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Abstract

We oonsiderthe setN of non-negative integers together with a distadcdefined as follows:
given twointegersx, y € N, d(x, y) is, in binary notation, the redubf performing, digit by digit,
the “XOR” operation on (the binary notations of)andy. Daw®n, in Combinatdal Mathematics
VIII, Geelong, 1980, Lecture Notes in Mathemati&84 (1981) 136, considethis geometry and

suggests the following construction: giv&rdifferent integers4, ..., Xk € N, letV; be the set of
integers closer to; than to anyx; with j #1i,fori,j =1,...,k. LetV = (Vq,..., V) and
X = (Xq,...,Xk). Vis a partition of{0, 1, ..., 2" — 1} which, ingeneral, does not determine

In this paper, we characterize the convex sets of this geometry: they are exactly the line segments.
Given X ard the partition V deternined by X, we also cheacterize in easy terms the ordered
setsY = (y1, ..., Yk) that determine the same partitidh This, in particular, extends one of the
main results of Combinatial Mathematics VIII, Geelong, 1980¢kcture Notes in Mathematics, 884
(1981) 136.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Let us take two non-negative integers in binary form and consider the result of
performing withthem the typical computer “bitwise XOR operator”. Dawson, i, [
regards this function(i, j) — i~j using the C language notation 6x,y) — xXVy
in the notation hereirgeometically, as adistancebetweerthe two integers.
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He mnsiders also, given an ordered sét= (X1, X2, ..., Xx) of such integers, the
Voronoy cellsdeternined by them, that is, the se¥ of elements closer tg; than to any
Xj with j # i, for everyi, j = 1,2,..., K. In paticular, he poves thatliere exist sets
A C Bj such that an integex belongs tov; if and only if the setQ (x) of the positions of
the digits 1 (orl-bits) of x satisfies

A € Q(X) C B (1.1)

SetX; := Q(X;) and letm; andM; be such thaf2(mj) = A; andQ2(M;) = B;. Condition
(1.1), inits turn, is true if and only ik contains 1-bits in all the positions wharg contains
1-bits, and 0-bits in all the positions whevg contains 0-bits. Hence, Dawson’s statement
can be rephrased, in computer slang, in a sentence like:

X € Vj <= x matches, aa sting, -_.01.00111 .

In [1], a cetain dudity is also considered: let; := X; A Aj A B, whee by A we
denote the symmetric difference of two sets, andjldie such tha¥; = Q(y;); then, in
particular,Ai = Xj NY; andB; = X; UY;. Let uscall X = (X1, X2, ..., Xk) the initial
k-tupleandY = (y1, Y2, ..., Yk) thefinal k-tuple [1, Lemma 1.3] asserts that thesdas
are interchangeable: if we use insteéds the initiak-tuple, we endup with X as the final
one, and the Voronoy cells are exactly the same.

In this paper, we proceed further inteet study of this particular geometry:

First, we characterize tHme segments.e., the sets of form

[x yl:={ze N:d(x,2) +d(z,y) =d(X, )};

they are thentervals as we call the sets of the solutions of a condition like 1) above.
We also pove thaf givenx, y € N, the set

SX,y) ={zeN:zvx <zVvy}

is convexin the sase that if it contains both poingsandb then it containgll the segment
[a b]. And weprove thatanyconvex set is in fact a line segment (and vice versa).

As the main result, we characterize, giveh = (X,..., Xk), the ordered sets
Z = (21, ..., Z) with the same patrtition aX. More precisely (cf.Corollay 2.16), let
V(X) = (V1,..., V) (V(X) is then theVoronoy diagramdeternined by X); we prove
thatV(Z) = V(X) if and only if:

Zj \'/Xj > Zj \7Xi

vi=12....k Vi=12...k j;éi=>{ . )
ZyVXi > Z VX.

Dawson’s duality, referred to above, can be obtained from here.

Finally, we also prove that takingnz, mp, ..., mg) or (M1, My, ..., My) as the initial
k-tuple leads to the same Voronoy diagrams, whence making it easy to reverse Dawson'’s
construction.
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2. Bitwise XOR geometry
2.1. Notation, examples and technical results

Definition 2.1. Let N be the set of non-negative integers, and fix an integer0. Lets
be the bijective function defined, fék C {1, 2, ..., n}, by:

O(A) = Zzi*1
icA

and letQ = U1,

Denote byx v y the integer for which the bary representation has thth digit (from
right to left) equal to 1 if the th digits of x andy are different, and equal to 0 if they are
equal, fori =1,2,...,n. This is he result of the “biwise XOR operator”, which is used,
for example, for finding a wning strategy of the “celebrated game of Nin2, p. 44].
More precisely:

Definition 2.2. Leta =Y I"1 &2 andb = Y/ 5;2' be such that, § € {0, 1} for all
i =0,...,n—1.Then,

n—1

avb:= Z(ai \7,3i)2i,
i=0

where Ov0 = 1v1l = 0 and Ov1 = 1v0 = 1. In other words,avb =
B(Q(a) A Q(b)).

Following Dawson, we fix a sefxi, ..., Xk} € N of k > 0 didinct integers smaller
than 2", anddefinea: {0, 1,...,2" — 1} — {Xq, ..., Xk} So thatz\ «(2), for eachz, is as
small as possibléLhen, for every € {1, ..., k},

Vi=a t(x)={zeN:Vj=1... k(j#i),zVXx] >zVX)}.

Note thatV := {V1, ..., Vk} is a partition of{0, . . ., 2" — 1}, i.e,, the latter set is the union
of the dements ofV, that are non-empty and pairwise disjoint (sirceéx = avy =

X =Yy). We call it thepartition determined by X= (x1, . . ., Xk); for emphasizing its origin,
we also deote it by V(X) andV; by V(X,i). Bitwise AND and OR are defined similarly
to Definition 2.2 and will also bedenoted simply byn andv.

Definition 2.3. Given non-negative integera, b € N, we saya is strongly less tharb,
writtena < b,ifa A b=aandavb=h.

(a,by:={ceN:a<c=<b}
is also called aimterval
Note that
a<b<=Q@) < Qb)) (=a<b)
and thatx satisfies condition(.1) if and only if x € (O(Ay), O(B;)).
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Example2.4. Takem; = $({2,3,5,9}), M; = U({1,2,3,4,5,8,9,11,12}) (n = 12)
andVi = (mj, Mj).

m = 278 = 00010001011 @  and
Mi = 3487 = 11 01 1 001 1 11 @,

The elements o¥; are exactly the integers whose binary representations match the pattern:
__01_001_11._.

We note that({0, 1}, ) may be naturallyidentified with Z/27Z. In paticular, for
exanple, @vb)vec = av(bvec),avb = bva, Ova = aandava = 0 for all
a, b, c € N. Note al® that(a, b) — a Vv b ddines indeed a distance M. In fact,

n—1 n—1
w2+ 2= Y @+p2+ Y, 2-2,
i=0 i=0 (Ofi0=l3_i )#(ll,b O<i<n-1

anda; + Bi = i v i anda; A Bi = 0 except whery; = i = 1. Hence,
at+b=avb+2@a@ab (2.2)
andscavb=(avec)v(cvb)<avc+cvh.

Lemma 2.5. Leta b, c € N. Then, the following conditions are equivalent:

def
ce[ab]<:e>aVb=a\'/c+ch (2.3)
aAb<c<avh. (2.4)
Proof. Seta = Y "2, b = Y12 andc = Y5 %2 (i, Bi. v € {0, 1)

foralli =0,1,...,n—1).
celabl<= (avc)v(cvb)=(avc)+(cvhb)

(2.2 . .
<= (avec) A (cvb)y=0
< Vi=01....n—1 vy =0o0ry vgi =0
<= Vi=0,1...,n—1 % =qj ory = B (2.5)
—=Vi=01....,n—La ABi <y <q VB
< aAb<c<avbh O
Remark 2.6. By definition of line segment (and since e.@\ a) v (cvb) =av b):
{(xvec:celab]}=[xVvaxvhb]. (2.6)

2.2. The convex sets

Proposition 2.7. Let x, y € N, x # y, and consider

SX,y) ={zeN:zvXx <zVy}.
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Ifa,b e S(x,y), then[a b] C S(x, y), i.e., SX,y) is convex. YVis convex too for every
i=12 ...,k

Proof. Let m be the biggest element of the sSRi(xVy) = Q(X) A Q(y). Sincem
is, by definition, the leftmost position of all bits whekeand y differ, x < y holds
if and only if m ¢ Q(x) (or equivalently, if and only ifm € €(y)). Now, since
QEVX)AQEVY) =Q(X) AQY),

ze S(X,Y) if andonly if m ¢ Q(zV x). (2.7)

Hence, ifa,b € S(x,y) thenm ¢ Q(aVvx), Q(bVvx). In order to pove that also
m ¢ Q(cV x) for everyc e [a b], it is suffident to show that:
QcVvXx) S Q@vx)QbVvx)
< cvx<@vx)v(bvx). (2.8)

But this condition holds, by 2.6). Findly, Vi is also convex becaus®; =
Nji S(Xi, Xj). O

Vi is in fact a line segment (cf1] Lemma 1.3]). More precisely, we have:
Proposition 2.8. Let, fori=1,2,...,k, ¥ € N be the element ofj\at greatest distance
from X%, i.e., suchhat, forall0 < z < 2", if x;vz > xj vy then z¢ V;. Then
Vi =[x vil.
Proof. [xi yi] € Vi because the latter is convex. Assume, by contradiction, that there
exigsz € Vi\[x yi]. By Lemma 2.5condtion (2.5) fails), for somej with 1 < j < kthe
jth bit of z is different from thej th bit of bothx; andy; (that are equal, consequently).

For clearness sake, set= xj, y = yij andy’ = y v 21~1, Theny”s sth bit is equal to
y’'s sth bit for all s # j, and is gual toz's sth bit (and hence different from th&h bit
of bothx andy) for s = j. Again by condition .5 of Lemma 2.5y’ € [z y]. But then
y' € Vi, by conveity, which, sincex vy > x Vv, is in contradiction with the definition
ofyi. O

Let K be any convex sek € K andy be the element ok farthestfrom x, as bebre.
With the same proofve obtain thatC is a line segment, exact|x y]. The cawersds also
true, byLemma 2.5Herce, we have:

Theorem 2.9. LetK be asubsetof0, 1,...,2" — 1}. Then:

K is convex— K is a line segment [
2.3. Explicit calculation of Voronoy diagrams

Let us proceed a little further in the direction of the last result. As usualabhyor a
real numbea we mean the biggesttegernot bigger thara.

Definition 2.10. Set, forX = (x1, X2, ..., X andi, j =1,2,... ki # j,
M = [logo(xi V Xj)] + 1 (=maxQ(Xi) A Q(x));
Sfo< = {mi)j( J=12,..,k ] #1)
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a’ == 0B(Sn); bX = U((1, ..., k\SN);

y=xvbX mf=x AaX  MX:=xvbX

(We drop the symbaoX whenever it is not necessary.)

Remark 2.11. Denote byz the bitwise complement of € N, Z := (2“;1) v z. Then
bX =aX,anda* = (xi vX) A a¥ = (x A aX) Vv (& A &%) =mfvMX
We have thedllowing theorem:

Theorem 2.12 (cf.[1, Lemmas 1.3 and 1.4] )For every X = (X1, X2, ..., Xx) and every
i=12...,Kk,

Vi = V(X i) = D6 y<T = (m, M), (2.9)

Proof. We have seen before (conditior2(7)) that the conditioz € S(x;, X;) is equivalent
tomjj ¢ Q(x; Vv 2), or, in oher words, to 2 -1 A (% vV2) = 0. Hence,

zeVi =[)SX.x)<a A (xV2)=0.
j#i

By Proposition 2.8howeverV, = [X; yi] wherey; is the element € V,; for which the
value ofx; v zis maximum. But the maximum value af for whicha; A w = 0 is clearly
bi = a Vv (2" — 1), the compement of a;. Thus, he maximum is #iained forz suchthat
Xi vz = by <=z = X vb;i. Herce, this is the value ofj. It is noweasy to see, bitwise,
thatm; = x A (X vh) = X A @ and thatM; = x Vv (xi vh) = x Vv b (e.g.,
Xi A (X vby)is 1exactlywher; =1 andb; =0). O

Theorem 2.13. Let X = (X1, X2, ..., Xk) forasubset{xq, X2, ..., X} of {0, 1, ...,2"—1}
with k (distinct) elements and’ X% (x3, X5, . .., X, ) for another subsefx;, x5, .. ., x; } of
the sameet. ThenV(X’') = V(X) if and only if, foreveryi= 1, 2, ..., k,

X\ € V(X,i); (2.10)

s = s’ (2.11)
Proof. Suppose firstV(X) = V(X). Thenx{ e V(X,i) = V(X,i) and, by
Theorem 2.12mX = mX" andMX = MX'. Moreover, byRemark2.11, aX’ = mX' v
MX" = aX. This implies condition @.11).

Conversely, suppose that A a* = mX < x' < MX = x; v bX andaX = aX'. Then
Xi AaX <x AaX < (xivbX) AaX.But(xi v AaX = AaX)v (X AaX) =
xi A aX,and samX’ = mX. Theproof thatMX’ = MX proceeds in a similar way.(J
Corollary 2.14. Let X beas inTheoren®.13 Then the Voronoy diagram determined by
X, V(X), equals the Voronoy diagram determined by any of the collections Y, A or B
defined below:

Y = 5 YOS

A=mmy, ..., md);

B= (M MX M),
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Proof. We prove thatin all three cases := mﬁj( equalsmﬁj(’ foralli, j =1,2,...,ksuch
thati # j. First,note that, for everg’ > s, s’ € Sm‘if andonly if ' € Sm' since the

s'th bits ofx; andx; are equal, and thus tis&h bits ofaix andajx are also equal. Denote,
for x € Nands such tlat 1 < s < k, thesth bit of x by sx, andnote thatgy; = gvy;j
exadly when X = ¢Xj, sincey; = X vbX andy; = x; v bjx. This poves tharnff’ <s
for X' = (y, y5X. ..., ¥). The samérappens for the other definitions Xf, by the same
reasons.

Now, in oder to show that alsmix/ > s, it is sufficient to prove thatgy; and gy;
(respectively,sm; and smj, and gMj and ¢M;) are different. But by definition o6 =
mij, sXi and sx;j are indeed different, argle Sm N Smy. It follows thatsa; = 1 = sa;
and soshi = 0 = sbj. Findly, syi = sXiv0 = sXi, smi = Xi A 1 = sX,
Mi = sX; v 0= gX;, and a sinlar situation occurs when we replacey j. [

Remark 2.15. By the definition ofyix, weobtain in the first casel| Corollary 1.6]: when
X = (X1, ..., Xk) is replaced in Dawson’s construction ¥y= (y1, ..., Yk), as defined
above, we also findl replaced byX. This is so becausia;x = biY, by Theorem 2.13

Corollary 2.16. Let X = (X1, X2, ...,Xk) for a subset{xs, X2, ..., %k} of {0,1,...,
2" — 1} with k (distinct) elements and 'X=(x},X5,...,%) for another subset
{X1, X5, ..., X} of the same set. TheW(X') = V(X) if and only if, for every i =
1,2,...,k,

xi € V(X,i) (2.10)
and

xi € V(X',i) (2.12)
or, equivalently, if and only if

o o X VXj > X VX
Vi,j=12,...,k, J#':>{x|3\7xi>x:’\'/xi. (2.13)
Proof. By symmetry, all we have to prove is that conditi@)2 (together with condition
(2.10) implies condition 2.11). Let us fixi € {1, 2, ..., n} and set more simply := X;,
x' = x,a:=aX, b= bX & = aX andb’ := bX. Since Condition 2.10 reads
X Aa<Xx <xvb,if fors =1 2,...,k, we dmote again bysa the sth bit of a and
supposesa = 1 (and fencesb = 0), thengx = x A 1 < X' < X v 0 = g, and so
sX = sX'. In thesame way, by conditior2(12, sa’ = 1 also mplies sx = sx’. Coming
back to our former notation, what we have shown is #hatndx coincide in all the 1-bits
of aX and in all the 1-bits 0&*’, whichare the elements @n* andSny, resgectively.

Now suppose, for a contradiction, that conditi@ml(l) fails. Witr;(out loss of generality

we may then suppose that there exist (i # j) suchthatr := mj <s:= mfj(’. Then

sesmn Sn?f ands ¢ Q(xi v xj), buts € (x/ V), which means thak; andx;
have equasth bits but thesth bits of x/ and xj are different. But this is impossible since
by our previous argument thath bits of x; andx/ are equal, and the same happens with
thesth bits ofx; andxj. O
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An interesting question arises as to whether all partitions of thgdsét. .., 2" — 1} in
k intervals can beonstructed in this way from a séty, xo, . .., Xk}, when reoderings
of {1,2,...,n} are considered. We finish this section by showing through three small
exampes that the answer to this question is negative, and that condildt® &nd @.117),
separately, @ not sufficient for forcingy (X) = V(Y):

Example2.17. Let n = 3 and consider the partition of0 = 00Qy),...,7 = 1113}
represented below.

i oo

Suppose that the elements of fornare those we have underlined and, for a certain
order<y, of the dements of{ 1, 2, 3}, they determine the partition. We find a contradiction:

e 1 < 2d9nce 010 is closer to 011 than to 000;
e 2 <pn1dnce 101 is closer to 111 than to 100.

The other three possible choices of elementX ef (X, ..., Xg) that could generate this
patition can be discarded in a similar way.

Example 2.18. ConsiderX = (X1, X2) = (2 = 10(2), 3 = 11p)) and X’ = (x, X5) =

(2 = 102), 1 = 01)) and the partitions they determinefi@, 1, 2, 3}. Thenx; = x; and
Xy € V(X, 2) butV(X) # V(X").

Example 2.19. Finally, considerX = (0 = 00, 1 = 0, 2 = 102)) andX’' = (2 =
10,3 = 11,0 = 00)) and the partitions they determine {0, 1, 2, 3}. Although
they have the sammj; for everyi # j (in fact, as shown below; v xj = x/ v x]), the
patitions are different.

AN €y
Yo o @

v |00 01 10 v |10 11 00
00|00 01 10 1000 01 10
0101 00 11 1101 00 11
10|10 11 00 00|10 11 00
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