering safety. With increased site-specific information comes the need for joint
soil strength models to account for the correlation characteristics between shear strength properties. In this study, using 16 sets of soil shear
strength observations (consisting of 391 samples) as examples, the suitability of the dependence structure for these experimental observations is
firstly identified by a goodness-of-fit test based on the Bayesian Information Criterion (BIC) with the normal, Student's #, Clayton, Frank,
Gumbel, and Plackett copulas. The dependence structure between shear strength components is found to be asymmetric in most cases. Secondly,
a set of paired samples of shear strength simulated from the different bivariate copulas, which contributed to various dependencies, is
implemented as input for two typical geotechnical probabilistic analyses, e.g., infinite slope stability against a single sliding plane and the bearing
capacity of a shallow foundation. The impact of the different choices for these dependence structures on the resulting reliability index is
discussed. In both illustrative examples, the normal copula leads to an overestimation of the reliability index, whereas the Gumbel copula yields
the lowest reliability index. Conservative reliability indices are obtained when the joint behaviour of the soil shear strength follows a bivariate
normal distribution.
© 2015 The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.

Keywords: Copula; Shear strength; Cross-correlation; Cohesion; Friction angle; Soil

1. Introduction stress plane (normal verse shear stress), and the cohesion is
determined as a vertical intercept of the stress plane with the

The two components of soil shear strength, cohesion and failure surface. The correlation between cohesion and friction
inner friction angle or friction angle, are the fundamental  angle can result from the mechanism for the parameters
parameters determined by the classical Mohr—Coulomb failure measured simultaneously using the same test or the physical
criterion and applied to describe and explore the stability of  link between the suction (related to cohesion) and mineralogy
geotechnical engineering (Burland, 1990). The inner friction, (related to friction angle) of the materials. During recent
an angle of the failure surface or envelope, is defined on a decades, a number of studies have emphasised that a cross-
correlation may exist in these shear strength parameters
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by several researchers (Chowdhury and Xu, 1992; Cherubini,
2000; Soubra and Mao, 2012; Wu, 2013a), the cross-correla-
tion coefficient is a crucial factor in the probabilistic prediction
of the response of geostructures. Wu (2013a) claimed that
ignoring the correlations will most likely lead to underesti-
mated or overestimated failure probabilities. Even so, some
other investigators (Alonso, 1976; Tobutt and Richards, 1979;
Li and Lumb, 1987; Lee and Chi, 2011) ignored the possible
cross-correlation in their probabilistic analyses. Nevertheless,
more evidence should be provided on the dependence structure
between soil strength, especially for their non-symmetric and
nonlinear features.

Considering the fact that the dispersion of the observed
shear strength results is large, a linear regression line over-
lapping the plotted data is not appropriate, although this
technique is often used (Parker et al., 2008; Hata et al.,
2008; Sanchez Lizarraga and Lai, 2014). Alternatively,
through the use of a linear Pearson’s correlation coefficient,
a bivariate normal distribution is popular for dealing with the
joint probability distribution of two correlated random vari-
ables (Lumb, 1970; Matsuo and Kuroda, 1974; Wolff, 1985;
Cherubini, 2000; Soubra and Mao, 2012). However, difficul-
ties arise when random variables are not confirmed to follow
jointly normal functions defined by the non-normal marginal
distributions (Clemen and Reilly, 1999; Embrechts et al.,
2003), which are typical situations in the reliability analysis
of geostructures (Lumb, 1970; Kulatilake and Fuenkajorn,
1987). To overcome such difficulties, the Nataf transformation
is used to transform non-normal data to normal data (Nataf,
1962). Der Kiureghian and Liu (1986) developed conversion
factors to transform the linear correlation coefficient from non-
normal space to normal space. Fundamentally, the Nataf
transformation adopts a normal copula (Dutfoy and Lebrun,
2009) for the modelling dependence structure between vari-
ables. Copula functions are based on Sklar's Theorem (Sklar,
1959), and they provide a very flexible approach for modelling
joint distributions in terms of univariate marginal functions and
quantifying the dependence structure between variables (Joe,
1997; Nelsen, 2006). Hence, a joint distribution of cohesion
and friction angle can be constructed by linking together any
two marginal distributions of them (Clemen and Reilly, 1999;
Lambert and Vandenhende, 2002; Poulin et al.,, 2007,
Salvadori et al., 2007). Consequently, the impacts of the
dependence asymmetries and the changes in correlation
associated with real soil shear properties can be incorporated
into the reliability analyses with ease.

There has recently been a surge of interest in applications of
copula functions in civil engineering (Genest and Favre, 2007;
Marchant et al., 2011; Li et al., 2012; Tang et al., 2013; Wu,
2013a, 2015a). Particularly, in applications to geotechnical
engineering practice, studies of the cross-correlation character-
istics of soil shear strength using copulas (Tang et al., 2013;
Wu, 2013a, 2013b) are becoming increasingly important due
to the urgent need to accurately quantify geotechnical risks
with an acceptable degree of credibility. For instance, a copula-
based direct integration method (Tang et al., 2013) is used to
calculate the probability of failure to explore the impact of the

copula selection on the probabilistic analysis. In their studies,
less information on the marginal distribution is incorporated
into the models. Wu (2013a, 2013b) proposed a copula-based
sampling method (CBSM) to evaluate the impact of the
correlation coefficient of the shear strength on the calculated
reliability index of geostructures. However, these earlier works
on copula-based models were based on very limited data from
only a few sites, the issues for modelling the dependence
characteristics of more actual observations of soil shear
strength tests remain a challenge to be solved, especially when
the non-normal marginal distribution is underlying. In this
context, a large database should be compiled to explore the
uncertainties in shear strength parameters. The best-fitting
copulas of each soil will then be demystified; thus, the
differences between these copulas and the conventional joint
functions can be evaluated. Such refined attempts are likely to
be fruitful and will provide better performances of a probabil-
istic analysis when integrating the copula models into the
determination of a reliability index.

Therefore, a primary aim of this work is to validate the
following: (1) Does individual soil with high cohesion (or a
high friction angle) have a low friction angle (or cohesion)
linked to the shear strength characteristics? (2) Which copula
can be well-fit to the scatterplot of the shear strength
observations, especially when the joint probability density
functions are asymmetric? (3) How does the copula choice of
soil shear strength impact the reliability indices of geostruc-
tures? In this study, the estimated distribution of 16 compiled
laboratory datasets will be chosen to calibrate the copula
models. The reliability index of geostructures is calculated
using the CBSM when the correlations and dependence
structures of shear strength are represented by different
copulas, and its adequacy is determined from comparisons
with the conventional bivariate normal distribution. The paper
is organised as follows: Section 2 presents mathematical
details of the joint bivariate distribution of soil strength and
the marginal distributions. Section 3 identifies the marginal
distribution and copula fitted to the collected experimental
observations. The application of copula-based samples to the
reliability analysis of the infinite slope stability and bearing
capacity problem is illustrated in Section 4, and the impact of
dependence structures on the reliability index is discussed.
Section 5 draws the conclusions.

2. Theoretical framework
2.1. Mechanical background of shear strength parameters

In terms of the Mohr—Coulomb failure criterion, the
mechanical and strength behaviour of cohesive granular
materials involves two factors, namely, cohesion ¢ and friction
angle ¢. These parameters are generally determined by means
of direct shear or triaxial compression tests. For each test, a
Mohr circle corresponding to shear failure can be drawn in
Mohr’s plane (3, %\), where & is the normal stress and 7 is the
shear stress. This procedure is executed for different confining
pressures (at least three levels) and then the corresponding
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Mohr circles can be plotted on the same graph. Consequently,
an envelope of Mohr circles is approximated by a straight line
to define the relation between shear stress and normal stress
(Lumb, 1970). In fact, this relation determines ¢ (shear stress at
6 = 0) and ¢ (slope of the line).

Due to the geological soil formation process and highly
anisotropic condition, soil properties naturally exhibit hetero-
geneity and variation even within an apparently homogeneous
profile. Additionally, testing procedures, both in the laboratory
and in situ, are subject to many human factors which can
introduce both systematic and random errors. A series of
repeated tests should be performed for each type of soil to
achieve a statistical description of the parameters. Considering
that the measured results lie in a range or the discrepancies
among them can be seen to be relatively large, these
parameters may be described in terms of random variables.
Such a reasonable reproducible test is helpful for exploring the
real strength behaviour of materials, including their variabil-
ities and probability density functions. Also, these paired
parameters of the shear strength property show a correlation
over a relatively large space or within a similar soil profile at a
field site. This is reasonable since the two parameters are
obtained by the same test simultaneously. In other words, they
are functional for the same observation. Generally, a negative
cross-correlation implies that when one strength parameter
increases, the other decreases and vice versa. As noticed by
Embrechts et al. (2003) and Wu (2013a), the application of the
conventional Pearson’s correlation coefficient p to describe
such cross-correlation characteristics has been criticised.
Copulas have proved to be a powerful tool when the observed
data are limited and the dependence structures of the two
components are complex (McNeil et al., 2005), which will be
discussed briefly below.

2.2. Copulas

Considering a pair of 2-dimensional variables, u; € [0, 1]
and u, € [0, 1], as an example, a copula C (uy, u) is defined
conventionally as a bivariate cumulative distribution function
with uniform marginal distributions. A probabilistic method
for defining this copula is based on Sklar’s Theorem (Sklar,
1959). For random variables Z; and Z, with continuous
distribution functions Fz = P(Z; < zj) and Fz, = P(Z, < z),
respectively, which can represent soil strength pairs, Sklar's
Theorem states that a 2-dimensional distribution function
H_(z;, zp) of the random vector (Z;, Z;) is determined by a
unique copula function C, written as

H.(z1, 22) = C(Fz(21), Fz,(22)) (1)

To construct the copula function, a corollary of Sklar's
Theorem can be applied, whereby the copula is represented as
a 2-dimensional distribution function with continuous marginal
distributions (because their integral transforms are uniform
distributions) and evaluated at the inverse functions or quantile
function Fy'(u) and F7'(u) (Wu, 2015a), defined as

F4lF7'@)] =z, e,
Cu, uz) = Ho(FZ' ), FL'(w2))

= P{Fz () < w, Fz,(22) < uz} 2)

By taking the derivative of Eq. (2), the joint probability
density function is obtained as

[ @, ) = c(Fa@), Fo@)|p or 0)f, @, @) (3

where

c(Fz(z21), Fz,(20)) = 0’C (Fz,(21), F2,(22))/0F7(21)0F7,(z2), p
is Pearson’s correlation coefficient, @ is the copula dependence
parameter, and f (z;) and f; (z,) are the marginal probability
density functions.

Having associated n pairs of observations, @', Z,),i=1to
n, copulas provide a convenient way to separately fit each
variable to a marginal distribution and then join them together.
As discussed below, multivariate normality is only one option in
a wide range of copula-based models that can capture the
principal features of shear strength data, such as non-symmetry,
nonlinear dependence, or heavy-tail behaviour. There are numer-
ous different copulas to choose from, with various correlation
properties such as symmetry, tail dependence, and range of
dependence (Joe, 1997; Nelsen, 2006). Considering the correla-
tion characteristics between soil strength parameters, we chose
the normal copula and Student's # copula from the elliptical class
of copulas, the Clayton, Frank, and Gumbel copulas from the
Archimedean family, and the Plackett copula, which is in a class
of its own, as summarised in McNeil et al. (2005) and Wu
(2013a). Some of these copulas may not allow negative
correlations, but negating the values of one variable can produce
a positive correlation. Nelsen (2006) has commented on choos-
ing copulas and given additional details about them.

A probability density contour (PDC) is usually defined to
characterise the different spread patterns of the observed data in
all directions, which can visualise the dependence implications
of the different models, as described in the literature (Zani et al.,
1998; Wu, 2013a). Fig. 1 shows the PDC of bivariate
distributions with the identical marginal distributions, but
different copulas. These distributions all have a standard normal
as both marginal distributions, and the parameters of copulas are
chosen to give p is —0.5. Therefore, joint distributions of soil
shear strength with the identical marginal distributions and the
same correlation coefficient may also exhibit fundamentally
different properties depending on the copula family selected to
represent their dependence structures. In addition, the one-
standard-deviation ellipse with the different p (—0.5, 0, 0.5) is
shown centred at the mean (0, 0), indicating the ellipse is tilted
with p. Consequently, such differences in PDC may lead to the
different results in the failure probability of geostructures.

The normal copula is the dependence function of a joint
normal distribution, but a normal copula does not necessarily
restore a joint normal distribution unless the marginal distribu-
tions are also normal (Clemen and Reilly, 1999; Lambert and
Vandenhende, 2002). Student's t copula has two parameters:
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Fig. 1. PDCs of bivariate distributions with the same marginal distributions
but different copulas. All marginal distributions are standardised normal (mean
#,; = 0 and standard deviation o;; = 1; y, = 0 and o, = 1). The parameters
of the copulas are chosen to give a p= —0.5. One standard deviation (ellipse)
is overlapped with different p.

one corresponds to the dependence parameter and the other
corresponds to the degrees of freedom A (>0). The number of
degrees of freedom controls the heaviness of the tails, and as it
increases, Student’s ¢ copula approaches the normal one. Both
the normal and Student's t copulas are symmetrical, and the
normal copula is a limiting case of the Student-# copula when A
is infinite. The A4 will not be considered as a parameter to be
estimated for simplicity and its value is fixed to 4 (e.g.,
Embrechts et al., 2003; Moosbrucker, 2006; Yan, 2007; Silva
and Lopes, 2008). This value is approximately the estimated
degrees of freedom from all the compiled data in this study.
The advantage of the Student’s 7 copula is that it can capture
the lower and upper tail dependence of data, i.e., the joint non-
exceedance and the exceedance probabilities for rare events
(see McNeil et al. (2005) for details). For copulas from the
Archimedean family, the generator function solely charac-
terises the dependence structure of random variables and is
often described by a univariate function with model parameter
6. In this family, the Clayton copula usually shows a strong
association in the left tail, while the Gumbel copula shows a
strong association in the right tail. In this sense, the Clayton
and Gumbel copulas describe the asymmetric dependence,
while no clear association in the tails can be observed for the
Frank copula. The Plackett copula is the most well-known
example of an algebraically constructed copula, and association
6 is determined by the odds-ratio based on observed frequen-
cies in the four quadrants rather than on the correlation of
random variables (Nelsen, 2006).

2.3. Estimation of marginal distributions

One of the key steps in fitting copulas for shear strength
characteristics lies in the determination of the appropriate

marginal distribution for each strength component. The soil
strength typically shows large scattering, and Lumb (1970)
demonstrated that normal distributions are suitable for soil
strength properties. The applicability of the normal distribution
of soil properties is also supported by Tobutt (1982), Liang
et al. (1999), and Baecher and Christian (2003). Several
researchers (Brejda et al., 2000; Fenton and Griffiths, 2003)
noted that most soil properties are strictly non-negative, and in
that case, a log-normal distribution is more suitable than a
normal distribution. Other distributions, such as triangular,
versatile beta, and generalised gamma distributions are gaining
popularity (Baecher and Christian, 2003). The gamma dis-
tribution does not accept negative values, which is suitable for
soil applications. The marginal distribution functions tested in
this study are the normal, log-normal, Gumbel, Weibull, and
gamma distributions. For the expressions of the probability
density functions of these distributions and their domains,
readers are asked to refer to Montgomery and Runger (1999)
or Ang and Tang (2007). Selection of the best soil strength
parameter model can be established by goodness-of-fit diag-
nostics. The best-fitting criteria for marginal distributions are
identified initially by the Anderson-Darling (Anderson and
Darling, 1954; AD) test. However, because the AD test does
not account for the estimated number of parameters, the
Bayesian Information Criterion (BIC) values are considered.
The BIC measure is given by

BIC = — 2 X In(maximized likelihood for the model)

+ In(the sample size) X number of fitted parameters (@)

A smaller BIC value corresponds to a better fit. In addition,
the well-established Akaike Information Criterion (Akaike,
1974; AIC) is used commonly in the statistical literature. The
relative merits of these criteria are discussed by Burnham and
Anderson (2004).

2.4. Copula parameter estimation

The next step in fitting copulas involves estimating the
parameters of the copula. The inference functions for marginal
distribution method (IFM) proposed by Joe (1997) is employed
for this purpose, which estimates the marginal parameters in
the first stage. Given observed data Z;, the parametric prob-
ability distribution can be determined by taking the logarithm
of the likelihood function, namely,

n

L) =), {log[fzj Zji ’71)]} 5)
i=1

where 7, is the vector of the parameters for marginal distri-

bution sz, j=1and 2.
In the second stage, given estimates for 1’1\1 and 1’1\2, the
unknown copula parameter @ of a specified parametric copula
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C (z1, z2; 0) is determined using the following log-likelihood:

n

L(z1, 20; 0) = ; 10g{ C(ﬁzl (z1i5 M) l/}zz(Zm; 1,); 9)} ©

The IFM is a fully parametric method; and thus, the
misspecification of the marginal distributions may affect the
performance of this estimator. Consequently, the joint dis-
tribution is estimated expeditiously by this two-step procedure
where the marginal distributions and the parameters in the
copula function are estimated using these maximum likelihood
values individually. As noted by Joe (2005), use of the
technique can prevent computational difficulty for high dimen-
sional models in the maximum likelihood estimation where the
marginal distribution parameters and the copula parameters are
estimated simultaneously. To quantitatively identify the appro-
priate copula for a set of observed data, the calculated values
of the BIC are compared. The copula with the smallest BIC
value can be considered as the best-fitting copula.

2.5. Implementation in R

The procedures for estimating the distribution parameters of
the above-mentioned copulas, implemented in R (R Develo-
pment Core Team, 2013), can be summarised by the following
steps:

[1] Estimates of parameters #, and #, of marginal
distributions F and F, are obtained by separately maximising
the corresponding likelihoods specified in Eq. (5) of the
univariate marginals. The package, ‘fitdistrplus’, is employed
in choosing and fitting a parametric univariate distribution to a
dataset (Pouillot and Delignette-Muller, 2010).

[2] The cumulative distribution function of each marginal
distribution is used to transform the observations into pseudo-
observations with uniform marginal distributions. The copula
parameter 6 is estimated by fitting empirical distribution
functions to the marginals and maximum likelihood to the
copula model, as given in Eq. (6). In fact, the model
parameters, including the marginal and copula ones, are
estimated by the two-step estimation procedure (first margin-
als, then dependence). The R package, ‘copula’, is utilised to
facilitate building multivariate modelling for fitting copulas
(Yan, 2007; Yan and Kojadinovic, 2010). In this package, the
command ‘fitCopula’ facilitates the goodness-of-fit testing, by
imposing the maximum likelihood estimation, and returns the
estimation of the unknown copula parameter. An ‘mvdc’ class
is designed to define multivariate distributions via copula
(MVDC), which contains the following items: (1) copula
name, (2) copula parameter, and (3) marginal parametric
distributions for all variables and their estimated parameters.
Next, the simulated random variables can be generated easily
through a function of ‘rmvdc’ for the ‘mvdc’ object if the size
of the simulation is assigned. A function of ‘dmvdc’ is then
applied in conjunction with drawing contour plots, which
determines the joint probability density in Eq. (3) of cohesion
and friction angle based on the ‘mvdc’ object. Here, the name
of the ‘mvdc’ is prefixed with [r] for random number

generation and [d] for density. For more insight into the
embedded algorithms and illustrative examples of these func-
tions, interested readers may consult Yan (2007).

These packages are free and open sources, which can help
engineers facilitate statistical and reliability-based analyses
with ease.

3. Modelling dependence structures of soil shear strength
data

3.1. Data sets

In this study, 16 datasets collected from seven journals and
two conference proceedings are used to examine the marginal
distributions to interpret the true nature of the dependence
structures and to fit the joint behaviour of the soil shear
strength. The source data used here (consisting of 391
samples) are accessible via an R package ‘GeoRiskR’ released
by Wu (2015b). Each dataset consists of a number of
observations within the same soil horizons. A summary of
the compiled tests, including the laboratory testing procedures,
conditions, soil characteristics, sampling methods, and the
original applications, is listed in Table 1, as explained below.

3.1.1. Matera Blue clay, Italy

Cherubini (2000) reported 16 paired data for ¢ and ¢ by
drained triaxial tests on Matera Blue clay, as shown in Fig. 2,
which was used to perform a probabilistic analysis of the
bearing capacity problem.

3.1.2. Dublin Boulder clay, Ireland

Forrest and Orr (2010) presented the relationship of ¢ and ¢
of 22 triaxial tests performed on Dublin Boulder clay (DBC),
as shown in Fig. 2, which were sampled during the construc-
tion of the Dublin Port Tunnel. This dataset was used to assess
the reliability index of a square foundation.

3.1.3. Airport embankment, Japan

In laboratory experiments, Hata et al. (2008) investigated in-
situ soil with the triaxial unconsolidated—undrained tests for
embankments at airport C. The relationships between ¢ and ¢
are shown in Fig. 2, which illustrates that the variation in
cohesion is larger than the variation in inner friction angles.
Considering the heterogeneity of the soil strength, a seismic
reliability analysis of the residual displacements was per-
formed using the Newmark sliding block method through
Monte Carlo simulations.

3.1.4. Mal dam, Hungary

Kadar (2013) collected a series of shear strength of the fly
ash and high plasticity clay from the Mal tailing dam, as
illustrated in Fig. 3, whose tests were performed by the direct
shear box.

3.1.5. Decomposed granite or volcanic rocks
Lumb (1970) reported an average correlation coefficient
—0.24 for the data from strength tests on residual decomposed



Table 1

Summary of the compiled tests, including the test methods, conditions, soil characteristics, sampling method, and their original application.

Case Size Test Test condition Soil characteristic Sampling method Original application Source (Journal or Proceeding)
method

Cherubini MBC 16  Triaxial Drained Matera Blue clay - Footing bearing-capacity Canadian Geotechnical Journal

Forrest & Orr 22 Triaxial — Dublin Boulder clay Undisturbed Foundation bearing-capacity Georisk

DBC

Hata et al. 23 Triaxial Unconsolidated- Sand mixed gravel - Embankment slope stability Georisk

Airport C undrained

Kadar Flash- 20  Direct - Emissions from coal-fired — Dam stability Proceedings of the Second Conference of Junior

Ash shear power plant Researchers in Civil Engineering

Kadar High- 19  Direct High plasticity clay

plasticity shear

Lumb BL-1 55 Triaxial Consolidated-undrained Clayey coarse sand Disturbed Compacted fill in embankment  Canadian Geotechnical Journal

Lumb BL-2 45 and earth dam

Lumb BL-3 17

M & K Soil 1 22 Triaxial Unconsolidated- Unsaturated silty clay Sampled from Watarase Sliding stability Soils and Foundations

M & K Soil 2 41 undrained Unsaturated silt, sandy silt river bank

M & K 10% 15  Direct - Silty clay - Effect of moisture content on the

M & K 15% 15  shear correlation

M & K 20% 16

Onodera et al. 19  Direct Consolidated drained or Clayey and silty Masado Undisturbed Shear strength Soils and Foundations

Masado shear undrained

Schultze 23 NA - Clayey sand Disturbed Slope stability ICASP-1

Rhineland

Speedie 23 Direct - - Undisturbed Stability of borrow pits New Zealand Engineering

Melbourne shear

Note: — denotes for not addressed. ICASP-1 denotes for the Proceedings of the 1st international conference on applications of statistics and probability in soil and structural engineering.

8¥C1
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granite from Hong Kong, Penang (Malaysia), and Snowy apparatus under different water contents, 10%, 15%, and
Mountains (Australia), and on residual decomposed volcanic 20%). Moreover, the probability of sliding failure of the
rocks from Hong Kong. Fig. 4 shows the values of the embankment was presented under consideration of the ran-
observed ¢ and ¢ for three types of soil at Class B sites. domness of the soil strength properties.

3.1.6. Unsaturated soils, Japan

Matsuo and Kuroda (1974; denoted by M & K) investigated
the statistical characteristics of several types of unsaturated soil
from embankments in Japan. The dataset of ¢ against ¢ is re-
plotted and shown in Fig. 5 (soils 1 and 2 were used for the
triaxial compression tests under the unconsolidated—undrained
condition) and Fig. 6 (soil 4 was tested by the direct shear

3.1.7. Masado, Japan

To explore the influence of the porosity on the shear
strength, Onodera et al. (1976) reported the strength tests on
19 undisturbed residual soils (named Masado in Japan) with
their improved direct shear apparatus, as shown in Fig. 3.
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Fig. 7. Paired data of ¢ and ¢ for soils in Germany (after Schultze, 1971)
and Australia (after Speedie, 1955).

3.1.8. Rhineland, Germany

Schultze (1971) collected numerous samples from several
regions of the Rhineland to investigate the frequency distribu-
tion and the correlation of the soil properties. The scattered
shearing strength parameters used for the bank stability and
settlement analyses are illustrated in Fig. 7.

3.1.9. Borrow pits, Australia

To select design values for shear strength against slope
sliding, Speedie (1955) reported his 23 tests on soils from
excavated borrow pits to determine their variations, as shown
in Fig. 7. The importance of considering the wide range in
values in the planning of major structures was emphasised.

3.2. Marginal distributions and their correlation coefficients

The mean and standard deviation of the above data are
calculated and listed in Table 2. The variation is obviously
larger for ¢ than for ¢.

Several types of distributions, including the normal, log-
normal, Gumbel, Weibull, and generalised gamma, are eval-
uated as models to individually fit ¢ and ¢ data from these
samples. The kernel density curves of these measurements are
indicated along with their scatter graphs in Figs. 2—7 using the
method given by Sheather and Jones (1991). The density curve
depends largely on the choice of the bandwidth parameter; and
thus, the default kernel bandwidth function is selected by an
algorithm based on Silverman's rule-of-thumb (Silverman,
1986, page 48, Eq. (3.31)). The graphic evidence exhibits
substantially the skewness of these curves in most cases. The
presence of skewness in the distribution of shear strength
implies that the standard deviation may not be an appropriate
measure of their variabilities.

The values for BIC of these candidate marginal distributions
are listed in Table 3. In these tables, the best-fitting is denoted
by a symbol ‘a’, although the difference between the BIC
results for each data set is not significant in some cases. The
normal distribution cannot adequately provide the best-fitting
in most cases, while the Weibull and generalised gamma
distributions provide the best-fitting for some data sets. The
estimated parameters for the best-fitting marginal distributions
are given in Table 4. Obviously, the asymmetric marginal
model performs substantially better than the normal and
symmetric models in most cases.

In the studies for geotechnical engineering problems,
Pearson’s correlation coefficient p was most commonly used
(Lumb, 1970; Matsuo and Kuroda, 1974; Cherubini, 2000).
Compared with Pearson's p, Kendall's 7 does not assume that
the relationship between two random variables is linear, and
that it measures the correspondence of rankings between
correlated random variables. Hence, 7 is more suitable for
checking nonlinear co-movements in data, and it receives wide
acceptance in the construction of copulas (Joe, 1997; Nelsen,
2006). The estimated correlation coefficients in terms of
Pearson’s p and Kendall’s 7 for each of the datasets are listed
in Table 2. Regardless of the drainage conditions and the type
of soil, most of these results are negative and some of them
exhibit a strong dependence. For soil 4 by Matsuo and Kuroda
(1974), under different water contents of 10%, 15%, and 20%,
the values of the correlation coefficients increase as the water
content is increased, and such a claim requires further
investigation. However, the results of the correlation coeffi-
cients are positive for soils 1 and 2 by Matsuo and Kuroda
(1974) and for Masado by Onodera et al. (1976). To quantify
the statistical uncertainties associated with different sample
sizes, 95% confidence intervals of the various correlation
indices are given in Table 2. In most cases, the absolute
values for Pearson’s p are approximately 35% larger than the
absolute values for Kendall’s 7, as shown in Fig. 8, which can
be explained by an expression that relates these two parameters
in the case of a bivariate normal population (Frees and Valdez,
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Table 2
Mean, standard deviation, and correlation coefficient of soils.

1251

Case ¢ (kPa) ¢ (deg.) Correlation
Mean Standard deviation Mean Standard deviation p (95% interval) 7 (95% interval)

Cherubini MBC 33.66 17.94 23.37 3.68 —0.65 (—0.87,—0.23) —0.43 (—0.76,0.09)
Forrest & Orr DBC 22.16 29.8 31.61 4.05 —0.51 (—=0.76,—0.11) —0.33 (—0.66,0.11)
Hata et al. Airport C 52.41 10.35 29.23 227 —0.42 (—0.7,0) —0.41 (-0.71,-0.01)
Kadar Flash-Ash 85.02 67.3 23.88 9.75 —0.72 (—0.88,—0.4) —0.47 (—0.75,—-0.03)
Kadar High-plasticity 87.5 50.34 8.35 5.98 —0.28 (—0.65,0.2) —0.21 (—0.6,0.28)
Lumb BL-1 51.17 8.14 29.4 1.14 —0.37 (—0.58,—0.12) —0.24 (—0.47,0.03)
Lumb BL-2 64.44 7.36 28.53 0.76 —0.38 (—-0.61,—-0.1) —0.24 (—0.5,0.06)
Lumb BL-3 85.73 24.24 31.89 2.35 —0.69 (—0.88,—0.31) —0.47 (—0.78,0.01)
M & K Soil 1 33.53 21.7 14.76 12.18 0.32 (—0.12,0.65) 0.19 (—0.25,0.56)
M & K Soil 2 19.89 11.85 21.91 10.86 0.37 (0.07,0.61) 0.06 (—0.25,0.36)
M & K 10% 7.66 2.76 33.27 1.77 —0.47 (—0.79,0.05) —0.3 (—0.7,0.26)
M & K 15% 12.51 3.85 30.49 2.66 —0.75 (—0.91,—-0.38) —0.66 (—0.87,-0.22)
M & K 20% 6.52 4.25 28.57 1.67 —0.78 (—0.92,-0.47) —0.48 (—0.79,0.02)
Onodera et al. Masado 41.61 50.05 45.44 6.63 0.26 (—0.22,0.64) 0.13 (—0.35,0.55)
Schultze Rhineland 19.61 6.63 19.91 3.93 —0.6 (—0.81,—0.24) —0.45 (—0.73,-0.04)
Speedie Melbourne 22.1 8.39 24.83 2.68 —0.65 (—0.84,—0.33) —0.49 (—0.75,-0.1)
Table 3
BIC values of marginal distributions of ¢ and ¢.
Case c 17

Normal Log-normal Gumbel Weibull Gamma Normal Log-normal Gumbel Weibull Gamma
Cherubini MBC 142.29 14091 141.02 140.24° 140.27 91.61 91.62 9241 92.12 91.54°
Forrest & Orr DBC 216.95 173.29 206.62 173.27" 173.34 129.15 129.21 130.8 130.81 129.1°
Hata Airport C 178.01 175.33 173.52° 180.01 176.08 108.17 109.36 114.57 105.92° 108.92
Kadar Flash-Ash 230.08 230.52 224.93 222.54" 222.98 152.51 160.03 155.86 153.15" 156.36
Kadar High-plasticity 207.69 215.45 208.78 207.48" 209.44 126.71 133.48 126.23 123.76" 124.36
Lumb BL-1 393.77 403.36 413.61 387.82" 399.65 177.58 178.75 192.23 173.67" 178.34
Lumb BL-2 313.93 316.38 323.29 311.15° 31542 109.36" 109.64 116.3 109.37 109.54
Lumb BL-3 161.26 164.34 164.71 160.38" 162.94 81.95 80.93 78.23" 86.37 81.25
M & K Soil 1 202.99 195.19 195.63 196.32 195.04" 177.59 167.47 172.46 167.21 167.1°
M & K Soil 2 325.48 326.37 319.31 318.4° 319.36 318.36 316.93 315.86 314.09" 314.55
M & K 10% 77.42 78.13 78.23 76.85" 77.46 64.06" 64.29 66.94 64.09 64.2
M & K 15% 87.36 87.42 87.74 86.89" 87.15 76.32 75.82 75.65" 78.89 75.96
M & K 20% 96.25" 103.26 98.71 96.84 97.45 66.31 66.3 68.72 68.37 66.28"
Onodera et al. Masado 207.47 18291 199.49 180.34 179.93* 130.64 132.63 135.43 127.67¢ 131.89
Schultze Rhineland 157.57 159.01 158.98 156.85" 157.84 133.43 134.71 136.45 133.06 132.05*
Speedie Melbourne 168.37 169.92 169.61 167.43" 168.55 115.92° 116.09 118.35 117.3 115.96

Note:
“Denotes best-fitting.

1998; Lindskog et al., 2003), e.g., 7. = %arcsin(p). In most
cases, the computed values for 7., based on p, have some
discrepancies with the values for ¢ obtained directly from the
observations. This implies again that the joint distribution of
shear strength holds non-normal characteristics.

3.3. Parameter estimate for fitted copulas

The estimated copula parameters 0 of different copulas are
presented in Table 5. As listed in this table, the BICs
quantitatively distinguish the best copulas. For instance, the
normal copula provides a much better fit of shear strength pairs

for the datasets of soils BL-1 and BL-3 by Lumb (1970), while
the Clayton copula captures the dependence feature of the
strength pairs of soil BL-2 by Lumb (1970). Therefore, there is
convincing evidence that dependence parameter O is site-
specific. It is seen that the normal and Frank copulas are
identified as the best-fitting copulas in some cases. However,
the Gumbel and Clayton copulas are suitable in some other
cases, which presents further evidence of asymmetric depen-
dence between the two parameters.

Furthermore, the PDC of the best-fitting copula is over-
lapped to the scattered plot, as shown in Figs. 2—7. The values
of the density level for these PDCs are not shown individually,
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Table 4
Estimated parameters of best-fitting marginal distributions.

Case ¢ (kPa) ¢ (deg.)

Best-fitting Parameters  Best-fitting Parameters

Cherubini MBC Weibull 2.07 38.14 Gamma 4254 1.82

Forrest & Orr DBC Weibull 0.57 14.42 Gamma 6325 2
Hata Airport C Gumbel 4776  7.51 Weibull 16.33 30.21
Kadar Flash-Ash Weibull 1.22 90.4 Weibull 7.94 54.43
Kadar High-plasticity ~Weibull 1.72 97.11 Weibull 1.2 8.78
Lumb BL-1 Weibull 7.94 54.43 Weibull 31.52 29.92
Lumb BL-2 Weibull 10.76 67.62 Normal 28.53 0.75
Lumb BL-3 Weibull 4.37 94.46 Gumbel 30.86 1.7
M & K Soil 1 Gamma 2.76  0.08 Gamma 142 0.1
M & K Soil 2 Weibull 1.75 22.34 Weibull 2.19 24.83
M & K 10% Weibull 3.22 8.57 Normal 3327 1.71
M & K 15% Weibull 3.84 13.89 Gumbel 29.27 2.18
M & K 20% Normal 6.52 4.12 Gamma 28.54 1.44
Onodera et al. Masado Gamma 0.55 0.01 Weibull 9.43 48.12
Schultze Rhineland Weibull 34 219 Gamma 5.99 21.49
Speedie Melbourne Weibull 3.01 24.82 Normal 24.83 2.62

Note: normal (mean; standard deviation), log-normal (mean in log; standard
deviation in log), Gumbel (a,b), Weibull (shape; scale), gamma (shape; rate).

Speedie Melbourne |
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Fig. 8. The correlation coefficients (including p, 7, and z.) of ¢ and ¢.

which corresponds to a level that 95 percent observations fall
in the region. To reveal the configurations of different copulas
thoroughly, the PDCs of two soils are chosen randomly as
illustrative examples.

For the soils reported by Hata et al. (2008), the mean values
for ¢ and ¢ are 52.41 kPa and 29.23° respectively. The
standard deviations of ¢ and ¢ are 10.35kPa and 2.27°,
respectively. Correlation coefficient p is —0.42, as listed in
Table 2. The Gumbel and Weibull are the best-fitting
distributions for ¢ and ¢, respectively, as given in Table 4.
Fig. 9 illustrates a comparison of the PDCs for the bivariate
distribution of (c, ¢) through different copulas. As shown in

this figure, the PDC of the bivariate normal model (can be
considered as a normal copula with the identical normal
marginal distributions) is elliptical. The non-symmetric feature
of the scattering pattern of the observed data indicates that the
traditional multivariate linear model has difficulty providing a
reasonable fit. The level curves of the density distribution
through the copulas with the best-fitting marginal distributions
have a significantly different shape. Graphically, the Clayton
copula with the best-fitting marginal distributions provides a
better fit of bivariate shear strength pairs than the fit by the
other copulas, as chosen based on their BICs. This copula
exhibits asymmetry in the sense that there is a clustering of
values in the left tail of the joint distribution.

For the soils reported by Schultze (1971), the mean and
standard deviation of ¢ are 19.61 kPa and 6.63 kPa, respec-
tively. The mean and standard deviation of ¢ are 19.91° and
3.93°, respectively. Correlation coefficient p is —0.6, as listed
in Table 2. The Weibull and gamma are the best-fitting
marginal distributions for ¢ and ¢, respectively, as given in
Table 4. Fig. 10 illustrates several PDC plots under the best-
fitting marginal distributions to fit the scattered data. The PDCs
of most copulas are dissimilar, which implies that the choice of
the copula significantly affects the resulting bivariate distribu-
tion. The Gumbel copula is the best-fitting copula on the basis
of BICs, and numerous observations in the boundary regions
make the other copula approaches less robust and less power-
ful in this situation. Graphically, this copula exhibits a strong
clustering of values in the right tail.

Above all, it is safe to say that there are no universally
accepted copulas for modelling the joint characteristics. The
fitting results presented here are applicable only to the specific
site conditions of each type of soil.

4. Influence of dependence structures on geotechnical
reliability analysis

Two illustrative examples are presented to demonstrate the
effect of the copula selection on the geotechnical reliability: an
infinite slope filled with the soils reported by Hata et al. (2008)
is evaluated with a probabilistic stability analysis against
sliding, and a shallow foundation resting on the Rhineland
soils reported by Schultze (1971) is discussed for a probabil-
istic analysis of its bearing capacity. For simplicity, only
uncertainties in the soil shear strength parameters are con-
sidered, regardless of the fact that the geometries and the
loading conditions are usually taken as random variables too.

4.1. Reliability analysis approaches

If a large number of samples from these bivariate copulas of
shear strength is generated using the R function ‘rmvdc’, ¢ and
¢ will then be mutually dependent uncertain variables. Finally,
the probability of failure P can be estimated by the ratio of the
running sum of the failed cases (performance function g < 0)
m to the running sum of the total samples ng,, i.e.,
P = m/ng,, which has been denoted as the CBSM (Wu,
2013a). The technique follows a simple algorithm using the
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Table 5
BIC and parameter values of fitted copulas.

Case BIC Copula parameter

Normal  Student’s r Clayton  Frank Gumbel  Plackett Normal Student’s r Clayton® Frank  Gumbel® Plackett"
Cherubini MBC —5.43 —5.52 -2 —5.02 —711° —-492 -0.62 —0.63 —1.51 —-435 —-1.82 -7.13
Forrest & Orr DBC —4.69 —3.98 —0.44 —4.43 —6.53" —-425 -053 —-052 —-0.99 -339 -—-1.62 —4.51
Hata Airport C 0.2 3.01 —5.07 —1.79 2.85 -098 —-04 —0.38 —1.45 -3.06 —1.15 —-3.51
Kadar Flash-Ash —10.36" —8.07 —3.45 —7.36 -9.6 -7.1 —-0.7 —0.67 —-1.77 —4.78 —1.89 —6.84
Kadar High-plasticity 1.35 1.16 1.51 2.13 0.81° 201 -028 —0.21 —0.53 —-123 —-1.27 —2.02
Lumb BL-1 —4.37° 3.66 —0.55 —-28 —-0.16 —-184 -039 —-034 —0.63 -222 -1.19 —2.49
Lumb BL-2 —-3.82 —2.17 —4.06 —2.55 —3.21 -232 -039 —-0.37 —0.63 —-2.06 —1.3 —-2.63
Lumb BL-3 —6.93" —5.59 —4.73 —4.66 —6.66 —-4.66 —-0.67 —0.59 —-1.77 —4.46 —1.88 —6.54
M & K Soil 1 0.58 4.06 2.24 0.3 1.67 0.82 0.33 0.31 0.47 1.97 1.18 2.19
M & K Soil 2 —0.04 —2.79 3.09 —0.09 —4.04 —1.27 0.3 0.32 0.13 1.93 1.34 3.28
M & K 10% —1.14 —0.33 0.34 0.12 -1.36 035 —-047 —043 —0.86 —233 —1.38 —2.76
M & K 15% —-7.92 —7.98 —-5.36 —7.78 —-8.6" —-849 -0.73 —-0.74 —3.88 —-6.21 =217 —13.33
M & K 20% —12.52° —11.91 —11.65 —11.55 -978 —1195 -0.79 —-0.78 —1.85 —-734 =219 —15.85
Onodera et al. Masado 2.39 4.5 2.92 2.51 2.06" 2.56 0.16 0.14 0.30 0.75 1.15 1.39
Schultze Rhineland —6.64 —6.68 —0.68 -85 —9.63" —-837 —-056 —0.58 —1.64 —427 -—1.76 —6.81
Speedie Melbourne —-9.31 —11.01 —5.57 —9.16 —1236" —1073 —0.64 —0.67 —-1.92 —498 —1.95 —11.1

Note:

“Denotes that the negative symbol in the parameter of the Clayton, Gumbel, Plackett copulas is obtained through negating the values of one variable and then to

achieve a positive correlation.
®Denotes best-fitting.
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Fig. 9. Geometric interpretation of the various copulas to fitting the observed
data by Hata et al. (2008).

Monte Carlo simulation method to generate random variables
and integrates the copula function to fit the observed results for
the soil strength parameters. In general, when the simulating
number ng, is more than 100/F;, the accuracy may be
satisfactory (Tobutt, 1982; Husein Malkawi et al., 2000), and
the probability of failure P; can represent a deterministic
solution. In the following analysis, after 50,000 trials, con-
vergence of the results can be achieved. The simulation-based
method is a computationally expansive tool for a reliability
assessment of large structures (Tobutt, 1982). The calculation
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Fig. 10. Geometric interpretation of the various copulas to fitting the observed
data by Schultze (1971).

of P; can appear difficult especially when its value is low. To
avoid this problem, once the simulated factors of safety F; are
assumed to follow the normal or lognormal distribution, the
reliability index S can be evaluated in terms of the statistics of
F, as detailed in the literature (Baecher and Christian, 2003;
Wu, 2013a).

For the sake of comparison, the first-order reliability method
(FORM) and the second-order reliability method (SORM),
including the formulae proposed by Breitung (1984) and Tvedt
(1990), are used to compute the reliability index. Additional
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Fig. 11. Geometry of an infinite slope.

details of the FORM and SORM approaches can be found
elsewhere (Zhao and Ono, 1999; Baecher and Christian, 2003).
In these analytical approximation methods, the original pro-
blem is transformed firstly into a standard normal probability
space and then the probability of failure is calculated by
converting the original hyperplane failure surface into the
tangential or quadratic approximation. The reliability index S
in this space is defined as the shortest distance between the
hyperplane and the origin (Hasofer and Lind, 1974). Subse-
quently, the failure probability can then be approximately
estimated from g (Hohenbichler and Rackwitz, 1983) as

Pr=1-@() =D(=p) )

where @ represents the cumulative distribution of the standard
normal variate. More refined alternatives, such as the impor-
tance sampling simulation technique (Melchers, 1989), the
copula-based direct integration method (Li et al., 2012), and
the response surface method (Bucher and Bourgund, 1990),
can also be adopted to determine the failure probability.

Furthermore, using these approaches, a parametric study on
the resulting reliability index of these geostructures will be
performed, as the copula parameters (e.g., correlation coeffi-
cient and copula type) are varied when fitting the soil shear
strength.

4.2. An infinite slope

As the first example, Fig. 11 shows the geometry of an
infinite slope. The classical performance function for the
stability of this slope with a stable groundwater table is written
as (Wu and Abdel-Latif, 2000; Zhang et al., 2011)

c+ [}’m(H - hw) + (Yo — }’W)hw]cos2 a tan ¢
- [}’m(H — hy) + ;/Sathw]sin a cos a
- 1.0 @

where a is the inclination of the slope (deg.), H is the thickness
of the slope (m), Ay, is the level of groundwater (m), and ¥,,, ¥,
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Student-t
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| -—— Frank

A8 N N Gumbel
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Fig. 12. Reliability index under various joint distributions for the infinite
slope: lines describe f computed from different copulas with the best-fitting
marginal distributions while symbols represent the computed values of f from
different methods with normal marginal distributions.

and y,, are the unit weights of water, soil, and saturated soil
above the water table, respectively. The values adopted for y,,
Ym» and y, are 9.8, 17, and 19 kN/m?, respectively. Slope angle
a is supposed to be 35°, H=3m, and hy,=1.22 m (Zhang
et al., 2011).

The shear strength parameters of the soils are adopted from
Hata et al. (2008) for the sand mixed gravel at an actual airport
embankment. Clearly, shear strength parameter ¢ is expressed
by a nonlinear relation in this performance function. The
performance function can be drawn explicated in the plane of ¢
and ¢ as a critical curve, shown in Fig. 9 with the thick solid
line. Wu (2013a, 2015c) presented relatively simple proce-
dures for the definition of this curve. The values for pf,
evaluated using CBSM for various copulas with p from
—0.85 to 0.6 between soil shear strengths, are presented in
Fig. 12. The range in 7 (from —0.65 to 0.41) is determined
from p and illustrated at the bottom of the horizontal axis.
These copula parameters of the soil (Hata et al., 2008) are
given in Table 5. A vertical line is drawn where the observed
correlation (p= —0.42) is given in Table 2. Even when these
copulas are imposed by the same marginal distributions (best-
fitting as listed in Table 4 and described in Section 3.3) and the
same correlation coefficient, the discrepancy between the
computed reliability indices is apparent, as shown in Fig. 12.
These differences resulted from the scatter in the shapes of the
observations and the corresponding PDCs. This necessitates
additional extensive research to gather more reliable experi-
mental data and to explore their dependence structures. It can
be seen that the joint normal copula overestimates the
reliability index and the Gumbel copula leads to underestimat-
ing the reliability index, which shows some agreement with the
results of other investigators, such as Tang et al. (2013).

In the following analyses, ¢ and ¢ are further assumed to be
normally distributed. The mean and standard deviations of ¢
and ¢ of the soil (Hata et al., 2008) are given in Table 2. The
reliability index given by CBSM (denoted as bivariate normal)
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Fig. 13. Geometry of shallow foundation.

is consistently validated against the results obtained from the
analytical methods, e.g., FORM and SORM (denoted as
Breitung and Tvedt individually), despite the fact that the
results from CBSM are slightly smaller. The matched results
prove that it works well in determining the reliability index
using CBSM. Obviously, the values for f are smaller under the
bivariate normal distribution than the results for # where the
joint distribution follows the best-fitting Clayton copula.

In addition, the analysis of these results illustrates the
importance of the value of f relative to the value of p between
c and ¢. A small variation in the correlation coefficients for ¢
and ¢ has a large impact on the f of the slope stability in this
example, due to the fact that the tilting angle of the PDCs
changes with p. An evaluation of the effect of cross-correlation
on by CBSM has shown some similar conclusions with the
results of other investigators, such as Nguyen (1985) and Wu
(2013a).

4.3. A shallow foundation

The reliability assessment of the bearing capacity for a
shallow foundation is considered as another example problem,
as shown in Fig. 13 for its geometry. A concrete foundation,
5 m wide (B) and 25 m long (L), is founded at a depth (D) of
1.8 m in a deposit of silty sand. This footing carries a
horizontal load @) of 300 kN/m running at a point 2.5 m
above the base (H) and a centrally applied vertical load Q, of
1100 kN/m running in the middle. Inclined loading is applied
with an eccentricity e, with respect to the centroid of the
foundation, thus, the effective breadth B’'=B—2e,. The
performance function of the shallow foundation can be
calculated as (Tomlinson, 1995) follows:

8§=4qL— 4 ®

where ¢, is the bearing pressure for the effective foundation
width ( =\ Q7 + Q2/B’), and ¢, is the ultimate bearing
capacity, written as

g, = YDNysqdqiq + cNeScdcic + 0.5B'yNysydyiy (10)

Bivariate normal — normal
FORM - Student-t
A Breitung ~== Clayton
X Tvedt -=== Frank
2.5 - == Gumbel

""" Plackett

2.0

p=-0.6

T T T T T T T T
p=-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
=-0.59  -0.41 -0.26  -0.13 -0.0 -0.13 0.26 0.41

Fig. 14. Reliability index under various joint distributions for the shallow
foundation: lines describe the computed values of f from different copulas with
the best-fitting marginal distributions while symbols represent the computed
values of f using different methods with normal marginal distributions.

where Ny, N, and N, are the bearing capacity factors according

to the following expressions: N; = (tan(45 + %))2 eman e,

N, = Zé‘n—;, and Ny, =2(Ny + Dtan ¢; ig, ic, and i, are the

loading inclination factors with ig = 1 — (@/90)?, i, = ig, and
iy=00- alp)?; 5q» Sc, and s, are the shape factors with
sg=1+ singigB/L, s.=1+02iB/L, and s, = 1 — 0.4i, B'/L; d,
d., and d, are the depth factors when D < B,
d.=1+04D/B" and dqy=1+ 2tan¢(l — sin ¢)> D/B’;
when D> B’, d.=1+ 04arctan (D/B’) and dy=1+2
tan ¢ (1 — sin ¢)? arctan(D/B’) ; and d, = 1. The footing is
assumed to be based on the soils investigated by Schultze
(1971) who presented 23 shear strength parameters to consider
their variabilities. The unit weight (y) of soils is assumed to be
a constant with 21 kN/m?,

Although ¢ expressed in Eq. (10) implicates a higher
nonlinear relation, the critical curve is flattened off to an
almost linear relation in the plane of ¢ and ¢, as illustrated in
Fig. 10.

Fig. 14 presents the computed reliability indices with
different copulas (presented in Section 3.3) using CBSM for
p in the range of —0.85 to 0.6 between soil shear strength. The
values for f are significantly sensitive to p, and the values for
P decrease as those for p increase. Plots with various copulas
show a similar pattern, but f is influenced by the choice of
copula owing to the asymmetry of their PDCs. The normal
copula significantly overestimates f, while the Gumbel copula
underestimates it. The computed reliability indices can also be
compared to the case with the specified correlation coefficient
(p=—0.6) of the soil (Schultze, 1971) given in Table 2,
indicated by a vertical line in Fig. 14. Analytical solutions
using FORM and SORM (denoted as Breitung and Tvedt
individually) are also included in this figure to compute
under the assumption that both marginal distributions follow a
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normal one. The mean and standard deviations of this soil are
listed in Table 2. Both analytical results agree well with the
CBSM results (denoted as bivariate normal), especially for the
positive values for p, while the results from CBSM are smaller
than the ones using CBSM for the negative values for p. Note
that the computed reliability indices using SORM are quite
close to those obtained by FORM, as shown in Fig. 14. In
other words, there is no significant improvement over SORM,
potentially due to the fact that the performance function is not
strongly nonlinear. Compared with the § obtained in the case
of the best-fitting Gumbel copula, the smaller # is achieved
under the bivariate normal distribution because of the different
patterns of the PDC.

5. Discussion

The illustrative application demonstrates that the developed
joint probability distribution of ¢ and ¢ can be an important
factor influencing the reliability assessment of damaged struc-
tures. The following steps are required for practical relia-
bility analyses associated with a copula-based method: [1]
Estimate the best-fitting marginal distribution. This requires a
goodness-of-fit test for a dataset. [2] Evaluate the correlation
coefficient of paired shear strength. A visual interpretation by
the scatterplot can be drawn out to investigate the dependence
characteristics in a graphical form. [3] Establish the best-fitting
copula for a dataset through another goodness-of-fit test. [4]
Incorporate the reliable copula-based simulations into the limit
state equation to calculate the probability of failure or relia-
bility index. [5] Evaluate the effect of the chosen copula. A
comparison can be performed using the correlated shear stre-
ngth parameters simulated with the other copulas.

The copula approach is applied to generate the correlated
shear strength characteristics. With this tool, any dependence
can easily be integrated into an existing probabilistic analysis
model, because a copula procedure permits the description of
the dependencies between many random variables, indepen-
dent of their marginal distributions. Establishing these relation-
ships will greatly advance our knowledge on how ¢ and ¢ of
the soil shear strength are integrated. The joint probability
distribution and dependence structure is derived from real data
so that once an observed dataset is available, its shear strength
characteristics can be derived from this joint distribution, i.e., a
set of simulated shear strength values can be drawn at random
from a population with the corresponding joint distribution.
The mature R packages are extremely useful for assisting civil
engineers in identifying and facilitating such joint functions.

A strong asymmetry in the marginal probability density
functions of the shear strength can be found in some datasets.
For instance, small cohesion for the sandy clay is held in the
case of Forrest and Orr (2010) and Onodera et al (1976). Or
relatively small friction angles are investigated in the case of
Kadar (2013) for high plasticity clay. Such a truncated normal,
log-normal, or Weibull marginal distribution can provide a
better fit to avoid unrealistic negative values of shear strength.
Obviously, the configuration of the corresponding joint PDC
of shear strength will be imposed lower bound that truncates

the tail of the PDC in some occasions to ensure a strictly
positive output.

Owing to the experimental cost of soil shear strength tests,
the available number of observations is usually rather small,
which can easily conceal the real nature of the correlations
between variables. As shown in Table 1, the number of
available observations is in the range of 15-55. Obviously,
from a statistical point of view, the sample size is relatively
small for exploring a multivariate problem. In practice, the
number of tests, between 15 and 50, should be appropriate to
achieve a reliable description on the complicated patterns of
the variation in conjunction with soil shear strength, as
described by Genest and Favre (2007) and Wang et al.
(2010) for different aspects to identify the appropriate copula
model using a small sample. Therefore, the collection of over
10 samples becomes the criterion for the datasets in ‘GeoR-
iskR’. Apparently, high-quality shear strength data, when
available, can provide additional refinement to the copula-
based dependence structure between strength model para-
meters. This study indicates that there is a genuine need for
further investigations either in the field or the laboratory on
correlations of geotechnical parameters because the reliability
index, and hence, the probability of failure, depends on the
correlation structure characteristics of the variables.

Each pair of measurements should be collected randomly
from locations or sites at a project contract level to make sure
the samples independently drawn for the bivariate distribution,
and thus, the samples for each dataset, are assumed to be
statistically independent and identically distributed. However,
the spatial soil shear strength data of testing sites a certain
distance from each other have the tendency to be dependent,
and such a spatial correlation should be avoided in order that
the proposed procedure not be confounded (e.g., Marchant
et al., 2011). Readers should refer to Fenton and Griffiths
(2003) and Ching et al. (2014) for a comprehensive discussion
of the spatial correlation between cohesion and friction angle,
which falls outside the scope of this study.

Uncertainty in the shear strength parameters can arise from
the loading conditions, the sampling techniques, and the
procedural control maintained during laboratory or field
testing. Once the inherent characteristics of a soil property at
a given site (layer) tend to be similar, they will be treated as
data from a homogeneous deposit, which can be the case for
the compiled data here. In some occasions, the statistical
characteristics of one single soil cannot be accommodated for
the presence of different soil layers, and then the proposed
statistical estimates of the variability of soil properties should
be extended for multi-layer soils (Wu, 2013a).

6. Conclusions

The bivariate copula functions of soil shear strengths permit
a non-symmetric dependence structure between strength com-
ponents; and hence, it leads to accurate probabilistic assess-
ments of geostructures if the correlations between the input
variables are well understood. In this study, the joint distribu-
tion function of correlated soil strength properties for 16 sets of
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experimental observations is examined. The dependence struc-
ture between shear strength components is found to be mostly
negative and asymmetric. The dependence structures are site-
specific and may vary with soils, so it is difficult to identify
a universally accepted copula for various soils. Computed
reliability indices differ because of non-symmetry scattering in
the observations under various copulas, even when the
identical marginal distributions and the same correlation
coefficients are adopted. For both illustrative examples, the
normal copula leads to an overestimation of the reliability
index, while the Gumbel copula achieves the lowest reliability
index. In this context, information about the dependence
structures of soil shear strength parameters must be identified
correctly to perform a reliability assessment of geotechnical
structures.

In both examples, although conservative reliability indices
are obtained when the joint behaviour of soil shear strength
follows a bivariate normal distribution, this distribution can be
inspired by the convenience of modelling for a wide variety of
soils. The negative correlation is demonstrated to improve the
structural reliability index compared to ignoring the correlation
(zero cross-correlation). The computed reliability index using
SORM yields results close to that using FORM; thus, the real
advantage of a SORM evaluation is not realised when the
critical curve is approximately linear.
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