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A new formulation to analyze two-layer beams with interlayer slip is proposed. Each layer is modeled as
a linearly elastic Timoshenko beam. The connection between the layers is assumed to be perfect in the
transverse direction while imperfect in the longitudinal one (only interlayer slips are allowed). The inter-
face behavior in the longitudinal direction is described through a linear non proportional relationship
relating tangential reactions transmitted between the two layers and slips. The problem is then solved
analytically and a novel closed form solution is obtained. Explicit expressions for all static and kinematic
variables are derived. This analytical solution is shown to be employed in the analysis of composite
beams for different boundary and loading conditions generating interfacial tractions that induce an irre-
versible process of progressive debonding at the interface. Some numerical examples are considered and
a parametric analysis performed to investigate the influence of the interface behavior on the response of
the composite beam when the layers are still elastic.
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1. Introduction

Two-layer beams consist of the association of two layers, having
the same or different thickness and width and made of the same or
different materials, bonded together by appropriate mechanical
devices or adhesive joints. Steel-concrete or timber-concrete
beams, beams or columns reinforced with steel plates or fiber com-
posite stripes are some examples. Typically, the resulting compos-
ite structural elements show enhanced performances in both
global stiffness and strength compared to those obtained by the
sum of individual layers without connection.

A perfect connection that retains any relative displacement be-
tween the layers would allow a complete transmission of both nor-
mal and shear stresses and ensure an optimal performance of the
joint. However, in practice, connections exhibit finite stiffness, so
that relative transverse and longitudinal displacements (respec-
tively, uplifts and slips) at the interface between the layers can oc-
cur. In practice, only imperfect connections ensuring a partial
composite action can be obtained. As an example, mechanical
shear devices, such as nails or steel studs, retain interlayer uplifts
but allow interlayer slips; on the contrary, both slips and uplifts
can occur in adhesive joints depending on the thickness of the
adhesive interlayer. Moreover, flaws and defects due, for instance,
to manufacturing errors can easily form at the interfaces. Under
loading conditions that generate interlayer stresses these flaws

* Corresponding author. Tel.: +39 010 353 2951; fax: +39 010 353 2534.
E-mail address: ilaria.monetto@unige.it (I. Monetto).

0020-7683/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijsolstr.2012.10.032

may propagate starting a process of progressive debonding at the
interface. This leads to a further reduction of the stiffness of the
connection and, as a consequence, of the global stiffness and
strength of the composite beam, when the layers are still elastic.

The interface between layers then represents a weak element in
composite beams. The optimal design of such structural elements
depends not only on the geometrical and mechanical properties
of the single layers, but also on the optimal design of the joint be-
tween the layers. The investigation of the effects of the interfacial
behavior on the mechanical response of composite systems is then
of great importance. In order to do this, even simplified models
which provide explicit analytical solutions are preferable to
numerical analyses usually performed for prescribed geometry,
material properties and interface constitutive behavior.

The problem of two-layer beams with imperfect connection has
been the object of a large number of studies in literature. The first
partial composite action theory was proposed by Newmark et al.
(1951) to analyze steel-concrete beams with mechanical shear
connectors. Their theory is based on the assumptions that no up-
lifts between the layers are possible and plane sections remain
plane during the loading process. The layers were modeled as lin-
early elastic Euler-Bernoulli beams and the connection was treated
as a continuous distribution of longitudinal springs characterized
by a linearly elastic constitutive law. The analytical solution for a
simply supported beam subjected to a concentrated transverse
load was derived.

Since the pioneering work of Newmark, other models were of-
fered which differ in one or more assumptions. Girhammar and
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Gopu (1993) and Girhammar and Pan (2007) compared exact first
and second order analyses and focused on the magnification in the
internal forces and displacements due to the second order effects.
Cosenza and Mazzolani (1993) found further closed-form solutions
for simply supported beams subjected to different loading condi-
tions. More recently, effects of shear deformation were included
in the original theory modeling the layers as Timoshenko beams.
Schnabl et al. (2007) described the solution procedure of the equa-
tions governing the model and presented a parametric study to
investigate the influence of shear deformation on the response of
simply supported two-layer beams subjected to uniformly distrib-
uted loads. Xu and Wu (2007) obtained analytical solutions of the
problem for uniformly distributed loads and different boundary
conditions. Finally, Adekola (1968) first extended Newmark’s mod-
el to imperfect interfaces not only in the longitudinal direction but
also in the transverse direction (both slips and uplifts can occur).
He solved the differential equations governing the problem by fi-
nite differences; then Robinson and Naraine (1988) and Gara
et al. (2006) proposed alternative numerical procedures of solution
in order to handle beams with a wider class of loading and bound-
ary conditions. Only more recently, explicit analytical solutions
were presented in the framework of both linearly elastic Euler-
Bernoulli (Wang, 2006; Krofli¢ et al., 2010) and Timoshenko beam
theories (Wang and Qiao, 2004; Bennati et al., 2009).

Experimental evidences show that, also for moderate levels of
slip, joints exhibit nonlinear behavior corresponding to a process
of progressive debonding (see e.g., Ollgaard et al., 1971; McCutch-
eon, 1986; Chajes et al., 1996; Manfredi et al., 1999; Planinc et al.,
2008). In a lot of works the nonlinear behavior of the interface and/
or of the layer materials are taken into account. However, since this
complicates the equations governing the problem, most works deal
with specific problems and employ numerical procedures of solu-
tion. There is a lack of analytical solutions with general validity
that can be employed to investigate the influence of nonlinearity
on the response of composite beams. Wheat and Calixto (1994)
considered interface nonlinearity and proposed an energy formula-
tion that, because of its complexity, permits one to obtain explicit
expressions for some variables only. Wang (2006) presented an
analytical study of debonding at the interface induced by a flexural
crack in a FRP-plated concrete beam. He modeled the reinforced
beam as two linearly elastic Euler-Bernoulli beams bonded to-
gether through an interface characterized by a linearly elastic nor-
mal stress-uplift law in the transverse direction and a nonlinear
shear stress-slip law in the longitudinal direction. Namely, as a
good approximation of this nonlinear relationship, a bi-linear shear
stress-slip law was considered. Closed-form solutions were ob-
tained for the interfacial shear and normal stresses and the deflec-
tion of the beam in each stage of the debonding process. More
recently, Foraboschi (2009) developed a nonlinear analytical model
for two-layer beams with interlayer slip and bi-linear interface
law. The mathematical model, related boundary conditions and ex-
act solution were presented for a simply supported beam subjected
to uniformly distributed loads and for a specific choice of bi-linear
interface law. Namely, elasto-softening and, as particular case,
elasto-plastic interfaces were considered.

In this paper a novel analytical solution of the problem of partial
interaction in two-layer beams is presented. The formulation fol-
lowed is based on standard assumptions already made in some
previous theories: (i) small strains, displacements and rotations;
(ii) layers modeled as linearly elastic Timoshenko beams; (iii) bond
between the layers modeled as perfect interface in the transverse
direction (no uplifts are possible) and as imperfect interface in
the longitudinal direction (slips can occur). Namely, a linear non
proportional law relating interfacial shear tractions and slips is
chosen to describe the interfacial behavior. On one hand, this
choice permits one to analytically solve the problem, the main goal

of the present paper; on the other, it describes suitably different re-
gimes the interface can experience during a loading process (not
only elastic, perfectly plastic or softening but also hardening inter-
facial behavior, depending on the value of suitable coefficients).
Some experimental evidences showed that connections realized
by means of mechanical shear devices can exhibit behaviors more
suitably described by elasto-hardening than elasto-plastic or soft-
ening interface laws (McCutcheon, 1986; Planinc et al., 2008).
The novelty in our formulation is that explicit expressions having
general validity independently of the interface regime for all static
and kinematic variables of the problem are derived. Furthermore,
this fundamental solution can be employed in the analysis of
two-layer beams with interlayer slip and nonlinear interfacial
behavior for different boundary and loading conditions. In order
to do this, nonlinear interfacial behavior can be conveniently
approximated through a multi-linear law, so that for each linear
branch the fundamental solution is valid. This choice is supported
by the comparison of experimental and numerical studies and was
previously made by many authors working on the subject as well
as on similar problems (Schreyer and Peffer, 2000; Lu et al.,
2005; Wang, 2006). The novel fundamental solution presented in
this paper can then be employed to solve a wider class of problems
(beams with different loading and boundary conditions, as well as
different interface constitutive laws) than those analyzed in all
previous similar works on two-layer beams with elastic layers
and interlayer slip. Such previous similar works can be reproduced
as particular cases by setting suitably the model parameters.

The aim of this work is to study the effect of interface nonlinear-
ity on the structural response of the composite structure with a
view towards an optimal design of the joint. As an example, a
two-layer cantilever beam with different bi-linear interface laws
and subjected to a load at the free end is considered. A parametric
analysis is then performed to investigate the influence of the
parameters that characterize the interface constitutive relationship
on the response of the composite beam. As a consequence of the
assumptions made, the analysis is restricted to composite beams
with layers connected through nails, studs or sufficiently thin
adhesive interlayers for which uplifts can be neglected. It is
straightforward that the case of normal separation at the interface
is much more involved. Introducing nonlinearity of the layer mate-
rials complicates further the formulation. Analytical solutions are
difficult to obtain with the exception of considering convenient
multi-linear approximations also for the constitutive laws of layer
materials, so that the fundamental solution is still valid.

The paper is organized as follows. Section 2 deals with the equi-
librium, compatibility and constitutive equations governing the
proposed formulation and presents their rearrangement to two
coupled linear differential equations for shear and normal interfa-
cial tractions. Details of the solution procedure leading to exact
expressions of interfacial tractions are described in Section 3. Sub-
sequent derivation of all other static and kinematic variables is
then shown in Section 4. Section 5 lays out the procedure for
obtaining all the arbitrary constants contained in the general solu-
tion of the problem. Finally, in addition to verifying the new formu-
lation, Section 6 shows a practical application to the analysis of a
two-layer cantilever beam during a process of progressive debond-
ing at the interface. The results of the parametric analysis per-
formed are also discussed. Section 7 concludes the paper with a
final discussion of the advances in understanding the mechanical
response of two-layer beams with interlayer slip.

2. Model formulation

The composite beam under consideration consists of two layers
having constant cross sections and made of linearly elastic and
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homogeneous materials. The layers are connected by a continuous
bond assumed to be perfect in the transverse direction, while to
ensure a partial composite action in the longitudinal direction. As
a consequence, interlayer slips can occur at the interface, but no
separation or interpenetration between the layers is possible.

Under the assumption of small strains, displacements and rota-
tions, each layer is modeled as a linearly elastic Timoshenko beam.
The connection is modeled by continuously distributed normal and
tangential reactions, the latter related to interlayer slips according
to a suitable relationship approximating the typically nonlinear
interfacial behavior.

With reference to Fig. 1, under the assumption that cross sec-
tions remain plane after deformation, the displacement compo-
nents of a generic point at level y in the ith layer, say s, in the
longitudinal direction and sy; in the transverse direction, yield:

S = Ui+ (Y = Y) Py (1)

where: u; and w; are, respectively, the axial displacement and
deflection of points along the axis and ¢; is the rotation of the cross
section of the ith layer (i = 1,2); y; represents the level of the axis of
the ith layer. The relative displacements in the longitudinal and
transverse directions at the interface between the layers, say
respectively As; (interlayer slip) and As,, (uplift), then follow:

Syi = Wi,

ASt =S5 —Sn =Uy —hapy — Uy — hy
ASn :§y2 —5_'y] =W, — Wy,

(2)

where: 5, §,; are the displacement components of the points in the
ith layer (i =1,2) along the interface between the layers; h; mea-
sures the distance between the interface and the axis of the ith
layer. Furthermore, according to Timoshenko beam theory, taking
into account the effects of shear deformation, the compatibility
equations for the two layers (i =1,2) are:

1= ¢ 3)

where: primes denote differentiation with respect to z; &;, y; and y;
are, respectively, the axial deformation, shear strain and curvature
of the ith layer.

Considering now the free-body diagram shown in Fig. 2, the
equilibrium equations for the two layers are:

Ni=(2i-3)p Qs Q=Qi-3)p,—qu M
=Q; — hip, —m,

E=U, Vi=@+wW,

(4)

where: g, qy; and m; are uniformly distributed loads applied to the
ith layer (i=1,2); N;, Q; and M; are, respectively, the axial and shear
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Fig. 2. Free-body diagram of an infinitesimal beam element.

forces and the bending moment in the ith layer; p, and p, are,
respectively, the shear and normal tractions at the interface be-
tween the layers. Then, differentiating the third of Eq. (4) and
substituting the result in the second of Eq. (4) gives:

My = (2i = 3)p, — hip; — 4. )

Being both layers made of linearly elastic materials, the consti-
tutive equations assume the form:

N; = K&, Qi =Ky, M=Ky, (6)

with i=1,2; Ky, K,; and K,; are, respectively, the axial, shear and
bending stiffnesses of the ith layer (i=1,2).

Now, substituting the compatibility conditions (3) in the consti-
tutive Eq. (6) and the result in the equilibrium Eqgs. (4) and (5) gives
the following system of six differential equations for the eight un-
knowns u;, w;, @; (i=1,2) and py, pn:

uf = K, (21 - 3)p; — a1,

@+ w/ =K;'[(2i - 3)p, — qy],
@ =K, [2i = 3)p, — hip|, - qy].-
Such basic equations, together with the bond conditions at the
interface, govern the problem of the equilibrium of two-layer

beams. Firstly, the assumption of perfect connection in the trans-
verse direction y imposes that:

(7)

z X
> <—
U @O | { s
W1 T h]
w o |D L

Fig. 1. Geometry and typical deformed configuration assumed in the present model.
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ASH =W, — W = O, (8)
from which it follows that the two layers undergo equal deflections:
Wy =W, =Ww. 9)

Secondly, the partial composite action in the longitudinal direction
z is assumed to be described through the following linear relation-
ship between the shear tractions and the interlayer slips at the
interface (Fig. 3a):

p; = AAS + B =A(u; — uy — hy; —ha,) +B, (10)

with A and B coefficients. It is worthwhile observing that the choice
of such a simple linear interface constitutive law makes possible the
derivation of analytical solutions of the problem, the main goal of
the present paper. Furthermore, different values of the coefficients
A and B describe different types of interfacial regime within a mul-
ti-linear approximated description of the nonlinear interface behav-
ior. As an example, Table 1 summarizes the values of the
coefficients A and B related to the exemplary bi-linear interfacial re-
gimes shown in Fig. 3b.

In order to solve the problem under consideration, it is conve-
nient to rearrange the above Eqgs. (7), (8) and (10), as detailed in
what follows. First, differentiate Eq. (8) four times with respect
to z; then, insert the second of Eq. (7), differentiated twice, and
the third of Eq. (7) in the result to finally obtain:

(K + K35 )ph = (Kt + K33 )pa + (K3 — Kl )pi = @,y (1)
having defined
G =Kyl d — K 3y (12)

Analogously, differentiate Eq. (10) three times with respect to z;
then, insert the first of Eq. (7), differentiated once, and the third
of Eq. (7) in the result to finally obtain:

pr—A (K;ﬂ + K + K, h + K h§) P,

+A(K,3ho — K1t )p,

=y, (13)
having defined
pd (a)
/éA/
B 1
"
|
As,
D A (b)
11
Ay
Pe T !
I11
I
Ae v
1 >
As,

Fig. 3. Interface laws: (a) linear; (b) bi-linear.

Table 1
Coefficients A and B in Eq. (10) for interfacial regimes shown in Fig. 3b.

Interfacial regime Elastic I Hardening II Perfectly-plastic Il Debonded IV

A A.>0 Ap>0 0 0
B 0 Pe(1 — ApfAe) Dpe 0
q = A(K;}hlqﬂ +K,) hzqﬁ) . (14)

Egs. (11) and (13) together with the constants defined in Egs. (12)
and (14) are two coupled linear differential equations with constant
coefficients for the two unknowns p, and p,,. Details of the solution
procedure leading to exact expressions of the shear and normal
interfacial tractions are described in Section 3. Subsequent deriva-
tion of all other static and kinematic variables through the remain-
ing equations governing the problem is then detailed in Section 4.
Finally, Section 5 deals with the strategy to obtain all the arbitrary
constants contained in such general solution.

For the special case of elastic interface a verification of Egs. (11)
and (13) can be found in Schnabl et al. (2007) and Xu and Wu
(2007). In both papers governing equations were rearranged and
two coupled differential equations of higher order in the interlayer
slip and normal traction (Schnabl et al., 2007) or in the deflection
and rotation (Xu and Wu, 2007) were obtained.

Finally, under the assumption of infinite shear stiffness of the
layers (K,; — oo, i=1,2) Eq. (11) simplifies to a first order differen-
tial equation. Such simplified equation together with Eq. (13) can
be proved to govern the problem of two-layer beams with inter-
layer slip according to classical Euler-Bernoulli beam theory, for
which the effects of shear deformation are neglected. For the spe-
cial case of elastic interface this simplified model reduces exactly
to that first proposed by Newmark. More details are discussed in
Appendix A.

3. Interfacial tractions

In the case of particular composite beams consisting of two lay-
ers having geometry and material properties satisfying the
condition:

K hy =K, ihy =0, (15)

the solution of Egs. (11) and (13) is straightforward, since the two
differential equations become uncoupled and assume the simplified
forms:

-1 -1
Py = (K + K ) (Kt + K3 )pa = (K +K53) (16)
P! —A(K, + K + K 0+ K305 )pr = gy, (17)
with g, and q, given by (12) and (14), respectively. Eq. (16) is a sec-

ond order linear differential equation with constant coefficients
whose general solution can be given as:

p, = Cy1 cosh(0z) + C, sinh(0z) + pa, (18)

where:

o= \/ (K +K5) (K4 +K) and p,
= (K4 +K)  (Kdae K fa). (19)

with G (j=1,2) two arbitrary constants. Analogously, Eq. (17) is a
third order linear differential equation with constant coefficients
whose general solution contains three other arbitrary constants,
say G (j=3,...,5). This general solution can assume three different
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forms depending on the value of the coefficient A, that is on the re-
gime experienced by the interface:

10322 + Cuz 4+ Cs forA=0 (g, =0)
Pr = C3+ C4cosh(Bz) + Cssinh(Bz) +pez forA>0

Cs3 + C4 cos(Bz) + Cs sin(fz) + pez forA<O0
(20)
having defined
B= \/|A\ 1<H +Kg + K10+ K hﬁ) and P
_ K. 1hlqy1 +K/2h2qy2 . (21)

K +Kg +K, hi+K,h

In the general case of composite beams that do not satisfy con-
dition (15), the solution of the coupled differential problem re-

C1 cos(042) + C; sin(oqz) + C3 cos(022) + C4 Sin(022) + Pn
(C1 + C22) cosh(a12) + (C3 + C42) sinh(a12) + P
(Cy 4+ Ca2) cos(012) + (C3 + C42) sin(042) + Pn
C; cosh(asz) cos(032) + C, cosh(0sz) sin(032)
+C5 sinh(04z) cos(03z) + C4 sinh(4z) Sin(0t3z) + P
C; cosh(asz) cos(0yz) + C, cosh(032) sin(042)
+Cs5 sinh(03z) cos(taz) + C4 sinh(03z) sin(0tz) + P

Dn =

quires a rearrangement of the governing Egs. (11) and (13). In

order to do that, Eq. (11) is solved for the first derivative of the

interfacial shear tractions:

P = (Kih - K, lhz) (K5 + K3 )P = (K4 + K3 )P — 4.
(22)

which, substituted in Eq. (13), leads to a fourth order linear differ-

ential equation with constant coefficients for the interfacial normal

tractions that can be written as:

p;;” + (Alp;; + Bpn = éa (23)

where:

a= [(K} +K;, )(K;ﬂ +I<;,2])71 +A(K;ﬂ +K; + Kk +K;2‘h§)},
(24)

b=A(K +1<;;) (K4 + K2 ) (ke + K ) + KK (hy + ho)?)
(25)

e= (k) +K3)  [ao (K — Ko dha)
—qn"‘(’@}1 +Ky + K h K, hiﬂ 20

with g, and ¢, given by (12) and (14). It is straightforward that con-
stant coefficients in Eq. (23) can either vanish or be positive or neg-
ative depending on the interfacial regime, as well as on the
geometry and material properties of the layers. As a consequence,
the general solution of the differential equation can be written in
different forms.

Case 1. For b=0 (A=0then g, =0, ¢ =0 and a < 0), the gen-
eral solution for normal tractions yields:

Pn = C1 + Caz + C3 cosh(oz) + C4 sinh(az), (27)

C; cosh(a1z) + C; sinh(a12) + C3 cosh(opz) + C4 sinh(0nz) + pp

having defined
o =v-a. (28)

Case 2. For b+ 0and a =0 (A <O then b < 0), the general solu-
tion of Eq. (23) yields:

pn = C; cosh(az) + C, sinh(oz) + C3 cos(az) + C4
x sin(oz) + Pu, (29)

having introduced

—b and p, =¢/b, (30)
with b and ¢ given by (25) and (26).

Case 3. In the most general case, b 0 and @ # 0, the solution of
Eq. (23) is more complicated and can assume five differ-
ent forms:

fora<0
R >0
fora>0
fora<0
fora~0°~°
g 31)
fora<o0 <0
fora>0
where
D=a?/4-b, (32)
a a
o = |j_\/5" oy = +\/_\,

-1y 2f b+ fal, (33)

whereas p, is defined by the second of Eq. (30).

Finally, when the interfacial normal tractions have been ob-
tained, Eq. (22) can be simply integrated to obtain the interfacial
shear tractions. Their general analytical expression contains one
more arbitrary constant, say Cs, and can be written as:

P = (K;}hl K, 1h2> [(K;{ +1<.;;) P,
_(K;]I +K, / p,dz — qnz} +Gs, (34)

with g, given by Eq. (12) and [ -dz denoting integration with respect
to z.

4. Internal forces and displacements

When the interfacial normal and shear tractions have been
obtained, the sets of Egs. (2), (3), (4) and (6) can be simply
solved to derive closed form expressions for all the remaining
unknowns (internal forces and displacements), as detailed in
what follows.

Integration of the first and second of Eq. (4) gives the axial and
shear forces in both layers (i=1,2):

Ni=(2i-3) / pdz—quz+Csi, Q;

—(2i-3) / padz — gz + Coi, (35a)
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whereas, taking into account the second of Eq. (35a), integration of
the third of Eq. (4) gives the bending moments in the layers:

. z
M; = (2i — 3) / /pndz —h; /ptdz Gy — miz + C7.iz

+ Coui, (35b)

where for brevity, hereinafter, | [-dz indicates integration of - twice
with respect to z. As a consequence of such integrations, Eq. (35)
contain six other arbitrary constants C; (j=6,...,11).

Through the (algebraic) constitutive Eq. (6), the axial deforma-
tion, shear strain and curvature of both layers can now be straight-
forwardly obtained. The result is then employed to derive
analytical expressions of the axial displacements, deflections and
rotations, respectively, through further integration of the compat-
ibility Eq. (3). Immediately the axial displacements and the rota-
tions are obtained (i =1,2):

. z?
w=K;! {(2, 3 / / pdz g%+ C5+,-z] +Cia (36a)
1] /m: ' ' z
0 =K, {(21 -3) / / /pndz - hi/ /ptdz ~Qig
ZZ
H(Crimmy S+ cgﬂ-z} +Cra (36b)

where for brevity, hereinafter, [ [ [-dz indicates integration of -
three times with respect to z. Then, on the basis of Eq. (36b), the
deflections follow:

(3-20)K, [ [ [ [padz+ (2i - 3)K,! [ [p,dz

+K;i] h; jffp[dz + Ky_j] {qy,% + (m; — C744) % — Coyi %] ,
—K;i] (qylé - C7+i2) — Ci34i2 + Cisyi

w; =

(36¢)

where for brevity, hereinafter, [ [ [ [-dz indicates integration of -
four times with respect to z. In Egs. (36) G (j=12,...,17) are six
other arbitrary constants.

Finally, from Eq. (2) the displacement discontinuities between
the layers yield:

(Kythy = Kogha) [ [ [podz+ (Ko + Ko + K15 + K3k ) [ [ pedz
+ KA 1y +K 3 hadys | 5 + [Kyl a(my = Co) + K3 ha (s — Co) | 5

As; = )
+[Ka 4 ~ K2 4|5 + [Kid G =K' Co = K1 Cro = K 3 haCun |2
—Ci2+Ci3 =i Ciy —hyCis

(37a)
(Kt +K3) S S S S padz (5! +K53) [ [padz-+ (Kiha =Kyl ) [ [ [pedz
Asp={ + [K;z‘qyz -K,} qyl] Zy [K;; (M3 —Co) =K.} (m, —Cg)] 2_Ci+Crr
+ {K;]‘ Cio—K,3Cin +K;q,1 71<;21qu} 24 {K;z‘ Co— K3 Cy+Cig —Cw}z
(37b)

To sum up, the general solution of the problem of equilibrium of
two-layer beams with interlayer slip contains 17 arbitrary con-
stants to be determined by imposing 17 conditions. The procedure
followed is analogous to that worked out by Bennati et al. (2009), as
described in Section 5.

5. Arbitrary constants

In order to evaluate the 17 arbitrary constants contained in the
general solution of the problem of equilibrium of two-layer beams

with interlayer slip, a segment of composite beam having length L,
whose all points along the interface (0 < z < L,) behave accordingly
to a particular regime, denoted by the subscript “r”, is considered.

The prescription of boundary conditions at both ends z=0 and
z =L, of the segment under consideration gives only 5 +5 condi-
tions. The kinematic or corresponding static quantities on which
such conditions can be imposed are w, @1, ¢, Uy, U or, alterna-
tively, Q = Q; + Qa, My, M3, Ny, N,. The first boundary condition on
w or, alternatively, on the resultant shear Q follows from the
assumption of perfect connection in the transverse direction so
that the two layers undergo equal deflections.

Seven further conditions need to be imposed. They are obtained
by imposing that the expressions (37) found for the displacement
discontinuities satisfy the bond conditions Eq. (8) of perfect con-
nection in the transverse direction and Eq. (10) of partial connec-
tion in the longitudinal direction for all points of the interface.
This results in seven relations among the arbitrary constants that
depend on the interface regime under consideration, as well as
on the geometry and material properties of the layers.

As an example, the determination of these conditions is now illus-
trated in the special case of composite beams having geometry and
material properties satisfying Eq. (15). In this case, from Egs. (37),
each displacement discontinuity between the layers depends only
on the interfacial tractions acting along the same direction. So,
substituting the general solution (18) for p,, integrated twice and
four times with respect to z, in Eq. (37b), on the basis of definitions
(19), the displacement discontinuity As, assumes the explicit form:
2
6
+ [K;;Cg - K}}]Cs +Cis— CIS]Z —Cis +Cyy

Asy = [K;Q(mz —Co) — K1 (my — cg)}

-1
n {(K;} ¥ 1<,j;) (K;{ K-k, K,fl‘) (a1 +dy2) + K1 Cro
_ z2
~K3C 3 (38)
which satisfies the bond condition (8) forany 0 < z < L.ifand only if:

K, (my — Co) = K, (my — Cg) =0, Cig = Cyy,
K5 Co — K,i Cs + Cra — C15 = 0,

-1
(Kt +K33) (Ki'Kop = Ko ) (@ + 4y2)
+K,{Cio— K,;Ci1 =0. (39)

which represent four algebraic relations among the arbitrary con-
stants. Analogously, further relations are obtained by imposing that
the condition (10) of imperfect connection in the longitudinal direc-
tion is satisfied. However, since the general solution for p; depends
on both geometry and material properties of the layers and on the
interfacial regime under consideration, two cases are considered.

In the general case of A # 0, the same procedure adopted for the
transverse direction is followed. The general solution (20) for p,,
integrated twice with respect to z, is substituted in Eq. (37a) to de-
rive an explicit expression for As; that, introduced in the condition
(10) gives:

A [c3 <K;11 + K + K, 0 K hﬁ) + K, hi(m; — C)
1 z?
+KZ2h2(m2 - Cg)} 7
. , z?
+A [Kﬂll An — 1(112] qu] j
-1
+ {(K;{ Mdy, + K hadyo) (K5 + Ko+ KT+ K3 ]z
+A[K Cr = K5 Co = Kyl hiCro — K JhaC |2
—[C3 = A(Ci3 = Ci2
—hyCyq — hyCy5) — B] = 0, (40)
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Fig. 4. Two-layer simply supported concrete-wood composite beam (Girhammar and Gopu, 1993).

which is satisfied for any 0 <z < L, if and only if:
Cs (K;f +Kg +K i+ K hﬁ) +K 1 hy(my —Cg) +K 3 ha(my — C)
+K'q, — K5 g, =0,
-1 1 e T RS A
(KX] gy, +K;, hzqyz) (Kg] +K) +K 4K hz)
+A {K;; C7— K Cs— K1 hiCro —K;;hzcn] -0,
C3—A(Ci3—Ci2 —hiCis—hyCi5) —B=0.

(41)

In the particular case of A =0, the bond condition (10) reduces
to:

p: =B, (42)

so that from the first of Eq. (20) it follows:

C3=0, C4=0, Cs=B. (43)

To sum up, with reference to the particular two-layer beams
satisfying Eq. (15) considered above, the 17 arbitrary constants
contained in the general solution of the problem of equilibrium
are determined by 5+ 5 =10 boundary conditions and seven fur-
ther relations derived by imposing the bond conditions at all points
of the interface and given by Egs. (39) and (41) for A # 0 or by Eqs.
(39) and (43) for A=0.

6. Numerical examples

In this section, firstly, the fundamental closed form solution
presented in the previous sections is verified by analyzing case
studies already solved by other authors and comparing the results
obtained with those found in literature. Secondly, it is shown to be
employed in the simulation of the response of composite beams
during a loading process inducing a progressive debonding of the
interface.

Namely, the bi-linear interface behaviors shown in Fig. 3b are
considered here. The imperfect connection in the longitudinal
direction is assumed to exhibit firstly an elastic behavior
(A=A.>0, B=0) and then three different post-elastic regimes:
(a) a debonded regime (A = B = 0), which characterizes brittle inter-
faces incapable of transmitting any shear traction when the elastic
limit is reached, as if the beam consists of two separate layers; (b) a
perfectly plastic (A=0, B=p,) or (c) a hardening (A=Ap>0,
B=p(1 —Ap/A.)) regime, characterizing interfaces capable of
transmitting always eventually limited shear tractions when the
elastic limit is reached. Three parameters characterize these inter-
face laws: the initial elastic stiffness A,, the elastic limit shear trac-
tion p, and, only in the case of hardening behavior, the hardening
stiffness Ay. A parametric analysis is then performed to investigate
which interface parameters have the main influence on the re-
sponse of composite beams.

The first numerical example refers to a simply supported beam
composed of concrete and wood and subjected both to uniformly
distributed transverse load and to axial forces, as shown in Fig. 4.
This example was considered previously by Girhammar and Gopu
(1993) under the assumption of linearly elastic interface. All geom-
etry, material and loading data are summarized in Table 2 together
with some significant results; namely, the maximum deflection,
shear traction, bending moments and axial forces in each layer at
midspan found in literature are compared with those obtained
with the analytical solution proposed. An excellent agreement be-
tween the two sets of results is observed.

The second numerical example refers to a simply supported
beam composed of reinforced concrete (RC) and steel and sub-
jected to uniformly distributed transverse load, as shown in
Fig. 5. This example was considered previously by Foraboschi
(2009) under the assumption of elasto-perfectly plastic interface.
All geometry, material and loading numerical data are summarized
in Table 3. In this case, because of the high load level, the interface
results to be divided in three portions: the central portion having
length I, undergoes the elastic regime, while the lateral portions
having each length I, = (I — I.)/2 and positioned symmetrically with
respect to midspan undergo the perfectly plastic regime (Fig. 5).
Some significant results are also shown in Table 3: the length of
the elastic portion of the interface, maximum slip at both ends
and axial forces in each layer at midspan found in literature are
compared with those obtained with the solution presented. A good
agreement between the two sets of results in terms of relative er-
ror (less than 5% in absolute value) is observed.

As a third numerical example, the two-layer cantilever beam
subjected to a load P applied at the free end and shown in Fig. 6
is considered. The two layers have identical constant rectangular

Table 2
Model parameters and significant results for concrete-wood composite beam.

Geometry and material Interface stiffness and model parameters

properties
I=4m A =50 MPa
b;=30cm A=A, B=0
2h;=5cm
b, =5cm Loads
2h;=15cm q=0.01 kN/cm
K =180 MN P;=37.5kN
Ky1 =375 MN cm? P,=12.5KkN
K> = 60 MN

K2 = 1125 MN cm?

Numerical results at midspan (z =1/2)

Girhammar and Gopu Present
(1993) model
w (mm) 7.56 7.56
pr (N/m) 11444 11444
N; (N) 50863 50862
M; (Nm) 165.9 165.9
N, (N) 863 862
M, (Nm) 497.7 497.8
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Fig. 5. Two-layer simply supported RC-steel composite beam (Foraboschi, 2009).

Table 3
Model parameters and significant results for concrete-wood composite beam.

Geometry and material properties

Interface stiffness and model parameters

=820 m A.=1500 MPa
by =30 cm Pe=2.25 kN/cm
2h;=5cm

b, =30cm Elastic regime
2h, =29cm A=A.B=0

K1 = 427.5 MN

Ky1 =890.625 MN cm? Loads

K =18270 MN q=0.01 kN/cm

K> = 1280000 MN cm?
Numerical results
Foraboschi (2009)

I [cm] 514
As; [mm] atz=0 0.271
As; [mm] at z=1 0.271
N; [kN] at z=1/2 600
Ny [KN] at z=1/2 600

Perfectly plastic regime
A=0,B=p.

present model relative error (%)

536 —4.28
0.279

0.279

592 1.33
592 133

cross sections of width b and semi-height h and are made of the
same linearly elastic and homogeneous material of Young and tan-
gential moduli E and G, respectively. Geometry and material prop-
erties of the beam then satisfy condition (15). The axial, shear and
bending stiffnesses of both layers are finally given by:

K(ﬂ = ng = K& = 2Ebh, Ky] = Kyz = K",r = gcbhv
Kn=Kp=K, = %Ebh3. (44)

For small loads the whole interface between the layers (0
< z < 1) undergoes only elastic deformation. In this case the prob-
lem is linear and its solution straightforward. Normal and shear
stresses at the interface are given by Eqs. (18) and (20) for A > 0 to-
gether with Eqgs. (19) and (21), whereas internal forces and dis-
placements follow from Eqs. (35)-(37). The 17 arbitrary
constants contained in the general solution are determined by five
boundary conditions yielding zero deflection, rotations and axial
displacements at the clamped end (i = 1,2):

q)i:()v

by five boundary conditions yielding resultant shear equal to the
applied load and zero bending moments and axial forces at the
loaded end (i=1,2):

Q=P, M;i=0, N;=0

w=0, uy=0forz=0 (45a)

forz=1 (45b)

and seven further relations given by Eqgs. (39) and (41). For the sake
of brevity, such a solution is omitted; only some interesting conclu-
sions which can be drawn from the results are discussed. The global
stiffness of the composite beam, defined as the ratio between the

applied load and the related maximum deflection at the loaded
end (z =1), say Wmax, yields:

K. = 320bh*EGA.B,[(45EGbh + 96Eh*A, + 20GI*A,)B,1
— 45EGbhTanh|[g,I]] ", (46)

where, from Eqs. (21) and (44):

A,
b =2\ 5 (47)

and depends on the geometry and material of the beam, as well as
on A, the initial elastic stiffness of the interface between the layers.
It is bounded lowerly by the stiffness of a beam composed of two
debonded layers (limit case with A, — 0) and upperly by the stiff-
ness of a beam composed of two perfectly bonded layers (limit case
with A, — oo). At the interface, no normal tractions act because of
symmetry; while shear tractions have the following distribution:

Py = % {1 Cosh{B, (I — z)|Sech[BI]} (48)

with g, given by Eq. (47), having a maximum absolute value at the
loaded end (z=1). In Fig. 7 the results obtained for =150 cm,
b=12cm, h=5cm, E=10,000 MPa, G = 500 MPa and different val-
ues of A, =50, 100, 200 MPa are shown.

When the maximum shear traction at z=1 attains the elastic
limit value p,, the post-elastic regime begins. It is reasonable to ex-
pect such a process to involve adjacent points and then proceed
along the interface towards the clamped end (z=0). The generic
configuration of the beam then changes from the one characterized
by the whole interface undergoing the elastic behavior to the one
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Fig. 6. Two-layer cantilever beam: geometry.

bp, /P

200

100
A, =50MPa
0.5 1

Z/IL

0 . . . . ;
0 0.5 1

Fig. 7. Two-layer cantilever beam: distribution of interfacial shear tractions for
elastic interface with varying interfacial elastic stiffness.

shown in Fig. 8. In the new configuration the interface is divided in
two subdomains: the left portion (0 <z < [.) still undergoes the
elastic regime, while the right portion undergoes the post-elastic
regime (l, <z <I). The problem is then nonlinear, since the length
I, of the elastic portion of the interface is unknown a priori. How-
ever, because of the irreversibility of the debonding process, I, de-
creases monotonically so can be assumed as a non conventional
parameter to control this second phase of the loading process in or-
der to catch any branch of the load-maximum deflection curve
(including possible snap-through or snap-back branches). On the
contrary, the load P can be decreased and so treated as unknown
variable of the problem.

With reference to Fig. 8, a generic post-elastic configuration of
the beam is considered. Such a generic configuration is geometri-
cally defined by a prescribed value for I, < and the related length
of the right portion in the post-elastic regime (! — I.). The general
solution of the problem then consists of two sets of independent
functions for normal and shear interfacial stresses, internal forces
and displacements: one set refers to the elastic portion, designated
in what follows by subscript “e”; the other refers to the post-elastic
portion, designated in what follows by subscript “pe”. This general
solution then totally contains 34 arbitrary constants. In order to
determine them, we have: the following 10 boundary conditions
at the clamped and free ends (i=1,2):

We = 07 ®ie = O, U =0
Qpe = P, Mipe = 07 Nipe =0

forz=0
forz=1

(49a)
(49b)

seven relations given by Egs. (39) and (41) for the elastic portion;
seven relations given by Egs. (39) and (43) for the post-elastic por-
tion; the following 10 continuity conditions at the boundary be-
tween the two portions of the beam:

Die = Pipes
Mie = Mipew

We = W, forz=1,

Qe = Qpe7

(50a)
(50b)

Uje = Uipe

Nie = Nipe for z=1I,.

@ Pt1=Pe
? fffffffffffffffffffffffffffffffffffffffff 5

g

e -1,
elastic post-elastic
regime regime

Fig. 8. Two-layer cantilever beam: generic post-elastic configuration.

It is straightforward that this solution depends linearly on the load
P which is still unknown. On the other hand, the configuration un-
der consideration is physically compatible if and only if the elastic
limit condition at the boundary between the two portions is
satisfied:

Dte = Ptpe = Pe for z = L. (51>
Solving Eqs. (49)-(51) for G, Cjpe (j =1,17) and P gives the two sets
of constants contained in the solution for the elastic and post-elastic
portions, respectively, and the value of the load for which the con-
figuration under consideration, corresponding to the prescribed I, is
equilibrated.

The procedure detailed above has been implemented in an
incremental algorithm where at each step the length of the elastic
portion is decremented of, say, dI with respect to the length at the
previous step until the entire interface undergoes the post-elastic
regime (l,=0). For each step the maximum deflection for z=1,
say Wpax, 1S also calculated.

The mechanical response of the two-layer cantilever beam
with interlayer slip and bi-linear interface law is summarized
through load-maximum deflection curves, as shown by dimen-
sionless diagrams in Figs. 9-11. A first linear branch describes
the initial elastic response of the system according to the global
stiffness given by Eq. (46) together with (47). Each point of the
subsequent nonlinear branch is related to a specific equilibrated
and physically compatible configuration of the beam having a
portion of length monotonically decreasing from I to 0 in the elas-
tic interfacial regime and the remaining part of length monotoni-
cally increasing from O to [ exhibiting a post-elastic interfacial
regime. It is straightforward that geometry and material proper-
ties of both layers and interface strongly affect the response of
the composite beam. In this paper, in particular, the effects of
the interface parameters are investigated. Figs. 9-11 show the re-
sults obtained for [=150cm, b=12cm, h=5 cm, E =10,000 MPa
and G =500 MPa and different values of A.=50, 100, 200 MPa,
pe=1,2,4kN/cm and Ap/A. = 0.1,0.4. These results permit several
interesting conclusions.
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Fig. 9. Two-layer cantilever beam with elastic-brittle interface: load-maximum
deflection curves for varying interfacial elastic stiffness.
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Fig. 10. Two-layer cantilever beams with elastic-brittle interface: load-maximum
deflection curves for varying interfacial elastic limit shear traction.

Fig. 9 shows the effects of the initial elastic stiffness A, of the
interface on the global response of the two-layer cantilever beam
with elastic-brittle interface in terms of load-maximum deflec-
tion curves. This response results to be brittle with a prominent
snap-back branch and depends only on A.. On increasing A, the
initial global stiffness increases and the response tends to that
of a beam composed of two perfectly bonded layers (dashed line),
whereas a slight decrease in the strength is produced. A weak
influence on the post-elastic response, which always tends to that
of a beam composed of two debonded layers (dotted line), is evi-
dent. In order to show the decreasing extent of the elastic portion
of the interface during the process, the points corresponding to
two prescribed configurations with [/l=0.67 and 0.33 are
marked, in addition to the point representing the elastic limit
(lefl=1).

Fig. 10 shows the effects of the elastic limit shear traction p, on
the global response of the two-layer cantilever beam with elastic-
brittle interface. The response is again brittle and bounded upperly
by that induced by a perfectly elastic interface (dashed line) and
lowerly by the response of a beam composed of two debonded lay-
ers (dotted line). It is evident that the value of p, affects only the
limit of the elastic phase of the global response; in particular, on
increasing p., the elastic limit load increases.

Finally, the effects of the hardening stiffness A, of the interface
on the global response of the two-layer cantilever beam are shown
in Fig. 11 with reference to elastic-hardening interfaces. As ex-

0.3
10-3P/ED? | 7
7
K |7/ 0.4
¢z
= elastic s
A"' =30 MPa interface - - 0.1 i
02 + p.=1kN/cm PR ~
_ -
® clasticlimit - "
o A1 4,-0
= " perfectly plastic
interface
0.1 +
w’max/b
0 . + 2 } L } L } N
0 0.2 0.4 0.6 0.8 1

Fig. 11. Two-layer cantilever beams with elastic-hardening interface: load-max-
imum deflection curves for varying interfacial hardening stiffness.

pected, Ay affects only the post-elastic response. Once again, we
have a first linear elastic branch; whereas the post-elastic response
is characterized by a hardening branch. Increasing A, produces a
transition between the lower limit case of the beam with elastic-
perfectly plastic interface (dotted line) and the upper limit case
of the beam with perfectly elastic interface (dashed line).

To conclude, this set of results has been compared with that ob-
tained according to the simplified model, based on Euler-Bernoulli
beam theory, discussed in Section 2 and detailed in Appendix A.
The comparative analysis of the two sets of results for both static
and kinematic variables of the problem has shown only quantita-
tive differences for the deflections and, as a consequence, for the
global stiffnesses of the two-layer cantilever beam. In particular,
neglecting the effects of shear deformation leads to an overesti-
mate of the global stiffness which is particularly significant in
the case of rather stiff connections between the two layers. The
percentage error provided by neglecting shear effects (referring
to Euler-Bernoulli beam theory rather than Timoshenko beam the-
ory) in the approximation of the global stiffness of the composite
beam ranges from about 3% to about 10% depending on the inter-
facial stiffness. The highest degree of accuracy is obtained for a
beam composed of two debonded layers (3% error); the lowest de-
gree of accuracy is found for a beam composed of two perfectly
bonded layers (10% error).

7. Conclusions

A novel closed form solution of the problem of two-layer beams
with interlayer slip is presented. The layers are modeled as linearly
elastic Timoshenko beams; a linear non proportional law relating
interfacial shear tractions and slips is chosen to describe the inter-
facial behavior. Explicit expressions for all static and kinematic
variables are derived.

The case study of a two-layer cantilever beam with different bi-
linear interface laws and subjected to a load at the free end is ana-
lyzed and a parametric analysis performed to investigate which
interface parameters have the main influence on the response of
the composite beam. As expected, in order to optimize the partial
composite action in two-layer beams with interlayer slip before
the composite system reaches the elastic limit, the joint must pres-
ent both high elastic stiffness and resistance. Moreover, only an
elastic-hardening interface can guarantee a sufficiently ductile
subsequent behavior.

Employing the novel closed form solution presented, additional
more interesting practical applications involving not only different
boundary and loading conditions, but also suitable multi-linear
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approximations of nonlinear behaviors for layer materials and/or
interface can be also analyzed. However, depending on the com-
plexity of such multi-linear approximations, a more complicated
incremental-iterative calculation algorithm than the incremental
one described here must be followed and is worth a detailed dis-
cussion in a subsequent paper.
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Appendix A. Simplified fundamental solution according to
Euler-Bernoulli beam theory

As noted in Section 2, a simplified formulation based on
modeling layers as linearly elastic Euler-Bernoulli beams can be
developed as special case of the formulation proposed. The main
differences between the two models and related fundamental solu-
tions are discussed here.

According to Euler-Bernoulli beam theory, the shear strains of
the two layers (i = 1,2) are neglected; from the second of compat-
ibility Eq. (3), then, rotations yield:

Qi =-W,. (A1)

As a consequence, the connection in the transverse direction being
assumed perfect (Eq. (8)), the two layers undergo not only equal
deflections w (Eq. (9)) but also equal rotations:

Q1= = =-W.

Moreover, neglecting shear effects means assuming infinite
shear stiffnesses for the layers (K,; - oo, i=1,2). The equations
governing the simplified model can then be straightforwardly de-
rived by setting K = K.; = 0 in Egs. (11) and (13). In particular,
Eq. (11) is replaced by the following first order differential
equation:

(K + K3 )pa+ (Kpha = K1y )p; = g,

with g, given by (12); whereas, Eq. (13) remains as it is.

In the case of particular composite beams consisting of two lay-
ers having geometry and material properties satisfying the condi-
tion (15), Egs. (A.3) and (13) become uncoupled so their solution
is straightforward. In particular, Eq. (A.3) reduces to an algebraic
equation whose solution can be written as in Egs. (18) and (19)
having set C; = C; = 0; whereas Eq. (13) reduces to Eq. (17) whose
general solution, given by Egs. (20) and (21), contains three arbi-
trary constants, say G; (j =3,...,5).

In the general case of composite beams that do not satisfy con-
dition (15), Eq. (A.3) is first solved for the first derivative of the
interfacial shear tractions:

pi = (Kl — 1<;~21hz)71 = (K, + K33 )Pa = ]

which, substituted in Eq. (13), leads to a second order linear differ-
ential equation with constant coefficients for the interfacial normal
tractions that can be written as:

(A2)

(A3)

(A4)

Py +bp, =¢, (A5)

where:

~ -1
b=-A {(K; + K;;) + KK, (K;} + 1<;;) (hy + hz)z}, (A6)

e= (K4 +K4) [ (k2 — K i)

+0A (K + K+ K+ K0k ) ] (A7)
with ¢, and g, given by (12) and (14). The general solution of Eq.
(A.5) can assume three different forms depending on the interfacial
regime:

C; cosh(az) + C4 sinh(az) +p, for A>0

Pp =< C3+ Caz+¢2%/2 forA=0, (A.8)
C; cos(0z) + Cq Sin(0z) + Py forA<O

having defined

a=+/|b| and P, =¢/b. (A.9)

Finally, from integration of Eq. (A.4) the interfacial shear tractions
follow and can be written as in Eq. (34) having set K,/ =K} =0.

Analogously to what detailed in Section 4, closed form expres-
sions for all the remaining unknowns (internal forces and displace-
ments) can be derived and assume the forms of Eqgs. (35)-(37)
having set K| = K;j = 0.

To sum up, the general solution of the problem of equilibrium of
two-layer beams with interlayer slip according to the simplified
model contains 15 arbitrary constants (G; with j=3,...,17) to be
determined by imposing 15 conditions.

With reference to a segment of composite beam having length
L,, the prescription of boundary conditions at both ends z=0 and
z =L, of the segment gives only 4 + 4 conditions. The kinematic or
corresponding static quantities on which such conditions can be
imposed are w, @, uy, U, or, alternatively, Q= Q; + Qx, M = My + M>,
Ny, N. The first boundary condition on w or, alternatively, on the
resultant shear Q follows from the assumption of perfect connec-
tion in the transverse direction so that the two layers undergo
equal deflections. The second boundary condition on ¢ or,
alternatively, on the resultant moment M follows from both the
Euler-Bernoulli assumption of negligible shear strain and perfect
connection in the transverse direction so that the two layers
undergo equal rotations.

Seven additional relations are obtained as detailed in Section 5
for the special case of composite beams having geometry and
material properties satisfying Eq. (15). In particular, they are given
by Egs. (39) and (41) for A # 0 or by Egs. (39) and (43) for A=0
having set K| = K; = 0.
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