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Abstract

We considerthe setN of non-negative integers together with a distanced defined as follows:
given twointegersx, y ∈ N, d(x, y) is, in binary notation, the result of performing, digit by digit,
the “XOR” operation on (the binary notations of)x andy. Dawson, in Combinatorial Mathematics
VIII, Geelong, 1980, Lecture Notes in Mathematics, 884 (1981) 136, considers this geometry and
suggests the following construction: givenk different integersx1, . . . , xk ∈ N, let Vi be the set of
integers closer toxi than to anyxj with j �= i , for i, j = 1, . . . , k. Let V = (V1, . . . , Vk) and
X = (x1, . . . , xk). V is a partition of{0, 1, . . . , 2n − 1} which, ingeneral, does not determineX.

In this paper, we characterize the convex sets of this geometry: they are exactly the line segments.
Given X and the partition V determined by X, we also characterize in easy terms the ordered
setsY = (y1, . . . , yk) that determine the same partitionV. This, in particular, extends one of the
main results of Combinatorial Mathematics VIII, Geelong, 1980, Lecture Notes in Mathematics, 884
(1981) 136.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Let us take two non-negative integers in binary form and consider the result of
performing with them the typical computer “bitwise XOR operator”. Dawson, in [1],
regards this function,(i, j) �→ i^j using the C language notation or(x, y) �→ x ∨̇ y
in the notation herein,geometrically, as adistancebetweenthe two integers.
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He considers also, given an ordered setX = (x1, x2, . . . , xk) of such integers, the
Voronoy cellsdetermined by them, that is, the setsVi of elements closer toxi than to any
x j with j �= i , for everyi , j = 1, 2, . . . , k. In particular, he proves that there exist sets
Ai ⊆ Bi such that an integerx belongs toVi if andonly if the set�(x) of the positions of
the digits 1 (or1-bits) of x satisfies

Ai ⊆ �(x) ⊆ Bi . (1.1)

SetXi := �(xi ) and letmi andMi be such that�(mi ) = Ai and�(Mi ) = Bi . Condition
(1.1), in its turn, is true if and only ifx contains 1-bits in all the positions wheremi contains
1-bits, and 0-bits in all the positions whereMi contains 0-bits. Hence, Dawson’s statement
can be rephrased, in computer slang, in a sentence like:

x ∈ Vi x matches, asa string, 01 001 11 .

In [1], a certain duality is also considered: letYi := Xi � Ai � Bi , where by � we
denote the symmetric difference of two sets, and letyi be such thatYi = �(yi ); then, in
particular,Ai = Xi ∩ Yi and Bi = Xi ∪ Yi . Let uscall X = (x1, x2, . . . , xk) the initial
k-tupleandY = (y1, y2, . . . , yk) the final k-tuple. [1, Lemma 1.3] asserts that these rˆoles
are interchangeable: if we use insteadY as the initialk-tuple, we endup with X as the final
one, and the Voronoy cells are exactly the same.

In this paper, we proceed further into the study of this particular geometry:

First, we characterize theline segments, i.e., the sets of form

[x y] := {z ∈ N: d(x, z) + d(z, y) = d(x, y)};
they are theintervals, as we call the sets of the solutions of a condition like (1.1) above.

We also prove that, givenx, y ∈ N, the set

S(x, y) := {z ∈ N: z ∨̇ x < z ∨̇ y}
is convex, in the sense that if it contains both pointsa andb then it containsall the segment
[a b]. And weprove thatanyconvex set is in fact a line segment (and vice versa).

As the main result, we characterize, givenX = (x1, . . . , xk), the ordered sets
Z = (z1, . . . , zk) with the same partition asX. More precisely (cf.Corollary 2.16), let
V(X) = (V1, . . . , Vk) (V(X) is then theVoronoy diagramdetermined by X); we prove
thatV(Z) = V(X) if andonly if:

∀ i = 1, 2, . . . , k, ∀ j = 1, 2, . . . , k, j �= i

{
zi ∨̇ x j > zi ∨̇ xi

zj ∨̇ xi > zi ∨̇ xi .

Dawson’s duality, referred to above, can be obtained from here.

Finally, we also prove that taking(m1, m2, . . . , mk) or (M1, M2, . . . , Mk) as the initial
k-tuple leads to the same Voronoy diagrams, whence making it easy to reverse Dawson’s
construction.
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2. Bitwise XOR geometry

2.1. Notation, examples and technical results

Definition 2.1. Let N be the set of non-negative integers, and fix an integern > 0. Let�
be the bijective function defined, forA ⊆ {1, 2, . . . , n}, by:

�(A) :=
∑
i∈A

2i−1

and let� = �
−1.

Denote byx ∨̇ y the integer for which the binary representation has thei th digit (from
right to left) equal to 1 if thei th digits ofx andy are different, and equal to 0 if they are
equal, fori = 1, 2, . . . , n. This is the result of the “bitwise XOR operator”, which is used,
for example, for finding a winning strategy of the “celebrated game of Nim” [2, p. 44].
More precisely:

Definition 2.2. Let a = ∑n−1
i=0 αi 2i andb = ∑n−1

i=0 βi 2i be such thatαi , βi ∈ {0, 1} for all
i = 0, . . . , n − 1. Then,

a ∨̇ b :=
n−1∑
i=0

(αi ∨̇ βi )2i ,

where 0∨̇ 0 = 1 ∨̇ 1 = 0 and 0∨̇ 1 = 1 ∨̇ 0 = 1. In other words,a ∨̇ b =
�(�(a) � �(b)).

Following Dawson, we fix a set{x1, . . . , xk} ⊆ N of k > 0 distinct integers smaller
than 2n, anddefineα: {0, 1, . . . , 2n − 1} → {x1, . . . , xk} so thatz∨̇ α(z), for eachz, is as
small as possible.Then, for everyi ∈ {1, . . . , k},

Vi := α−1(xi ) = {z ∈ N : ∀ j = 1, . . . , k ( j �= i ), z∨̇ x j > z∨̇ xi }.
Note thatV := {V1, . . . , Vk} is a partition of{0, . . . , 2n − 1}, i.e., the latter set is the union
of the elements ofV, that are non-empty and pairwise disjoint (sincea ∨̇ x = a ∨̇ y
x = y). We call it thepartition determined by X= (x1, . . . , xk); for emphasizing its origin,
we also denote it byV(X) andVi by V(X, i ). Bitwise AND and OR are defined similarly
to Definition 2.2, and will also bedenoted simply by∧ and∨.

Definition 2.3. Given non-negative integersa, b ∈ N, we saya is strongly less thanb,
writtena ≺ b, if a ∧ b = a anda ∨ b = b.

〈a, b〉 := {c ∈ N: a ≺ c ≺ b}
is also called aninterval.

Note that

a ≺ b �(a) ⊆ �(b) ( a < b)

and thatx satisfies condition (1.1) if andonly if x ∈ 〈�(Ai ), �(Bi )〉.
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Example 2.4. Takemi = �({2, 3, 5, 9}), Mi = �({1, 2, 3, 4, 5, 8, 9, 11, 12}) (n = 12)
andVi = 〈mi , Mi 〉.

mi = 278 = 00 01 0 001 0 11 0(2) and
Mi = 3487 = 11 01 1 001 1 11 1(2).

The elements ofVi are exactly the integers whose binary representations match the pattern:

01 001 11 .

We note that({0, 1}, ∨̇ ) may be naturallyidentified with Z/2Z. In particular, for
example, (a ∨̇ b) ∨̇ c = a ∨̇ (b ∨̇ c), a ∨̇ b = b ∨̇ a, 0∨̇ a = a and a ∨̇ a = 0 for all
a, b, c ∈ N. Note also that(a, b) �→ a ∨̇ b defines indeed a distance inN. In fact,

n−1∑
i=0

αi 2i +
n−1∑
i=0

βi 2i =
∑

(αi ,βi ) �=(1,1)

0≤i≤n−1

(αi + βi )2i +
∑

0≤i≤n−1

2 · 2i ,

andαi + βi = αi ∨̇ βi andαi ∧ βi = 0 except whenαi = βi = 1. Hence,

a + b = a ∨̇ b + 2(a ∧ b) (2.2)

and soa ∨̇ b = (a ∨̇ c) ∨̇ (c ∨̇ b) ≤ a ∨̇ c + c ∨̇ b.

Lemma 2.5. Let a, b, c ∈ N. Then, the following conditions are equivalent:

c ∈ [a b] def
a ∨̇ b = a ∨̇ c + c ∨̇ b (2.3)

a ∧ b ≺ c ≺ a ∨ b. (2.4)

Proof. Set a = ∑n−1
i=0 αi 2i , b = ∑n−1

i=0 βi 2i and c = ∑n−1
i=0 γi 2i (αi , βi , γi ∈ {0, 1}

for all i = 0, 1, . . . , n − 1).

c ∈ [a b] (a ∨̇ c) ∨̇ (c ∨̇ b) = (a ∨̇ c) + (c ∨̇ b)

(2.2)
(a ∨̇ c) ∧ (c ∨̇ b) = 0

∀ i = 0, 1, . . . , n − 1, αi ∨̇ γi = 0 orγi ∨̇βi = 0

∀ i = 0, 1, . . . , n − 1, γi = αi or γi = βi

∀ i = 0, 1, . . . , n − 1, αi ∧ βi ≤ γi ≤ αi ∨ βi

a ∧ b ≺ c ≺ a ∨ b. �

(2.5)

Remark 2.6. By definition of line segment (and since e.g.,(c ∨̇ a) ∨̇ (c ∨̇ b) = a ∨̇ b):

{x ∨̇ c: c ∈ [a b]} = [x ∨̇ a x ∨̇ b]. (2.6)

2.2. The convex sets

Proposition 2.7. Let x, y ∈ N, x �= y, and consider

S(x, y) := {z ∈ N : z ∨̇ x < z ∨̇ y}.
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If a, b ∈ S(x, y), then[a b] ⊆ S(x, y), i.e., S(x, y) is convex. Vi is convex too for every
i = 1, 2, . . . , k.

Proof. Let m be the biggest element of the set�(x ∨̇ y) = �(x) � �(y). Sincem
is, by definition, the leftmost position of all bits wherex and y differ, x < y holds
if and only if m /∈ �(x) (or equivalently, if and only ifm ∈ �(y)). Now, since
�(z∨̇ x) � �(z∨̇ y) = �(x) � �(y),

z ∈ S(x, y) if andonly if m /∈ �(z∨̇ x). (2.7)

Hence, if a, b ∈ S(x, y) then m /∈ �(a ∨̇ x), �(b ∨̇ x). In order to prove that also
m /∈ �(c ∨̇ x) for everyc ∈ [a b], it is sufficient to show that:

�(c ∨̇ x) ⊆ �(a ∨̇ x)�(b ∨̇ x)

c ∨̇ x ≺ (a ∨̇ x) ∨ (b ∨̇ x). (2.8)

But this condition holds, by (2.6). Finally, Vi is also convex becauseVi =
∩ j �=i S(xi , x j ). �

Vi is in fact a line segment (cf. [1, Lemma 1.3]). More precisely, we have:

Proposition 2.8. Let, for i = 1, 2, . . . , k, yi ∈ N be the element of Vi at greatest distance
from xi , i.e., such that, for all 0 ≤ z < 2n, if xi ∨̇ z > xi ∨̇ yi then z /∈ Vi . Then
Vi = [xi yi ].
Proof. [xi yi ] ⊆ Vi because the latter is convex. Assume, by contradiction, that there
existsz ∈ Vi \[xi yi ]. By Lemma 2.5(condition (2.5) fails), for somej with 1 ≤ j ≤ k the
j th bit of z is different from thej th bit of bothxi andyi (that are equal, consequently).

For clearness sake, setx = xi , y = yi andy′ = y ∨̇ 2 j −1. Theny′’s sth bit is equal to
y’s sth bit for all s �= j , and is equal toz’s sth bit (and hence different from thesth bit
of bothx andy) for s = j . Again by condition (2.5) of Lemma 2.5, y′ ∈ [z y]. But then
y′ ∈ Vi , by convexity, which, sincex ∨̇ y′ > x ∨̇ y, is in contradiction with the definition
of yi . �

Let K be any convex set,x ∈ K andy be the element ofK farthest from x, as before.
With the same proof, weobtain thatK is a line segment, exactly[x y]. The converseis also
true, byLemma 2.5. Hence, we have:

Theorem 2.9. LetK be a subset of{0, 1, . . . , 2n − 1}. Then:

K is convex K is a line segment. �

2.3. Explicit calculation of Voronoy diagrams

Let us proceed a little further in the direction of the last result. As usual, by�a� for a
real numbera we mean the biggest integernot bigger thana.

Definition 2.10. Set, forX = (x1, x2, . . . , xk) andi , j = 1, 2, . . . , k, i �= j ,

mX
i j := �log2(xi ∨̇ x j )� + 1 (=max(�(xi ) � �(x j ));

SmX
i := {mX

i j : j = 1, 2, . . . , k, j �= i }
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aX
i := �(SmX

i ); bX
i := �({1, . . . , k}\SmX

i );
yX

i := xi ∨̇ bX
i ; mX

i := xi ∧ aX
i ; M X

i := xi ∨ bX
i .

(We drop the symbolX whenever it is not necessary.)

Remark 2.11. Denote byz the bitwise complement ofz ∈ N, z̄ := (2n − 1) ∨̇ z. Then

bX
i = aX

i , andaX
i = (xi ∨ xi ) ∧ aX

i = (xi ∧ aX
i ) ∨ (xi ∧ aX

i ) = mX
i ∨ M X

i .

We have the following theorem:

Theorem 2.12 (cf. [1, Lemmas 1.3 and 1.4] ).For every X = (x1, x2, . . . , xk) and every
i = 1, 2, . . . , k,

Vi = V(X, i ) = [xi yX
i ] = 〈mX

i , M X
i 〉. (2.9)

Proof. Wehaveseen before (condition (2.7)) that the conditionz ∈ S(xi , x j ) is equivalent
to mij /∈ �(xi ∨̇ z), or, in other words, to 2mij −1 ∧ (xi ∨̇ z) = 0. Hence,

z ∈ Vi =
⋂
j �=i

S(xi , x j ) ai ∧ (xi ∨̇ z) = 0.

By Proposition 2.8, however,Vi = [xi yi ] whereyi is the elementz ∈ Vi for which the
value ofxi ∨̇ z is maximum. But the maximum value ofw for whichai ∧ w = 0 is clearly
bi = ai ∨̇ (2n − 1), the complement of ai . Thus, the maximum is attained forz suchthat
xi ∨̇ z = bi z = xi ∨̇ bi . Hence, this is the value ofyi . It is noweasy to see, bitwise,
that mi = xi ∧ (xi ∨̇ bi ) = xi ∧ ai and thatMi = xi ∨ (xi ∨̇ bi ) = xi ∨ bi (e.g.,
xi ∧ (xi ∨̇ bi ) is 1 exactly whenxi = 1 andbi = 0). �
Theorem 2.13. Let X = (x1, x2, . . . , xk) for a subset{x1, x2, . . . , xk} of {0, 1, . . . , 2n−1}
with k (distinct) elements and X′ = (x′

1, x′
2, . . . , x′

k) for another subset{x′
1, x′

2, . . . , x′
k} of

the same set. ThenV(X′) = V(X) if and only if, for every i= 1, 2, . . . , k,

x′
i ∈ V(X, i ); (2.10)

SmX
i = SmX′

i . (2.11)

Proof. Suppose firstV(X′) = V(X). Then x′
i ∈ V(X′, i ) = V(X, i ) and, by

Theorem 2.12, mX
i = mX′

i and M X
i = M X′

i . Moreover, byRemark2.11, aX′
i = mX′

i ∨
M X′

i = aX
i . This implies condition (2.11).

Conversely, suppose thatxi ∧ aX
i = mX

i ≺ x′
i ≺ M X

i = xi ∨ bX
i andaX

i = aX′
i . Then

xi ∧ aX
i ≺ x′

i ∧ aX
i ≺ (xi ∨ bX

i ) ∧ aX
i . But (xi ∨ bX

i ) ∧ aX
i = (xi ∧ aX

i )∨ (bX
i ∧ aX

i ) =
xi ∧ aX

i , and somX′
i = mX

i . Theproof thatM X′
i = M X

i proceeds in a similar way.�
Corollary 2.14. Let X beas in Theorem2.13. Then the Voronoy diagram determined by
X, V(X), equals the Voronoy diagram determined by any of the collections Y , A or B
defined below:

Y = (yX
1 , yX

2 , . . . , yX
k );

A = (mX
1 , mX

2 , . . . , mX
k );

B = (M X
1 , M X

2 , . . . , M X
k ).
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Proof. We prove thatin all three casess := mX
i j equalsmX′

i j for all i , j = 1, 2, . . . , k such

that i �= j . First,note that, for everys′ > s, s′ ∈ SmX
i if and only if s′ ∈ SmX

j since the

s′th bits ofxi andx j are equal, and thus thes′th bits ofaX
i andaX

j are also equal. Denote,
for x ∈ N ands such that 1 ≤ s ≤ k, thesth bit of x by sx, andnote thats′yi = s′yj

exactly when s′xi = s′x j , sinceyi = xi ∨̇ bX
i andyj = x j ∨̇ bX

j . This proves thatmX′
i j ≤ s

for X′ = (yX
1 , yX

2 , . . . , yX
k ). The samehappens for the other definitions ofX′, by the same

reasons.
Now, in order to show that alsomX′

i j ≥ s, it is sufficient to prove thatsyi and syj

(respectively,smi and smj , and sMi and sM j ) are different. But by definition ofs =
mij , sxi and sx j are indeed different, ands ∈ Smi ∩ Smj . It follows that sai = 1 = saj

and so sbi = 0 = sbj . Finally, syi = sxi ∨̇ 0 = sxi , smi = sxi ∧ 1 = sxi ,
sMi = sxi ∨ 0 = sxi , and a similar situation occurs when we replacei by j . �

Remark 2.15. By the definition ofyX
i , weobtain in the first case [1, Corollary 1.6]: when

X = (x1, . . . , xk) is replaced in Dawson’s construction byY = (y1, . . . , yk), as defined
above, we also findY replaced byX. This is so becausebX

i = bY
i , by Theorem 2.13.

Corollary 2.16. Let X = (x1, x2, . . . , xk) for a subset {x1, x2, . . . , xk} of {0, 1, . . . ,

2n − 1} with k (distinct) elements and X′ = (x′
1, x′

2, . . . , x′
k) for another subset

{x′
1, x′

2, . . . , x′
k} of the same set. ThenV(X′) = V(X) if and only if, for every i =

1, 2, . . . , k,

x′
i ∈ V(X, i ) (2.10)

and

xi ∈ V(X′, i ) (2.12)

or, equivalently, if and only if

∀ i , j = 1, 2, . . . , k, j �= i

{
x′

i ∨̇ x j > x′
i ∨̇ xi

x′
j ∨̇ xi > x′

i ∨̇ xi .
(2.13)

Proof. By symmetry, all we have to prove is that condition (2.12) (together with condition
(2.10)) implies condition (2.11). Let us fixi ∈ {1, 2, . . . , n} and set more simplyx := xi ,
x′ := x′

i , a := aX
i , b := bX

i , a′ := aX′
i and b′ := bX′

i . Since Condition (2.10) reads
x ∧ a ≺ x′ ≺ x ∨ b, if, for s = 1, 2, . . . , k, we denote again bysa thesth bit of a and
supposesa = 1 (and hencesb = 0), then sx = sx ∧ 1 ≤ sx′ ≤ sx ∨ 0 = sx, and so
sx = sx′. In thesame way, by condition (2.12), sa′ = 1 also implies sx = sx′. Coming
back to our former notation, what we have shown is thatxi andx′

i coincide in all the 1-bits

of aX
i and in all the 1-bits ofaX′

i , whichare the elements ofSmX
i andSmX′

i , respectively.
Now suppose, for a contradiction, that condition (2.11) fails. Without loss of generality

we may then suppose that there existi , j (i �= j ) suchthat r := mX
i j < s := mX′

i j . Then

s ∈ SmX′
i ∩ SmX′

j , ands /∈ �(xi ∨̇ x j ), but s ∈ �(x′
i ∨̇ x′

j ), which means thatxi andx j

have equalsth bits but thesth bits of x′
i andx′

j are different. But this is impossible since
by our previous argument thesth bits of xi andx′

i are equal, and the same happens with
thesth bits ofx j andx′

j . �
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An interesting question arises as to whether all partitions of the set{0, 1, . . . , 2n − 1} in
k intervals can beconstructed in this way from a set{x1, x2, . . . , xk}, when reorderings
of {1, 2, . . . , n} are considered. We finish this section by showing through three small
examples that the answer to this question is negative, and that conditions (2.10) and (2.11),
separately, are not sufficient for forcingV(X) = V(Y):

Example 2.17. Let n = 3 and consider the partition of{0 = 000(2), . . . , 7 = 111(2)}
represented below.

Suppose that the elements of formxi are those we have underlined and, for a certain
order<n of the elements of{1, 2, 3}, they determine the partition. We find a contradiction:

• 1 <n 2 since 010 is closer to 011 than to 000;
• 2 <n 1 since 101 is closer to 111 than to 100.

The other three possible choices of elements ofX = (x1, . . . , x6) that could generate this
partition can be discarded in a similar way.

Example 2.18. ConsiderX = (x1, x2) := (2 = 10(2), 3 = 11(2)) and X′ = (x′
1, x′

2) :=
(2 = 10(2), 1 = 01(2)) and the partitions they determine in{0, 1, 2, 3}. Thenx′

1 = x1 and
x′

2 ∈ V(X, 2) butV(X) �= V(X′).

Example 2.19. Finally, considerX = (0 = 00(2), 1 = 01(2), 2 = 10(2)) andX′ = (2 =
10(2), 3 = 11(2), 0 = 00(2)) and the partitions they determine in{0, 1, 2, 3}. Although
they have the samemij for everyi �= j (in fact, as shown below,xi ∨̇ x j = x′

i ∨̇ x′
j ), the

partitions are different.
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