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1. Introduction and notation

All groups in this paper are finite and all characters are complex characters. For a group G , let
Irr(G) denote the set of all irreducible characters of G . An irreducible character χ of a group G is
monomial if it is induced from a linear character of a subgroup of G , that is χ = λG , where λ ∈ Irr(U )

with λ(1) = 1 and U � G . A group G is called an M-group if every irreducible character of G is mono-
mial. A well known theorem of Taketa says that all M-groups are solvable (see [10, Theorem 5.12]).
There have been many generalizations of Taketa’s theorem in the literature. Observe that if χ ∈ Irr(G)

is a monomial character induced from the subgroup U � G and the linear character λ ∈ Irr(U ), then
U/Ker(λ) is cyclic, in particular U/Ker(λ) is solvable. With this observation, Dornhoff showed in
[7] that a group G is solvable provided that every irreducible character of G is induced from an

* Corresponding author.
E-mail addresses: lttung96@yahoo.com (T. Le), jamshid.moori@nwu.ac.za (J. Moori), tvphihung@gmail.com (H.P. Tong-Viet).

1 Alternative international address: Viet Nam National University, Ho Chi Minh City, Viet Nam.
2 Supported by North-West University (Mafikeng) and the NAFOSTED (Viet Nam).
3 Supported by North-West University (Mafikeng) and a Competitive Grant from NRF.
4 Supported by NRF and North-West University (Mafikeng).
0021-8693/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jalgebra.2012.10.018

http://dx.doi.org/10.1016/j.jalgebra.2012.10.018
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:lttung96@yahoo.com
mailto:jamshid.moori@nwu.ac.za
mailto:tvphihung@gmail.com
http://dx.doi.org/10.1016/j.jalgebra.2012.10.018


28 T. Le et al. / Journal of Algebra 374 (2013) 27–41
irreducible character of a solvable section of G . More generally, Isaacs proved in [11] that if every
irreducible character χ ∈ Irr(G) is induced from an irreducible character λ of a subgroup H such that
H/Ker(λ) ∈ F, then G is in F, where F is a class of groups closed under isomorphisms, subgroups and
extensions. If we choose F to be the class of solvable groups, then we obtain the result of Dornhoff
mentioned above. A group G is called a Quasi-Solvable Induced (QSI) group if every irreducible char-
acter χ of G has some multiple which is induced from a character λ of a subgroup U with U/Ker λ

solvable. Recently, König [15] showed that every QSI group is solvable. Obviously, this is a general-
ization of both Dornhoff’s and Taketa’s theorems. The main purpose of this paper is to remove the
solvability assumption on the quotient U/Ker(λ).

Recall that an irreducible character of a group is imprimitive if it is induced from an irreducible
character of some proper subgroup and it is primitive if it is not induced by any character of any
proper subgroups. For convenience reason, we make the following definitions. A nonlinear character
χ ∈ Irr(G) is called a multiply imprimitive character (or m.i character for short) induced from the pair
(U , λ) if there exist a proper subgroup U of G and an irreducible character λ ∈ Irr(U ) such that
λG = mχ for some nonnegative integer m. Moreover, a group G is said to be an MI-group if every
nonlinear irreducible character of G is an m.i character.

Let N � G . We write Irr(G|N) = Irr(G) − Irr(G/N). If N is a normal subgroup of G and every
nonlinear irreducible character in Irr(G|N) is an m.i character, then G is called an MI-group relative
to N . We now state our main result.

Theorem 1.1. Let N be a normal subgroup of a group G. If G is an MI-group relative to N, then N is solvable.

If we take N = G ′ , then the set Irr(G|N) is exactly the set of all nonlinear irreducible characters
of G . Now assume that G is an MI-group. Then G is an MI-group relative to G ′ and thus by applying
Theorem 1.1, we deduce that G ′ is solvable and so G is solvable. Therefore, we have proved the
following corollary.

Corollary 1.2. Every MI-group is solvable.

This gives a positive answer to [2, Problem 162]. We also obtain an answer to [2, Problem 123] as
follows.

Corollary 1.3. Let H � G be a proper subgroup of a group G. Suppose that for any λ ∈ Irr(H) with λ �= 1H , we
have λG = mχ for some χ ∈ Irr(G) and some integer m � 1. Then the normal closure of H in G is solvable. In
particular, H is solvable.

For the proof of Theorem 1.1, in Section 2 we present some results needed for reducing the prob-
lem to a question concerning the existence of a special m.i character in nonabelian simple groups.
Using the classification of nonabelian simple groups, we obtain the answer to this question which is
stated as Theorem 1.4 below. This theorem will be verified in Sections 3, 4 and 5. Finally, the proofs
of Theorem 1.1 and Corollary 1.3 will be carried out in the last section.

Theorem 1.4. If S is a nonabelian simple group, then S has a nonlinear irreducible character which is ex-
tendible to Aut(S) but it is not an m.i character.

Notation. If G is a group, then we write π(G) to denote the set of all prime divisors of the order
of G . For a normal subgroup N of G , if θ ∈ Irr(N), then the set of all irreducible constituents of θG is
denoted by Irr(G|θ). If n is a positive integer and p is a prime then np and np′ are the largest p-part
and p′-part of n, respectively. The greatest common divisor of two integers a and b is denoted by
gcd(a,b). We follow [5] for notation of simple groups. Other notation is standard.
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2. Reduction to simple groups

The following lemma is a modification of Lemma 2.1 in [15].

Lemma 2.1. Let K and N be normal subgroups of a group G. Suppose that G is an MI-group relative to N. Then
the following hold.

(i) G/K is an MI-group relative to N K/K .
(ii) G is an MI-group relative to K provided that K � N.

Proof. Assume that χ̂ ∈ Irr(G/K |N K/K ). Then χ̂ can be considered as a character χ of G with K �
Ker(χ) = Ker(χ̂ ). As N K/K � Ker(χ̂ ) but K � Ker(χ̂ ), we deduce that N � Ker(χ) so χ ∈ Irr(G|N)

with K � Ker(χ). Since G is an MI-group relative to N , we deduce that mχ = λG , where U � G ,
λ ∈ Irr(U ) and m � 1. We have

K � Ker
(
λG) =

⋂

g∈G

(
Ker(λ)

)g

and hence K � Ker(λ) � U . Thus λ can be considered as a character λ̂ of U/K . For x ∈ G , we have

λ̂G/K (xK ) = 1

|U/K |
∑

yK∈G/K
(xK )yK ∈U/K

λ̂
(
(xK )yK )

= 1

|U |
∑

y∈G
xy∈U

λ
(
xy) = λG(x) = mχ(x) = mχ̂ (xK ).

Therefore χ̂ ∈ Irr(G/K |N K/K ) is an m.i character induced from (U/K , λ̂). This proves (i). If K �
N � G , then (ii) is obvious since Irr(G|K ) ⊆ Irr(G|N). �
Lemma 2.2. Let χ ∈ Irr(G) be an m.i character induced from a subgroup U � G and λ ∈ Irr(U ) with
λG = mχ . Then:

(i) If χ(g) �= 0 for some g ∈ G, then gG ∩ U �= ∅.
(ii) We have |G : U |λ(1) = mχ(1), χ(1) � mλ(1) and |G : U | � m2 .

Proof. As λG = mχ , if g ∈ G with χ(g) �= 0, then λG(g) = mχ(g) �= 0. By the definition of in-
duced characters, we have that xgx−1 ∈ U for some x ∈ G , which proves (i). For (ii), by compar-
ing the degrees, we have λG(1) = mχ(1), which implies that |G : U |λ(1) = mχ(1). By the Frobe-
nius reciprocity, we have m = (λG ,χ) = (λ,χU ) so χU = mλ + ψ for some character ψ of U .
Hence χ(1) = mλ(1) + ψ(1) � mλ(1), which proves the second statement of (ii). Finally, we have
|G : U |λ(1) = mχ(1) � m2λ(1), which deduces that |G : U | � m2. �

Let χ ∈ Irr(G) be an m.i character induced from (U , λ), that is, mχ = λG for some m � 1. We will
show that U could be chosen to be a maximal subgroup of G . By definition, U is a proper subgroup
of G , and thus there is a maximal subgroup H of G that contains U . Let μ ∈ Irr(H) be an irreducible
constituent of λH . Write λH = μ + ψ , where ψ is a character of H . By the transitivity of character
induction, we have that (λH )G = λG = mχ so μG + ψG = mχ . Thus μG = eχ for some e � 1, which
means that χ is an m.i character induced from (H,μ), where H is maximal in G and μ ∈ Irr(H).

The next result is similar to Lemma 2.8 in [18].
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Lemma 2.3. Let N be a normal subgroup of a group G and let θ ∈ Irr(N) be a nonlinear character of N. Suppose
that θ extends to χ ∈ Irr(G). If χ is an m.i character of G, then θ is also an m.i character of N.

Proof. Assume that χ is an m.i character of G . Then there exist a proper subgroup U � G , λ ∈ Irr(U )

and m � 1 such that mχ = λG . Assume that T = {r1, r2, . . . , rt} is a set of representatives for the
double cosets of U and N in G . As χ is an extension of θ , we have that χN = θ . By the discussion
above, we can and will assume that U is maximal in G . As λG = mχ and χN = θ , we deduce that
mθ = (λG)N . By Mackey’s Lemma, we have that

(
λG)

N =
t∑

j=1

((
λr j

)
U r j ∩N

)N

so

mθ =
t∑

j=1

((
λr j

)
U r j ∩N

)N
.

It follows that for each j, we obtain that ((λr j )U r j ∩N )N is a multiple of θ . In particular, we have that
(λU∩N )N = kθ for some k � 1.

Assume first that N � U . We then have that λN = kθ . By Lemma 2.2(ii), we obtain that χ(1) =
θ(1) � mλ(1) = mkθ(1), which implies that mk = 1, hence m = k = 1. By Lemma 2.2(ii) again, we have
|G : U |λ(1) = mχ(1) and thus |G : U |kθ(1) = mθ(1), which implies that |G : U | = 1, a contradiction.

Assume next that N � U . As U is maximal in G , we obtain that G = U N . Hence by Mackey’s
Lemma, we have that

(
λG)

N = (λU∩N)N = mθ.

Since N � U , we deduce that U ∩ N � N . Let μ ∈ Irr(U ∩ N) be an irreducible constituent of λU∩N .
It follows that μN = lθ for some l � 1. Hence θ is an m.i character of N induced from (U ∩ N,μ) as
required. �
Lemma 2.4. Suppose that N is a unique minimal normal nonabelian subgroup of a group G. Assume that
N = R1 × R2 × · · · × Rk, where each Ri is isomorphic to a nonabelian simple group R, and k � 1. Let θ be a
nonlinear irreducible character of R such that θ extends to Aut(R). Let ϕ = θk ∈ Irr(N). If χ ∈ Irr(G) is any
extension of ϕ to G and χ is an m.i character of G, then θ is an m.i character of R.

Proof. Since N ∼= Rk is the unique minimal normal subgroup of G , we deduce that G embeds into
Aut(N) ∼= Aut(R) 
 Sk , where Sk denotes the symmetric group of degree k. As θ ∈ Irr(R) extends to
Aut(R), by [3, Lemma 2.5] we deduce that ϕ = θk ∈ Irr(N) extends to G . Assume that χ ∈ Irr(G)

is an extension of ϕ and that χ is an m.i character of G . By Lemma 2.3, we deduce that ϕ is an
m.i character of N induced from (U , λ), where U is a maximal subgroup of N , and λ ∈ Irr(U ). Then
mϕ = λN for some m � 1. As N = R1 × R2 × · · · × Rk and U is maximal in N , there exists 1 � i �
k such that Ri � U . Without loss of generality, we assume that R1 � U . Since R1 � N , we obtain
that N = R1U , here we identify R1 with R1 × 1 × · · · × 1 � N . Observe that ϕR1 = θ(1)k−1θ1, where
θ1 ∈ Irr(R1) is N-invariant. Since N = R1U , by Mackey’s Lemma, we obtain that (λN )R1 = λ

R1
U1

, where

U1 := R1 ∩ U � R1. Then it follows from mϕR1 = (λN )R1 that mθ(1)k−1θ1 = λ
R1
U1

. Let λ1 ∈ Irr(U1) be

any irreducible constituent of λU1 , we then have that λ
R1
1 = m1θ1 for some m1 � 1. Therefore we

conclude that θ1 ∈ Irr(R1) is an m.i character of R1. Hence θ is an m.i character of R as wanted. �
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3. Finite simple groups of Lie type

In this section, we aim to prove Theorem 1.4 for simple groups of Lie type. Note that we will con-
sider the Tits group as a sporadic simple group rather than a simple group of Lie type and exclude it
from consideration in this section. Now it is well known that every simple group of Lie type S in char-
acteristic p possesses an irreducible character of degree |S|p , the size of the Sylow p-subgroup of S ,
which is called the Steinberg character of S and is denoted by StS . (See [4, Chapter 6].) Moreover the
Steinberg character of S is always extendible to the full automorphism group Aut(S). (See for instance
[3, Theorem 2].) Using the information on the character values of the Steinberg character given in [4]
and also the classification of the maximal subgroups of simple groups of Lie type satisfying certain
properties given in [14,17], we will prove that apart from some exceptions, the Steinberg character
cannot be an m.i character. This is achieved in Lemma 3.8. Finally, for these exceptions, using [5] we
will find another nonlinear irreducible character of S which extends to Aut(S) but it is not an m.i
character.

We first draw some consequences under the assumption that the Steinberg character is an m.i
character. Recall that if G is a group and p ∈ π(G), then an element g ∈ G is called p-semisimple (or
just semisimple when p is understood) whenever the order of g is coprime to p.

Lemma 3.1. Let S be a simple group of Lie type in characteristic p. Suppose that m StS = λS , where λ ∈ Irr(H),
m � 1 and H is a maximal subgroup of S. Then the following hold.

(1) g S ∩ H �= ∅ for any p-semisimple element g ∈ S.
(2) p � m and λ(1)p = |H|p .
(3) |S : H|p � m � |S : H|p′ .

Proof. By [4, Theorem 6.5.9], we have StS(g) = ±|C S (g)|p for any p-semisimple element g ∈ S . Thus
for any p-semisimple element g ∈ S , we obtain that λS(g) = m StS (g) �= 0. By the definition of induced
characters, we obtain (1). For g = 1 ∈ S , we have that m StS (1) = |S : H|λ(1). As StS(1) = |S|p and
λ(1)p | |H|p , we deduce that |S : H|pλ(1)p divides |S|p and so |S : H|pλ(1)p = |S|p as it is divisible
by StS (1). This implies that p � m and λ(1)p = |H|p , which proves (2). Finally as m StS (1) = |S : H|λ(1),
by applying (2) we have

m = |S : H|p′λ(1)p′ � |S : H|p′ .

By Lemma 2.2(ii), we obtain that m2 � |S : H| and so

m2 � |S : H|p|S : H|p′ � m|S : H|p,

which implies that |S : H|p � m � |S : H|p′ as required. �
The following result is a well known theorem due to Zsigmondy.

Lemma 3.2. (See [13, Theorems 5.2.14, 5.2.15].) Let q and n be integers with q � 2 and n � 3. Assume that
(q,n) �= (2,6). Then qn − 1 has a prime divisor � such that:

• � does not divide qm − 1 for m < n.
• If � | qk − 1 then n | k.
• � ≡ 1 (mod n).

Such an � is called a primitive prime divisor. We denote by �n(q) the smallest primitive prime
divisor of qn − 1 for fixed q and n. When n is odd and (q,n) �= (2,3) then there is a primitive prime
divisor of q2n − 1 which we denote by �−n(q).
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Let S be a nonabelian simple group. If S � G � Aut(S), then G is said to be an almost simple group
with socle S and we write soc(G) to denote the socle S of G . We refer to [13, Chapter 4] for the
detailed descriptions and definitions of the geometric classes Ci(S) (1 � i � 8) and the class S(S) of
subgroups of simple classical groups S .

Suppose that S is a simple group of Lie type in characteristic p and that StS is an m.i character of
S induced from the pair (H, λ), where H is a maximal subgroup of S and λ ∈ Irr(H). It follows from
Lemma 3.1(1) that g S ∩ H �= ∅ for any semisimple element g ∈ S and thus πp′ (S) ⊆ π(H), where
πp′ (S) is the set of all primes divisors of |S| different from the characteristic p. Hence two cases can
occur, either π(H) = π(S) or π(H) = πp′ (S). We first consider the case π(H) = πp′ (S). This implies
that |H| is prime to p and that H possesses some semisimple element of certain maximal torus of S .
Hence we can apply [17] for classical groups and [14] for exceptional groups of Lie type to obtain the
possibilities for the pairs (S, H).

Lemma 3.3. Let S be a nonabelian simple group of Lie type in characteristic p and let H be a maximal subgroup
of S. Suppose that p � |H| and that for any p-semisimple element g ∈ S, we have that g S ∩ H �= ∅. Then

(S, H) ∈ {(
L2(5),A4

)
,
(
L2(5),S3

)
,
(
L2(7),S4

)
,
(
L3(2),7 : 3

)}
.

Proof. It follows from the hypotheses that πp′ (S) = π(H).
Case 1. S is a simple classical group in characteristic p defined over a field of size q = p f . For

each p-semisimple element g ∈ S , by the hypotheses some conjugate of g belongs to H . In par-
ticular H possesses some element of the maximal torus of S with order given in [17, Table I]. By
[17, Theorem 1.1], the following cases hold.

(A) H ∈ ⋃8
i=1 Ci(S). Then one of the following cases holds.

(A1) H ∈ C1(S) and S ∈ {Lε
n(q),O2n+1(q),O+

2n(q)}, where n is at least 3, 3, and 4, respectively. By
inspecting the orders of maximal subgroups in class C1(S) in [13, §4.1] and using the restriction
on n, we see that p always divides |H|. Hence this subcase cannot happen.

(A2) H ∈ C8(S) and S ∼= S2n(q), where n � 2. By [13, Proposition 4.8.16] we have that H ∼= Oε
2n(q)

with q even. Obviously p always divides |H|.
(A3) H ∈ C3(S) and S ∈ {Lε

n(q) (n � 3 odd),S2n(q) (n � 2),Oε
2n(q) (n � 4)}. By inspecting the orders

of maximal subgroups in class C3(S) in [13, §4.3] and using the restriction on n, we see that p
always divides |H| unless S ∼= Lε

n(q) where n is an odd prime and H is of type GLε
1(qn) · n.

Assume that n = 3. By [13, Proposition 4.3.6], we have |H| = 3(q2 + εq + 1)/d, where d =
gcd(3,q − ε1). In this case, S has an element of order (q2 − 1)/d. It follows that (q2 − 1)/d
must divide 3(q2 + εq + 1)/d, and so (q2 − 1) = (q − ε1)(q + ε1) divides 3(q2 + εq + 1). As
gcd(q + ε1,q2 + εq + 1) = 1, we deduce that q + ε1 | 3, which implies that q + ε1 = 1 or q + ε1 = 3
since q + ε1 > 0. Solving these equations, we obtain that q = 2 and ε = ± or q = 4 and ε = −. Since
U3(2) is not simple and 42 − 1 � 3(42 − 4 + 1), we deduce that S ∼= L3(2) and H ∼= 7 : 3.

Now suppose that n � 5 is odd prime. Assume first that both �n−1(q) and �ε(n−2)(q) exist. Observe
that these two primes are distinct. Then S has elements of orders �n−1(q) and �ε(n−2)(q), respectively.
Thus �n−1(q) and �ε(n−2)(q) divides |H|. By Lemma 3.2 neither �n−1(q) nor �ε(n−2)(q) can divide
|GLε

1(qn)| = qn − ε1 since both n − 1 and n − 2 cannot divide 2n as n � 5 is odd prime. As a result,
both �n−1(q) and �ε(n−2)(q) must be equal to the prime n as |H| | n(qn − ε1), which is impossible. We
now consider the case when either �n−1(q) or �ε(n−2)(q) does not exist. By Lemma 3.2, we deduce
that S ∼= Lε

7(2) or S ∼= U5(2). If the first case holds, then �ε5(2) ∈ π(S) exists. However we see that
�ε5(2) cannot divide 7(27 − ε1) so �ε5(2) cannot divide |H|, a contradiction. For the latter case, we
have H ∼= 11 : 5. But π2′ (U5(2)) = {3,5,11} �= π(H).

(B) H ∈ S(S). Then the following cases hold.

(B1) (S, H)∈{(L4(2),A7), (U3(3), L2(7)), (U3(5),A7), (U4(3),A7), (U4(3), L3(4)), (U5(2), L2(11)), (U6(2),

M22), (O7(3),S9), (S8(2), L2(17))}.
(B2) (S, soc(H)) = (O+

8 (q),O7(q)) with q odd, or (O+
8 (q),S6(q)) with q even.
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For these cases, we see that the characteristic p of S divides the order of H .
(C) S ∼= L2(q), U4(2) or (S, H) ∈ {(L3(4), L3(2)), (S4(3),24 · A5), (O+

8 (2),A9)}.

(C1) S ∼= U4(2). As U4(2) ∼= S4(3), the characteristic p of S is either 2 or 3. Assume first that p = 2. In
this case, S contains 2-semisimple elements of order 5 and 9. However by using [5], no maximal
subgroup of S possesses two such elements simultaneously. Now assume that p = 3. In this case,
by using [5] again we can check that p divides the order of every maximal subgroup of S .

(C2) (S, H) ∈ {(L3(4), L3(2)), (S4(3),24 · A5), (O+
8 (2),A9)}. For these cases, the characteristic p of S

divides the order of |H|.
(C3) S ∼= L2(q), where q � 4.

Assume first that S ∼= L2(4) ∼= L2(5). By [5], every maximal subgroup of S is of even order so we
can assume that p = 5. In this case, using [5] again, we deduce that H ∼= S3 or A4. Assume next
that S ∼= L2(7) ∼= L3(2). By [5], we can see that if p = 2, then H ∼= 7 : 3 and if p = 7, then H ∼= S4.
Assume that S ∼= L2(9) ∼= A6 or L2(8). By [5], the order of every maximal subgroup of S is divisible
by p. Assume that S ∼= L2(q) where q ∈ {11,13}. By [5], S possesses p-semisimple elements of order
(q + 1)/2 and (q − 1)/2 respectively. However no maximal subgroups of S can possess both such
elements simultaneously.

Thus we can assume that q � 16. Since H is a maximal subgroup of S and p � |H|, inspecting the
list of maximal subgroups of L2(q) in [12], the following cases hold.

(i) H is a dihedral group of order q + 1, with q odd.
(ii) H is a dihedral group of order q − 1, with q odd.

(iii) H ∼= S4 and q ≡ ±1 (mod 8), q prime or q = p2 and 3 < p ≡ ±3 (mod 8).
(iv) H ∼= A4 and q ≡ ±3 (mod 8) with q > 3 prime.
(v) H ∼= A5 and q ≡ ±1 (mod 10), q prime or q = p2 and p ≡ ±3 (mod 10).

It follows that q � 17 is odd and thus S has two p-semisimple elements of order (q ± 1)/2 so
H possesses elements of such orders. As gcd((q − 1)/2, (q + 1)/2) = 1, we deduce that (q2 − 1)/4
divides |H|. Since q � 17, we can see that (q2 − 1)/4 > 60 = |A5| and that (q2 − 1)/4 > q + 1 and
hence H cannot be one of the groups given in (i)–(v) above.

Case 2. S is a simple exceptional group of Lie type in characteristic p with S �= 2F4(2)′ . As πp′ (S) =
π(H), |H| is divisible by all the primes in the second column of [14, Table 10.5] so it follows from the
proof of [14, Theorem 4] and [14, Table 10.5] that S ∼= G2(q) with q > 2 odd and H ∼= L2(13) where
{�3(q), �6(q)} = {7,13} and p �= 13. By [1, 15.1], S possesses a cyclic maximal torus of order q2 − 1.
Now if q = 3 then q2 − 1 = 8. But then L2(13) has no element of order 8. Thus q � 4 and hence
q2 − 1 � 15 which is strictly larger than any element orders in L2(13). Hence H contains no element
of order q2 − 1, a contradiction. �

We now consider the case π(S) = π(H). In this case we can apply [14, Corollary 5] to obtain the
possibilities for the pairs (S, H).

Lemma 3.4. Let S be a nonabelian simple group of Lie type in characteristic p and let H be a maximal subgroup
of S. Suppose that p | |H| and that for any p-semisimple element g ∈ S, we have that g S ∩ H �= ∅. Then one of
the following cases holds.

(1) S ∼= S4(3) and H ∼= 24 : A5 .
(2) S ∼= S2n(q) and H ∼= Ω−

2n(q) · 2 ∼= SO−
2n(q), with q, n even.

(3) S ∼= Ω2n+1(q) and H ∼= Ω−
2n(q) · 2, with n � 2 even and q odd.

(4) S ∼= O+
2n(q) and H ∼= Ω2n−1(q) with n � 4 even.

(5) S ∼= S4(q) and H ∼= L2(q2) · 2 with q � 4 even.
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Table 1
Simple groups of Lie type.

S H Element order S H Element order

L2(9) L2(5) 4 S4(7) A7 8
U3(3) L2(7) 8 G2(3) L2(13) 4
U3(5) A7 8 U4(2) S6 9
U5(2) L2(11) 9 S6(2) S8 9
U6(2) M22 9 U4(3) L3(4),A7 8

Proof. It follows from the hypotheses that π(S) = π(H) and thus by [14, Corollary 5], one of the
following cases holds.

(i) S ∼= U4(2) ∼= S4(3) and H ∼= 24 : A5. In this case, the characteristic of S is either 2 or 3. If p = 3,
then the pair (S, H) = (S4(3),24 : A5) satisfies the hypotheses of the lemma. If p = 2, then S has a
2-semisimple element of order 9 but H has no such element.

(ii) S ∼= L6(2) and H ∼= L5(2), P1 or P5. As H is maximal in S , we deduce that H is isomorphic to
the maximal parabolic subgroup P1 or P5. Hence H ∼= 25 : L5(2). In this case, S possesses an element
of order 63 but H contains no such element.

(iii) S ∼= O+
8 (2) and H ∼= A9 or Pi , i = 1,3,4. Note that Pi ∼= 26 : A8 for i = 1,3,4. In any cases,

H has only one conjugacy class of elements of order 5 while S has 3 conjugacy classes of elements
of order 5. Therefore these cases cannot happen.

(iv) S ∼= S2n(q) with n � 2, n, q even and Ω−
2n(q) � H . In this case, H ∈ C8(S) and by [13, Proposi-

tion 4.8.6], we have that H ∼= SO−
2n(q) ∼= Ω−

2n(q) · 2.
(v) S ∼= O2n+1(q) with n � 3 even, q odd and Ω−

2n(q) � H . In this case, H ∈ C1(S) and by
[13, Proposition 4.1.6], we have that H ∼= Ω−

2n(q) · 2.
(vi) S ∼= O+

2n(q) with n � 4 even and Ω2n−1(q) � H . In this case, H ∈ C1(S) and by [13, Proposi-
tion 4.1.6], we have that H ∼= Ω2n−1(q).

(vii) S ∼= S4(q) and L2(q2) � H . As S4(2) is not simple, we assume that q � 3. If q = 3, then S4(3) ∼=
Ω5(3) ∼= U4(2) and H ∼= S6. This case will be handled in (viii) so we assume that q > 3. Assume
first that q > 3 is odd. Using the isomorphism S4(q) ∼= Ω5(q), it follows from [17, Theorem 1.1] that
H ∈ C1(Ω5(q)) and by [13, Proposition 4.1.6] we have that H ∼= Ω−

4 (q) · 2 ∼= L2(q2) · 2. This possibility
is included in case (3). Assume now that q � 4 is even. Then by [17, Theorem 1.1] again, H ∈ C3(S) ∪
C8(S) and hence by [13] we obtain that H ∼= Ω−

4 (q) · 2 ∼= L2(q2) · 2. This is case (5) in the lemma.
(viii) The pair (S, H) appears in Table 1. For these cases, the conjugacy class of p-semisimple

elements with order given in the column ‘element order’ in Table 1 does not intersect H . �
As we will see shortly, only in case (1) of the previous lemma is the Steinberg character an m.i

character. Cases (2), (4) and (5) can be ruled out easily by using Lemma 3.1 and [6]. For case (3) we
will need more work.

We refer to [13,5] for the basic definitions and properties of orthogonal groups and their associated
geometries. Let p be an odd prime. Let q be a power of p and let Fq be a finite field of size q. Let
(V ,Fq, Q ) be a classical orthogonal geometry with dim V = 2n + 1, n � 2 and Q a non-degenerate
quadratic form on V . For x ∈ V − {0}, a one-space with representative x is called a point in V and is
denoted by 〈x〉. The vector x ∈ V − {0} is said to be non-singular provided that Q (x) �= 0. Recall that a
non-singular point 〈x〉 with representative x ∈ V − {0} is called a plus point (or minus point) if sgn(x⊥)

is + (or −), respectively (cf. [5, p. xi]). In this situation, we also say that the non-singular point 〈x〉
is of plus or minus type if 〈x〉 is a plus or minus point, respectively. Note that the group Ω(V ) as
defined in [13, (2.1.14)] is isomorphic to Ω2n+1(q) ∼= O2n+1(q). In this situation, V is called the natural
module for Ω(V ). For ξ ∈ {±}, we define Eξ (V ) to be the set of all non-singular points of type ξ

in V . For τ ∈ Fq , we define

Vτ = {
v ∈ V − {0} ∣∣ Q (v) = τ

}
.



T. Le et al. / Journal of Algebra 374 (2013) 27–41 35
Lemma 3.5. Assume the set up above. Then the following hold.

(i) Two non-singular points 〈x〉 and 〈y〉 have the same type if and only if Q (x) ≡ Q (y) (mod (F∗
q)2). Indeed,

for any non-singular point 〈z〉 with type ζ , we have

Eζ (V ) = {〈v〉 ⊆ V
∣∣ Q (v) ≡ Q (z)

(
mod

(
F∗

q

)2)}
.

(ii) For ξ ∈ {±}, Ω(V ) acts transitively on Eξ (V ).
(iii) The stabilizers in Ω(V ) of minus points form a unique conjugacy class of subgroups of Ω(V ).

Proof. As (iii) is a direct consequence of (ii), we only need to prove (i) and (ii).
For (i), assume that Q (x) ≡ Q (y) (mod (F∗

q)2). By [13, Proposition 2.5.4(ii)], we have that 〈x〉 and
〈y〉 are isometric. By Witt’s lemma [13, Proposition 2.1.6], this isometry extends to an isometry g of
V such that 〈x〉g = 〈y〉. As 〈x〉, 〈y〉 are non-degenerate, we obtain x⊥ g = y⊥ . It follows that x⊥ and
y⊥ are isometric, and hence sgn(x⊥) = sgn(y⊥), so x and y have the same type. Now assume that
x, y have the same type. By Witt’s lemma and [13, Proposition 2.5.4(i)], there exists an isometry
between x⊥ and y⊥ . This isometry can extend to an isometry g of V such that (x⊥)g = y⊥ . Since
(x⊥)⊥ = 〈x〉, and (y⊥)⊥ = 〈y〉, we deduce that 〈x〉g = 〈y〉. Thus xg = μy for some μ ∈ F∗

q . Therefore,

Q (x) = Q (xg) = Q (μy) = μ2 Q (y). The other statements are obvious. This proves (i).
For (ii), since Q (μx) = μ2 Q (x) for x ∈ V , μ ∈ F∗

q and Q (xg) = Q (x) for all x ∈ V , g ∈ Ω(V ), we
see that Ω(V ) acts on Eξ (V ). Now fix a non-singular point 〈x〉 of type ξ . Let 〈v〉 be any non-singular
point of the same type as that of 〈x〉. By (i), we have that Q (v) = μ2 Q (x) for some μ ∈ F∗

q . Let

y = μ−1 v ∈ 〈v〉. Then Q (y) = Q (x) =: τ and 〈x〉 = 〈y〉 = 〈v〉. It follows that x, y ∈ Vτ and hence by
[13, Lemma 2.10.5], Ω(V ) acts transitively on Vτ so there exists g ∈ Ω(V ) such that xg = y. There-
fore, we obtain that 〈x〉g = 〈y〉 = 〈v〉, which means that Ω(V ) is transitive on Eξ (V ) as wanted. �
Remark 3.6. In case (3) of Lemma 3.4, the maximal subgroup H is exactly the stabilizer in S ∼=
Ω2n+1(q) of a minus point in the natural module for S . By Lemma 3.5(iii), there is only one class of
such maximal subgroups in S .

We now consider the following set up. Let n � 2 be even and let q be an odd prime power. Let
S ∼= Ω2n+1(q) with S �= Ω5(3) and let H be the stabilizer of a minus point in the natural module
for S . We deduce that K := H ′ ∼= Ω−

2n(q) � S which is a normal subgroup of index 2 in H . Let S̃ ∼=
Spin2n+1(q) and K̃ ∼= Spin−

2n(q). By the assumption on n and q, we deduce that the centers of both
S̃ and K̃ are cyclic of order 2. We know that K̃ possesses a cyclic maximal torus T̃ of order qn + 1
which contains the center of K̃ and then by factoring out the center Z(K̃ ), we obtain a maximal torus
T of K with order k := (qn + 1)/2 (cf. [9]). Let g̃ and g be generators for K̃ and K , respectively.

We know that the conjugacy classes of maximal tori of S̃ are parametrized by pairs of partitions
(α,β) of n, that is, α = (α1,α2, . . . ,αr) and β = (β1, β2, . . . , βs) and

∑
αi + ∑

β j = n. The order of
the maximal torus parametrized by such pair (α,β) is given by

∏

αi

(
qαi − 1

)∏

β j

(
qβ j + 1

)
.

The conjugacy classes of the maximal tori of K̃ are also parametrized by pairs of partitions (α,β)

of n, where β has an odd number of parts, and the order of the maximal torus parametrized by
(α,β) is the same as in case S̃ (cf. [16]). It follows that T̃ is a maximal torus of K̃ parametrized
by the pair of partition (∅, (n)). Now by applying Lemma 3.2 and the order formula of maximal tori
of K̃ , we can easily see that the conjugacy class of K̃ containing T̃ is the unique class whose order
is divisible by �2n(q). Since Z(K̃ ) � T̃ x for all x ∈ K̃ , we deduce that the conjugacy class of T in K
is the unique conjugacy class of maximal torus whose order is divisible by �2n(q). Since g̃ ∈ K̃ � S̃
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is semisimple, it lies in some maximal torus of S̃ . Using the order formula of the maximal tori of S̃
given above, we deduce that g̃ must lie in the Coxeter torus of S̃ (see [9]). Comparing the orders, we
obtain that T̃ is the Coxeter torus of S̃ so T is also a maximal torus of S . We also know that T̃ has
a regular element ỹ, i.e., C S̃ ( ỹ) = T̃ which implies that T̃ � C S̃ (T̃ ) � C S̃ ( ỹ) = T̃ and hence C S̃ (T̃ ) = T̃ .
As a consequence, we obtain that C S (T ) = T which in turn implies that C S (g) = 〈g〉 and C H (g) = 〈g〉
as g ∈ K � H � S .

Lemma 3.7. Assume the set up above. Then the following hold.

(1) If T � U � S, where U is maximal in S, then U is conjugate to H in S.
(2) If T x � H for some x ∈ S, then T x = T u for some u ∈ H.
(3) We have N S(T ) � H and C S (g) = 〈g〉 = C H (g).
(4) We have that g S ∩ H = g H .

Proof. Let U be any maximal subgroup of S containing T . As n � 2 is even, we consider the case
n = 2 and n � 4 separately. Assume first that n � 4. By [17, Theorem 1.1], we have that U ∈ C1(S).
Since n � 4 and q is odd, we deduce that �2n(q) exists and divides |T | so it divides |U |. Using the
descriptions of the subgroups in class C1(S) given in Propositions 4.1.6 and 4.1.20 in [13], U must be
the stabilizer of a minus point so U is conjugate to H in S by Lemma 3.5(iii). The remaining case can
be argued similarly or we can check directly using the list of maximal subgroups of S given in [12].
This proves (1).

Assume that T x � H for some x ∈ S . It follows that gx ∈ H where x ∈ S , T = 〈g〉 and the order of
g and gx is k. Since q is odd and n is even, we have that k is always odd. As K � H is of index 2,
we deduce that gx ∈ K . As k is prime to the characteristic of K ∼= Ω−

2n(q), we obtain that gx ∈ K is
semisimple and hence it must lie in some maximal torus of K whose order is divisible by �2n(q).
Using the discussion above, the conjugacy class of maximal torus of K containing T is the only class
of maximal torus of K whose order is divisible by �2n(q) so T x = 〈gx〉 is conjugate to T in K and
hence in H . This proves (2).

We next show that N S(T ) � H . Indeed if T � N S (T ) � H , then N S (T ) must lie in some maximal
subgroup of S containing T since N S (T ) �= S . By (1) we have T � N S(T ) � Hx for some x ∈ S . It
follows that T x−1 � H and hence T x−1 = T u for some u ∈ H by (2). Thus T ux = T or equivalently
ux ∈ N S(T ) � Hx , which implies that ux = hx , where h ∈ H . Thus we conclude that x = hu−1 ∈ H
and so N S(T ) � Hx = H . This proves the first statement of (3). The other statement has already been
proved in the discussion above.

Finally, since g ∈ H , we obtain that g H ⊆ g S ∩ H . To prove the equality, it suffices to show that if
gx ∈ H , where x ∈ S , then x ∈ H . Suppose that gx ∈ H , where x ∈ S . Then T x = 〈g〉x = 〈gx〉 ⊆ H and
thus by (2) we have that T x = T u for some u ∈ H . It follows that xu−1 ∈ N S(T ) and hence by (3) we
have N S (T ) � H so xu−1 ∈ H , which implies that x ∈ H as u ∈ H . The proof is now complete. �

We now classify all simple groups of Lie type in which the Steinberg character is an m.i character.

Lemma 3.8. Let S be a simple group of Lie type in characteristic p. If H is a maximal subgroup of S such that
m StS = λS , where λ ∈ Irr(H) and m � 1, then

(S, H) ∈ {(
L2(5),A4

)
,
(
L2(7),S4

)
,
(
L3(2),7 : 3

)
,
(
S4(3),24 : A5

)}
.

In the first three cases, λ ∈ Irr(H) − {1H } are chosen with λ(1) = 1. In the last case, λ ∈ Irr(H) is chosen with
λ(1) = 3. Furthermore, m = 1 in all cases.

Proof. Assume that m St = λS , where λ ∈ Irr(H), m � 1 and H is a maximal subgroup of S . By
Lemma 3.1(1) the hypotheses of Lemmas 3.3 and 3.4 are satisfied so one of the following cases holds.

(i) (S, H) ∈ {(L2(5),A4), (L2(5),S3), (L2(7),S4), (L3(2),7 : 3), (S4(3),24 : A5)}. Apart from the pair
(L2(5),S3), the remaining pairs satisfy the conclusion of the lemma. This is done by using [8].
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(ii) (S, H) = (S2n(q),Ω−
2n(q) · 2) with n � 2 and n, q even. Let K = H ′ ∼= Ω−

2n(q). Then K is
a normal subgroup of index 2 in H . Let μ ∈ Irr(K ) be an irreducible constituent of λK . Since
λ(1)2 = |H|2 = 2|K |2, we have that λK is not irreducible so μ(1) = λ(1)/2 since |H : K | = 2, and
thus μ(1) = |K |2. It follows that μ ∈ Irr(K ) is of 2-defect zero and then by [6] the only irreducible
character of 2-defect zero of Ω−

2n(q) with even q is exactly the Steinberg character, we deduce that
μ = StK , where K ∼= Ω−

2n(q). By [3, Theorem 2], μ extends to μ0 ∈ Irr(H) and hence by Gallagher’s
theorem [10, Corollary 6.17], ψμ0 are all the irreducible constituents of μH , where ψ ∈ Irr(H/K ).
Since H/K is abelian of order 2, we obtain that all irreducible constituents of μH are of the same
degree μ(1). However this is a contradiction as λ(1) = 2μ(1) and λ is also an irreducible constituent
of μH by the Frobenius reciprocity.

(iii) S = O+
2n(q) with n � 4 even, and H ∼= Ω2n−1(q) when q is odd or H ∼= S2n−2(q) when q is even.

We have

|S : H| = qn−1(qn − 1)gcd(2,q − 1)

gcd(4,qn − 1)
.

It follows that

|S : H|p = qn−1 and |S : H|p′ = (qn − 1)gcd(2,q − 1)

gcd(4,qn − 1)
.

As q � 3, we can check that |S : H|p′ > |S : H|p , contradicting Lemma 3.1(3).
(iv) (S, H) = (O2n+1(q),Ω−

2n(q) · 2) with n � 2 even, q odd and (n,q) �= (2,3). Let K = H ′ ∼= Ω−
2n(q).

Then K is a normal subgroup of index 2 in H . Since p is odd, we deduce that λ(1)p = |H|p = |K |p

as |H : K | = 2. Let μ ∈ Irr(K ) be an irreducible constituent of λK . We know that λ(1)/μ(1) divides
|H : K | = 2 and thus λ(1)p = μ(1)p = |K |p , which means that μ is an irreducible character of K
with p-defect zero. By applying the same argument as in case (ii), we deduce that μ = StK and μ
extends to μ0 ∈ Irr(H). By Gallagher’s theorem, ψμ0 are all the irreducible constituents of μH , where
ψ ∈ Irr(H/K ). As H/K is abelian and λ is an irreducible constituent of μH , we obtain that λ = μ0τ
for some τ ∈ Irr(H/K ). It follows that λ(1) = μ0(1)τ (1) = μ(1) so λ is an extension of μ to H . In
particular λ(1) = |H|p .

By the discussion before Lemma 3.7, K possesses a cyclic maximal torus T with generator g whose
order k is prime to p so g is semisimple. By Lemma 3.7(3) we have that C S (g) = C H (g) = 〈g〉 is a
p′-group and hence by [4, Theorem 6.5.9] we have that

StS(g) = ±∣∣C S(g)
∣∣

p = ±1

and

λ(g) = μ(g) = StK (g) = ±∣∣C K (g)
∣∣

p = ±1.

By Lemma 3.7(4), we have that g S ∩ H = g H and thus by [10, p. 64] we have

λS(g) = |C S(g)|
|C H (g)|λ(g) = μ(g) = ±1.

As m StS = λS , we obtain that m StS(g) = λS(g) and hence m = 1. By Lemma 3.1(3), we have that
m � |S : H|p′ = (qn −1)/2. As q � 3 and n � 2, it is obvious that m > 1, which contradicts our previous
claim that m = 1. �
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Comparing the previous lemma with [18, Lemma 2.4(2)] and [15, Lemma 6.3], we can see that the
Steinberg character of a simple group of Lie type is m.i if and only if it is imprimitive; if and only if
it is QSI, i.e., it is induced from a character ϕ of a subgroup U such that U/Ker(ϕ) is solvable.

We are now ready to prove the main result of this section.

Proposition 3.9. Theorem 1.4 holds for simple groups of Lie type.

Proof. Let S be a simple group of Lie type in characteristic p. By way of contradiction, suppose that
every nonlinear irreducible character of S which is extendible to Aut(S) is an m.i character. As the
Steinberg character of S is extendible to Aut(S), it is an m.i character. By Lemma 3.8, one of the
following cases holds.

(1) S ∼= L2(5) with p = 5. Since L2(5) ∼= L2(4), the Steinberg character of S with degree |S|2 = 4
extends to Aut(S) but it is not an m.i character by Lemma 3.8.

(2) S ∼= L2(7) ∼= L3(2) with p = 2 or p = 7. In this case, both irreducible characters of degrees
7 and 8 are m.i characters. Using [5], the irreducible character χ labeled by the symbol χ4 with
degree 6 of S is extendible to Aut(S). We will show that χ is not an m.i character. Suppose that χ
is an m.i character of S . Then mχ = λS , where H is a maximal subgroup of S , λ ∈ Irr(H) and m � 1
is an integer. Let a and b be elements in S with order 2 and 7 respectively. By [5], we have that
χ(a) �= 0 �= χ(b). Hence aS ∩ H �= ∅ �= bS ∩ H . Thus H possesses elements of orders 2 and 7 which
implies that {2,7} ⊆ π(H). However by inspecting the list of maximal subgroups of S in [5], we see
that no maximal subgroups of H satisfies this property. This contradiction shows that χ is not an m.i
character.

(3) S ∼= S4(3) with p = 3. In this case, we have that S ∼= S4(3) ∼= U4(2), the Steinberg character of
S with degree |S|2 = 26 is extendible to Aut(S) but it is not an m.i character by Lemma 3.8. The proof
is now complete. �
4. Alternating groups

The main purpose of this section is to prove the following result.

Proposition 4.1. Theorem 1.4 holds for alternating groups of degree at least 7.

Proof. Let An act on the set Ω = {1,2, . . . ,n} of size n, where n � 7. We follow the argument in
[15, Lemma 3.1]. Let χn ∈ Irr(An) be an irreducible character of An which is extendible to Aut(S) ∼= Sn

with degree n − 1. In fact, we can choose χn = πn − 1, where πn is the permutation character of the
natural action of An on Ω . As n � 7, the 2-point stabilizer An−2 = StabAn ({1,2}) is doubly transitive
on Ω −{1,2}. As χn is an m.i character, we have that mχn = λAn for some λ ∈ Irr(U ) and U � An . We
have that

(χn)An−2 = χn−2 + 2 · 1An−2 .

By Mackey’s Lemma, we obtain that

mχn−2 + 2m1An−2 =
∑

x∈T

(
λx

U x∩An−2

)An−2
,

where T is a representative set of the double cosets of An−2 and U in An . Hence

(λU∩An−2)
An−2 = m1χn−2 + m21An−2 ,

where m1,m2 � 1. By replacing U with its conjugate, we can assume that m2 > m1 so An−2 � U
as (λU∩An−2 )

An−2 takes only positive values. As U is maximal in An and An−2 � U , we deduce that
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Table 2
Sporadic simple groups and the Tits group.

S Primes χ χ(1) Possible H Conjugacy class

M11 11 χ9 45 L2(11) 8A
M12 11 χ7 54 L2(11), M11 10A
J1 11,19 χ2 56 –
M22 7,11 χ3 45 –
J2 5,7 χ6 36 –
M23 7,23 χ2 22 –
HS 7,11 χ24 3200 M22 15A
J3 17,19 χ6 324 –
M24 23 χ22 3520 L2(23),M23 21A
McL 7,11 χ12 4500 M22 12A
He 7,17 χ12 1920 –
Ru 13,29 χ2 378 –
Suz 11,13 χ43 248 832 –
O’N 19,31 χ23 175 616 –
Co3 7,23 χ5 275 M23 24A
Co2 7,23 χ4 275 M23 30A
Fi22 11,13 χ54 1 360 800 –
HN 11,19 χ44 2 985 984 –
Ly 37,67 χ2 2480 –
Th 19,31 χ4 27 000 –
Fi23 17,23 χ6 30 888 –
Co1 13,23 χ40 21 049 875 –
J4 37,43 χ15 32 307 363 –
Fi′24 23,29 χ6 1 603 525 –
B 31,47 χ119 2 642 676 197 359 616 –
M 59,71 χ16 8 980 616 927 734 375 –
2F4(2)′ 5,13 χ20 1728 L2(25) 10A

U ∼= An−1 or U ∼= Sn−2. Assume that the latter case holds. Then the conjugacy class of An with rep-
resentative g ∈ An , where g = (1,2, . . . ,n) or (1,2 · · · ,n − 3)(n − 2,n − 1,n) depending on whether
n is odd or even, respectively, will intersect U as χn(g) �= 0, which is impossible. Thus U ∼= An−1. As
mχn = λAn and |An : U | = n, by Lemma 2.2(ii), we have that m(n − 1) = nλ(1) and |An : U | = n � m2.
As m(n − 1) = nλ(1) and gcd(n,n − 1) = 1, we deduce that n | m, hence n � m, which is impossible as
n � m2 and n � 7. �
5. Sporadic simple groups and the Tits group

In this section, we will prove the following result.

Proposition 5.1. Theorem 1.4 holds for sporadic simple groups and the Tits group.

Proof. Let S be a simple sporadic group or the Tits group. All information that we need for the proof
of Proposition 5.1 is presented in Table 2. For each sporadic simple group or the Tits group S , let πS

be the set of primes in the second column of Table 2. In the fifth column, we list all the possibilities
for the maximal subgroups H of S such that πS ⊆ π(H). This is taken from [14, Table 10.6] for
sporadic simple groups and from [14, Table 10.5] for the Tits group. Let χ ∈ Irr(S) be the irreducible
character of S labeled by the symbol in the third column of Table 2. The corresponding degree of χ
is listed in the next column. The character χ is chosen to satisfy the following properties.

(i) χ is extendible to Aut(S).
(ii) For each prime p ∈ πS and any element gp ∈ S with order p, we have that χ(gp) �= 0.

(iii) For any element x ∈ S lying in the conjugacy class in the last column of Table 2, we also have
that χ(x) �= 0.
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We now show that χ is not an m.i character. By way of contradiction, assume that χ is an m.i
character of S . Then there exist a maximal subgroup H � S and λ ∈ Irr(H) such that mχ = λS for
some nonnegative integer m. For each prime p ∈ πS and gp ∈ S , by (ii) we have χ(gp) �= 0, so
λS (gp) = mχ(gp) �= 0, thus g S

p ∩ H �= ∅. In particular H possesses an element of order p and thus
πS ⊆ π(H). The possibilities for H are given Table 2. In these cases, with the same argument, we
obtain that xS ∩ H �= ∅ as χ(x) �= 0 by (iii) and thus H has an element of order equal to that of x.
However we can see that H has no elements with such orders by checking [5] directly. �
6. Proofs of the main results

Proof of Theorem 1.4. This follows from Propositions 3.9, 4.1, 5.1 and the classification of finite simple
groups. �

It would be interesting if one could classify all m.i characters of simple groups.

Proof of Theorem 1.1. Assume that N � G and that G is an MI-group relative to N . We show that
N is solvable. Let N � G be a counterexample such that |G| + |N| is minimal. It follows that N is
nonsolvable.

We show that N is the unique minimal normal subgroup of G . We first show that N is a minimal
normal subgroup of G . Suppose not. Let K � N be a minimal normal subgroup of G . Then K � N .
By Lemma 2.1(ii), we obtain that G is an MI-group relative to K . Since |G| + |K | < |G| + |N|, by
induction hypotheses we deduce that K is solvable and hence N/K is a nonsolvable normal subgroup
of G/K . Now by Lemma 2.1(i), we have that G/K is an MI-group relative to N/K . Thus by induction
hypothesis again, we deduce that N/K is solvable. Combining with the previous claim, we obtain that
N is solvable, which is a contradiction. We have proved that N is a minimal normal subgroup of G . Let
C = CG (N). In order to show that N is the unique minimal normal subgroup of G , it suffices to show
that C is trivial. Observe that C � G and thus by Lemma 2.1(i), we have that G/C is an MI-group
relative to NC/C . As N is nonsolvable and is a minimal normal subgroup of G , we have that N is
isomorphic to a direct product of some nonabelian isomorphic simple groups so N ∩ C = 1. Therefore,
NC/C ∼= N/N ∩ C ∼= N is nonsolvable. If C is nontrivial, then since G/C is an MI-group relative to
NC/C , by induction hypothesis we deduce that NC/C ∼= N is solvable, which is impossible. Thus C is
trivial. Hence N is the unique minimal normal subgroup of G as required.

Let R be a nonabelian simple group such that N = R1 × R2 × · · · × Rk , where Ri ∼= R for all i. By
Lemma 2.4, every Aut(R)-invariant nonlinear irreducible character of R is an m.i character of R . Now
Theorem 1.4 provides a contradiction. The proof is now complete. �
Proof of Corollary 1.3. Let L = 〈H G〉 be the normal closure of H in G . Then H � L � G . By definition,
L is the smallest normal subgroup of G containing H . We show that L is solvable. The remaining
statement is clear.

We first assume that L = G . We show that G is an MI-group and then the result follows from
Corollary 1.2. Let χ ∈ Irr(G) be any nonlinear irreducible character of G . If 1H is the only irreducible
constituent of χH , then obviously χH = χ(1)1H and hence H � Ker(χ) � G . Since χ is a nonlinear
irreducible character of G , we deduce that Ker(χ) is a proper normal subgroup of G containing H ,
which is a contradiction as 〈H G 〉 = G . It follows that χH has an irreducible constituent λ ∈ Irr(H)

with λ �= 1H . By the hypotheses, we know that λG is a multiple of some irreducible character of G .
Since (λG ,χ)G = (λ,χH ) �= 0 by the Frobenius reciprocity, we must have that λG = mχ for some
nonnegative integer m. Thus χ is an m.i character. Hence G is an MI-group as wanted.

Now assume that L �= G . We claim that G is an MI-group relative to L. Let χ ∈ Irr(G|L) and let
θ be any irreducible constituent of χ upon restriction to L. Since L � Ker(χ), we can choose θ �= 1L .
If θ is not G-invariant, then by the Clifford theory, we know that χ = ψG for some ψ ∈ Irr(IG(θ)|θ)

and hence χ is an m.i character. Therefore, we can assume that θ is G-invariant. It follows that
Ker(θ) � L is a proper normal subgroup of L since θ �= 1L . As in the previous case, if 1H is the only
irreducible constituent of θH , then H � Ker(θ) � L � G , which is a contradiction as L is the smallest
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normal subgroup of G containing H . Hence we conclude that θH possesses an irreducible constituent
λ ∈ Irr(H) with λ �= 1H . By the transitivity of induction, we obtain that χ is an irreducible constituent
of λG , and so by the hypotheses we deduce that λG = mχ for some m. Hence χ is an m.i character.
Thus G is an MI-group relative to L. Now the result follows from the main theorem. �
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