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INTRODUCTION

Let R be a left Artinian ring with radical J. Let R=/1,oI,2--- 21 _,
I =0 be a composition series of the two-sided R-module R. R is called an
exact ring if, for each i/, every endomorphism of the left R-module 7, /7, is
given by the right-multiplication of an element of R. The notion of the
exactness is independent of the choice of the above composition series and is
left-right symmetric; in particular, every exact ring is right Artinian too. Let
e,/ be primitive idempotents of R, and let E, F be the injective envelopes of
the simple left R-module Re/Je and the simple right R-module fR/f7, respec-
tively. Then we show that if R is exact then both £ and F have finite
composition lengths which are the same as that of the right ideal eR and the
left ideal Rf, respectively, and more precisely, the following are equal: (1} the
multiplicity of the simple left R-module Rf/Jf in (the composition factor
module series of) F, (2) the multiplicity of fR/fJ in eR, (3) the multiplicity of
eR/eJ in F, (4) the multiplicity of Re/Je in Rf. Every commutative Artinian
ring as well as every semi-simple Artinian ring is obviously an exact ring,
while a typical example of noncommutative and nonsemisimple exact rings is
given by split algebras, i.e., those finite-dimensional algebras R over a field K
for which the factor algebra R/J is the direct sum of full matrix algebras
over K. For another interesting example, we show in Section 2 that every
serial ring is exact. This is based on a certain property of rings having
injective left ideal #0, and in this connection, we give a characterization of
serial rings that R is serial if and only if every factor ring of R has an
injective left ideal #0. This characterization may be of interest when
compared with the well-known theorem that R is serial if and only if every
factor ring of R is of QF-3 type. A conjecture is proposed: If R is an exact
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ring, then R is self-dual, that is, the endomorphism ring of the injective
envelope of the left R-module R/J is isomorphic to R itself.

1. Exact RINGS

Throughout this paper, we assume that R is a left Artinian ring with
identity element 1 and J the radical of R. Let R = R/J be the semi-simple
factor ring of R and R = ®R2 @ - @R the direct decomposition of R
into orthogonal simple components. For any primitive idempotent element e
of R its coset & modulo J is also a primitive idempotent element of R and
contained in one of R ’s. For each a let e, be a primitive idempotent element
of R such that &, € R,,. Then Ré, is a simple left R-module, and the left R-
module R, is the direct sum of, say n(a) copies of Reé_. Every simple left R-
module is isomorphic to some Ré,, and  Ré, = RReB if and only if a =p.
Moreover, R is a direct sum of indecomposable left ideals each of which is
isomorphic to one of Re,’s and the multiplicity of Re, in the decomposition
is n(a), i.e., we have ;R = 3" @ p(Re,)"®. The similar facts are also true for
simple right R-modules ¢, R and indecomposable right ideals e, R; in
particular, we have (R )z = (e R and R, =Y @ (e, R)H*.

Let M be a simple two-sided R-module. Since J is nilpotent, M is then
annihilated by J on both left- and right-hand sides and so can be regarded as
a simple two-sided R-module. Since furthermore M = RM = ZR M and
each R_M is a two-sided R-submodule of M, it follows that Ry M =#0
whence R M = M for some A; but then R M= R 1M =0 for every a = 4.
Thus A is the only index such that R M M. Slmﬂarly, there is a unique
index p such that MR =M, and we have MR =0 whenever a # p. This
means that M can actually be regarded as a smple two-sided R,-R -module.
We shall call R; and R the left and the right simple components belonging
to M, respectively. Smce R is a simple ring, R is considered a subring of
the endomorphism ring D of the left R, module M. We call M exact if
R =D, i.e., if every endomorphism of the left R-module M is given by the
r1ght multiplication of an element of R. Now since R, is a direct sum of
simple left ideals isomorphic to Ré,, the left R ,-module M is also a direct
sum of copies of Ré,, which implies clearly that M is a (projective)
generator. Therefore, it follows from the Morita theorem [4, Lemma 3.3] that
if M is exact then the right R, ,-module M is finitely generated and projective
and R coincides with its endomorphism ring. Thus we know that the notion
of the exactness for M is left-right symmetric and besides that if M is exact,
then M is a progenerator with respect to both R , and R_p.

LEMMA 1. Let M be an exact simple two-sided R-module with left simple
component R, and right simple component R Then
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(i) xMe, = Re,, e, My = ¢, Ry,
(i) Hom(xM,  Ré,)= Re,, Hom(zM,Re,)=0 if a#4i,
Hom(M,, ¢ RR)R ~e, Ry, Hom(M, é, R) =0ia+#p,
(iii) M= R(Reﬁ)n(p)a M, = (epR);l{(A)‘

Proof. (i) Since €, is a primitive idempotent element in the
endomorphism ring R, of M, Me, = Mé, is an indecomposable submodule
of M. But M and hence zMe, is completely reducible, so it follows that
Me, is a simple submodule of M. Thus Me, = Re,. By left-right
analogy, we can prove that e, M, ~é_R,.

(i) By Morita [4, Theorem 3.4], the functor Homg (M, )=
Hom(zM, ) gives an isomorphism from the category of left R;- -modules onto
the category of left R -modules. In particular, since Ré 4 1s a simple left R,-
module, the correspondmg Hom(pM, zRé;) must be a simple left R -module;
but Re is (up to isomorphism) the only simple left R -module, so that we
have  Hom(yM, zRé;) = Re,. Let now « 7& A Then  that
Hom( M, ,Ré,)=0 follows from the fact that (R, % (R, and M is a
direct sum of copies of ReJ1 The other part can be proved in the similar
way if we observe Homg (M, ) instead of Homg (M, ).

(iii) Consider again the isomorphism functor Homg (M, ). Since
Hom(zM, (Re,)=,Re, by (i), we have Hom(RM, R(RE)")
(Hom( M, zRE,)"® = (RE,)"” = R, . On the other hand, that R, is the

endomorphism ring of ;M means that Hom(RM, M= RR Thus it fo lows
that L(R&,)"" =~ M. Slmllarly, we have that (2, R)2Y = M, by considering
Homg (M, ).

Now the left Artinian ring R has a two-sided composition series, say

R=]o,2---2]_,0I,=0;

s—1
each I, is a two-sided ideal of R and each factor module 7, ,/I; is a simple
two-sided R-module. R is called an exact ring if each simple two-sided R-
module [, /I, is exact. By the Jordan—Holder theorem, the composition
factor module series I/I,,1,/1,,....,1,_,/I is, up to isomorphism and order,
uniquely determined by R. Therefore, the notion of the exactness for R
depends only on R and independent of the choice of the composition series.
We now fix the above composition series once for all, and let R, ;, and Rum
denote the left and the right simple components belonging to I;_,/I;, respec-
tively. If R is exact, then the right R-module 7, _,/I; is of finite length
(indeed, its length is n(A(/)) by Lemma 1(iii)) for each { and consequently the
right R-module R is of finite length, i.e, R is right Artinian. Thus the
concept of the exactness for R is left—right symmetric.
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THEOREM 2. Let R be an exact ring. Then, for any indices i and a,
)Ui_ieq/lie,) = gRE,;, or I,_ e, = Ie, according to a = p(i) or a # p(i). In
particular, the series of left ideals Re,=1I,e,>Ile,> - DI,_,e,>
l.e, =0 gives a composition series of the left ideal Re, if those terms Ie,
Jor which a = p(i) are deleted out of the series.

Proof. If we observe that I, e, NI;=1I,e,, we have the isomorphism
’Ui_qen/1ie,) = p(Ui_ye, + 1)/I) = xI;_\/I}) e,. Since I;_,/I; is an exact
simple two-sided R-module, it follows from Lemma 1(i) that .(/,_,/I;) e, =
#R&, ;) if @ =p(i). On the other hand, since &, € R,,, we have (I,_,/I,) e, =
(I;_4/1,) &, =0 if a # p(i). This proves our theorem.

From Theorem 2 and its left-right analogy follows

COROLLARY 3. Let R be an exact ring. Then, for any indices o and J3,
the following are equal:

(a) The number of indices i such that A(i)=a and p(i) = p.

(b) The multiplicity of the simple left R-module Ré, in the composition
Jactor module series of the left ideal Re, (i.e., the left Cartan invariant of R
corresponding to f3, a).

() The multiplicity of the simple right R-module ;R in the
composition factor module series of the right ideal e R (i.e., the right Cartan
invariant of R corresponding to a, ).

Let D, be the endomorphism ring of the left R-module I, ,/I,. We regard
R, as a subring of D,. Then Rosenberg and Zelinsky [8, Lemma 3]
virtually proved that the injective envelope E, of the simple left R-module
Eéa is of finite length if and only if D, is finitely generated as a left R o)
module for every i such that A(i) = a. Therefore, as a particular case, if R is
exact, then E is of finite length for all «. However, by using their method,

we can get the following more precise result:

THEOREM 4. Let R be an exact ring. For any indices i and o, let r (I;)
denote the right annihilator of I, in the injective envelope E, of the simple
left R-module Ré,. Then n(r,(I)/r.(I;_))) ;Rl—ie‘p(i) or r,(I)y=r,(,_))
according to a=A(l) or as A(i). In particular, the series E =r_(I)>
Fols_) 2 - 2r () 21, (I,) =0 gives a composition series of  E, if those
terms r,(I;) for which a + A(i) are deleted out of the series.

Proof. Consider the exact sequence of two-sided R-modules

0 xUim/Ir — R/ g = gR/T;_ 1)~ 0.
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Since E, is injective, we have then an exact sequence

0 - Homy(R/I,_,,E,)— Homg(R/I,.E,)
- gHomg(I;_ /1, E,) - 0.

The second and the third terms of this sequence are naturally identified with
r d;_y) and r {I,), respectively, while the fourth term coincides with
Homy (I, /I;,Re,) since z(I,_,/I,) is completely reducible and Ré, is the
only simple submodule of  E,. Thus we have p(r (,)/r.(J;_))=
<Hom,(Z;_./1;, Re,). Since, however, I, /I, is an exact simple two-sided R-
module, the right side of this isomorphism is isomorphic to Rﬁépm or =0
according to a = A({) or o A({) by Lemma 1(ii). This completes the proof
of our theorem.

The following is an immediate consequence of Theorem 4 and its left—right
analogy:

CoroLLARrY 5. Let R be an exact ring. Let a and 8 be any indices, and
let £, and F; be the injective envelopes.of the simple left R-module Ré, and
the simple right R-module &;R, respectively. Then the following are equal:

(a) The number of indices i such that A(i)=a and p(i)=§.

(d) The multiplicity of the simple left R-module Ré, in the composition
Jactor module series of E .

(e) The multiplicity of the simple right R-module &, R in the
composition factor module series of F.

Remark. According to Corollaries 3 and 5, (a)-(e) given there are all
equal if R is exact.

ExamriE 1. Every commutative Artinian ring is exact. This is because
if R is a commutative ring, then every simple R-module is isomorphic to the
factor module R/I modulo a maximal ideal J of R and its endomorphism
ring is the factor field R/I.

ExamrLE 2. Every Artinian semi-simple ring R is exact. For, in this
case, the simple components R,,R,,..R, of R form the two-sided
composition factor module series of R and the endomorphism ring of each
left R-module R, is the simple ring R, itself.

ExampPLE 3. Let R be a finite-dimensional algebra over a field K; R is
then a left and right Artinian ring. R is called split if each simple component
R, of R=R/J is a full matrix algebra over K (which is necessarily of degree
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n(a)). Now let R be split, and consider two simple components R, and R;.
If we denote by M|, ; the set of all n(a) X n(f) matrices over K, then M, ; is
regarded as a two-sided R, -R smodule and indeed it is an exact simple two-
sided module, as can be seen easily. Moreover, every simple two-sided R -
RB module (which is element-wise commutative with K) is isomorphic to
M, ;. For, such a two-sided module is, as is well known, converted into a
simple left module of the tensor product algebra R X R s over K (because R, 3
is the opposite algebra of itself), but this algebra is also a full matrix algebra
over K (of degree n(a) n(f)) and so has, up to isomorphism, only one simple
left module. Thus we know that every split algebra is an exact ring. It
follows in particular that if R is a split algebra, then (a)-(c) in Corollary 3
are equal. However, the equality of (b) and (c) was already observed by
Nakayama [5, Theorem 3], and indeed it was shown that these conditions
are also the same as the dimension of e, Re; over K. On the other hand, in
view of the fact that M, ; is the only simple two-sided R —R -module for
split algebra R, we have that (a) is nothing but the multlpllclty of M, ; in
the two-sided composition factor module series of R.

Remark. Let K be a commutative Artinian ring and R a finite algebra
over K, that is, R is an Artinian algebra. Let N be the radical of K and F the
injective envelope of the K-module K/N (in case K is a field, F obviously
coincides with K). Let @ = Hom, (R, F). Then Q is converted into a two-
sided R-module in the natural manner, and, as a left R-module, Q is a
finitely generated injective cogenerator whose socle is isomorphic to R = R/J
and whose endomorphism ring coincides with (the right operator ring) R
(Azumaya |1, Theorem 19]). Therefore Q defines a Morita duality between
the category of finitely generated left R-modules and the category of finitely
generated right R-modules [4, Theorem 6.4; 1, Theorem 8]. Moreover, the Q-
dual Homg(Re,, Q); (=Hom(RE,, F)g) of 1R, is isomorphic to €, R, and
the Q-dual ;Hom,(&,R, Q) of &, R, is 1somorph1c to pRe, for every a [1,
Lemma 2, p. 274]. We now consider the projective right ideal e, R. Since it
has a unique maximal right subideal e, J and (e, R/e,J)g = &, Ry, its Q-dual
is an injective left R-module having a unique simple submodule, which is
isomorphic to Ré,. Thus the Q-dual of e, R is isomorphic to the injective
envelope E,, of the simple left R-module Ré,. Therefore we know that for
each £, (¢) in Corollary 3 is equal to (d) in Corollary 5 (even if R is not
exact). Similarly, for each f, the Q-dual of the left ideal Re, is isomorphic to
the injective envelope F; of the simple right R-module &, R, and therefore (b)
in Corollary 3 is equal to (e¢) in Corollary 5 for every . Taking these
phenomena into consideration, we are now tempted to conjecture that every
exact ring is self-dual, that is, if R is an exact ring and Q the injective
envelope of the R-module R = R/J, or equivalently, Q = 3" @ E"@, then the
endomorphism ring of @ is isomorphic to R.
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2. SERIAL RiINGS

We assume again that R is a left Artinian ring and J, R, R, e, n(a), k,
etc. have the same meanings as in Section 1. Suppose now that R has a
nonzero injective left ideal L. Then L is a direct summand of R, that is,
R=L®L' for a suitable left ideal L’ of R. We refine this decomposition
into an indecomposable direct decomposition of R. Each indecomposable
summand is then isomorphic to one of Re_’s, and it is injective provided it is
a summand of L. Thus we know that R has a nonzerc injective left ideal if
and only if Re, is injective for some a.

PROPOSITION 6. Let Re, be injective, and let M be a faithful left R-
module. Then M has a direct summand isomorphic to Re,,.

Progf. Since R is left Artinian, Re, contains a simple left subideal § .
Then that Re, is indecomposable and injective means that Re_ is the
injective envelope of S, and hence S, is a unique simple left subideal of
Re, . Since M is faithful, there is a u € M such that §_u % 0. Then the right
multiplication of u gives a homomorphism ,Re — ;M whose kernel does not
contain S, and so is 0. Thus the homomorphism is a2 monomorphism, which
means that M contains the isomorphic image Re_ u of Re,. Since Re, and
hence Re_u is injective, this is a direct summand of M.

CororLarY 7. Let R have an injective left ideal +0, and M afaizhful
indecomposable left R-module. Then there is ¢ unique a such that Re,
injective, and we have that pRe, = M; M is necessarily injective, offnite
length, and has a unique maximal submodule as well as a unique simple
submodule.

Consider now a decomposition of R into a direct sum of indecomposable
left ideals. Then the multiplicity of Re, in the decomposition is n{a) for
every o, and thus the decomposition can be written in the following form:

n(l) ) n(2) . (k)
R=> OLY® Y OLY® @ Y ®LY,

i=1 i=1 l*l

where (L = L@ = ... = LM~ Re for every a=1,2,.,k

THEOREM 8. Let Re, be injective. Then the socie of the left ideal
Y@@ LD s an exact szmple two-sided ideal of R.

Proof. For simplicity, denote n and L, for n(a) and L, respectively,
and let L=L, QL,® - @L,. Then, for each i (=1, 2,..,n), L,_RRe,x

and so L, is left injective and has a unique simple left subideal 5;, which is
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isomorphic to the unique simple left subideal S, of Re,. Moreover, § =S5, ®
S,® .- @S, is the socle of the left ideal L.

First we show that .S is a two-sided ideal of R. Suppose not, i.e., suppose
that there is an @ € R such that Sa ¢ S. Since Sa=S,a+ S,a+ -+ + S,a,
this implies that S;a & S for some i. We fix this i/, and consider the
epimorphism f: ;L;— L,a given by the right-multiplication of a. If
Ker(f)+0, then it contains S;, i.e., S;a=0, which contradicts to that
S;a ¢ S. Thus Ker(f) =0, and f'is an isomorphism. Therefore, the left ideal
L,a is also injective and S;a is a unique simple left subideal of L;a.
Consider now the intersection L ML;a. If this is nonzero, then it must
contain S;a; therefore we have S;a — L whence S;a — S, which contradicts
again to our assumption that S;a & .S. Thus LM L;a=0 and so we have
L+La=L®La=L,®L,®---®L,DL;a. This left ideal is injective,
because so is each summand. Therefore it is a direct summand of R, i.e., R =
LOL,® - ®L,®L;a®L’ for some left ideal L'. If we replace L’ by
an indecomposable direct decomposition of L’, then we have an indecom-
posable direct decomposition of R in which the multiplicity of Re, is at least
n + 1. But this is a contradiction, due to the Krull-Schmidt theorem. Thus,
in any case, our assumption that Sq & .S is impossible. This shows that S is
a two-sided ideal of R.

Next we show that S is a simple two-sided ideal. Namely, let T be a
nonzero two-sided ideal of R such that 7 < S. Since S is a direct sum of
simple left ideals S, S,,..., S, isomorphic to S, T has the same structure,
that is, 7' is also a direct sum of simple left ideals isomorphic to S,.
Therefore it follows that each S, is a homomorphic image of T, i.e., there is
an epimorphism g;: xT— ,S;. Since S;c L, and L, is left injective, there
exists a b, € L, such that g,(x) = xb, for all x € T, and this implies that S, =
Th;c T. Since this is the case for every i, we have S=S,+S,+ -+
S, < T whence S = T, which shows that S is a simple two-sided ideal.

Finally let A: S — xS be any endomorphism of ,S. Since S < L and ;L =
L, ®L,®---®L, is injective, there exists a ¢ € L such that A(y) = yc for
all y € S. This shows that the simple two-sided R-module S is exact.

COROLLARY 9. Let R be a left Artinian ring such that every factor ring
of R has a nonzero injective left ideal. Then R is an exact ring.

Proof. Since R itself has a nonzero injective left ideal, R has an exact
simple two-sided ideal I, by Theorem 8. If I, + R, then consider the factor
ring R/I,. Since it is left Artinian and has a nonzero injective left ideal by
assumption, it has an exact simple two-sided ideal, say I,/I, again by
Theorem 8, where I, is a suitable two-sided ideal of R containing I,.
Continuing in this way, we have a properly ascending chain I, I, cl,c .-
of two-sided ideals of R such that I,,I,/I,,1,/I,,.., are exact simple two-



EXACT AND SERIAL RINGS 485

sided R-modules. But since R is left Artinian (whence Noetherian) the chain
terminates at, say sth step, which means that /=R, Thus [ > [,_, > .- >
I, o1, >0 gives a two-sided composition series of R, and this shows that R
is an exact ring.

Now a left Artinian ring R is called a left OF-3 ring if for every simple left
ideal S, of R its injective envelope E(S,) is isomorphic to Re_ for some ¢.

ProrosiTion 10.  Let R be a left Artinian ring such that each Re, has a
unigue simple left subideal and the injective envelope of every simple left
ideal of R has a unigue maximal submodule. Then R is a left QF-3 ring.

Proof.  Let S, be a simple left ideal of R. Since R is a direct sum of left
ideals each of which is isomorphic to one of Re,,Re,,..,Re,, S, is
isomorphic to the unique simple left subideal S, of Re, for some a. Consider
then the injective envelope E(Re,) of this left ideal Re,. Since Re, is
essential over §,, E(Re,) is also essential over S, and therefore is an
injective envelope of S, . It follows then that E{Re,) is isomorphic to E{S,}
and so has a unique maximal submodule. But this fact implies that E{Re,,) is
a homomorphic image of Re, for some f; indeed, if U is the unique maximal
submodule of E(Re,) and if ((E(Re,)/U) = z(Ré&,), then Re, is the projective
cover of E(Re,). Let f: Re;— E(Re,) be an epimorphism. The inverse
image /' ~'(Re,) of the submodule Re, of E(Re,) is mapped onto Re, by f.
Since, however, Re, is projective, it follows that Ker(/') is a direct summand
of f~'(Re,), ie., f '(Re,)=Ker(f)@ V for a suitable left subideal ¥ of
Re;. V is nonzero and hence contains the unique simple left subideal S of
Re;. This and the fact that Ker(f)N ¥V =0 imply that Ker(f) cannot
contain S, and therefore Ker(/) =0, i.e., fis an isomorphism. Thus ,Re; =
L (Re,)= ,E(S,), which proves that R is a left QF-3 ring.

Let M be a left R-module. M is called uniserigl if M has a unique
composition series. In this case, the finite number of members of the
composition series exhaust all submodules of M and so every submodule of
M and every homomorphic image of M are uniserial too. Suppose M is of
finite length [ Then, as is well known, the following conditions are
equivalent:

(a) M is uniserial,

(b) The upper Loewy series M >JM >J*M > ..-oJ'M (=0) is a
composition series of M,

(c) The lower Loewy series (M=) ry,(J) D r (/'™ )2 2r) 20
is a composition series of M, where r,,{ ) means the right annihilator in M.

Thus if M is uniserial then JM =r,(J'™Y), JPM = ry,(J' "), J''M =
r,(J) and [ is the least positive integer such that J'M = 0. Now R is called a
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serial ring (generalized uniserial ring in the terminology of Nakayama [6]) if
the left ideal Re, as well as the right ideal e, R is uniserial for every
a=1,2,.., k. Clearly every serial ring is both left and right Artinian. It was
proved by Nakayama [6, Theorem 17] that if R is serial, then every left R-
module is a direct sum of submodules each of which is a homomorphic
image of one of Re,’s, and in particular every indecomposable left R-module
is a homomorphic image of some Re, and therefore is uniserial. But the
injective envelope of every simple left R-module is indecomposable and so
uniserial. Therefore it follows from Proposition 10 that every serial ring is a
left QF-3 ring. This is of course included in the theorem that a ring is serial
if and only if every its factor ring is a left QF-3 ring, which was obtained by
Morita [4, Theorem 17.8], Wall [10, Theorem 2] (finite-dimensional algebra
case), and Fuller [3, Theorem 3.6] (Artinian ring case). Since, however, no
proof is given explicitly to the “only if” part of the theorem in any of these
papers, the above observation might not be redundant. (Another proof for
the proposition is given by using Fuller [2, Theorem (4.1)].) Now, clearly
every factor ring of a serial ring is serial and every left QF-3 ring has a
nonzero injective left ideal. Thus from Corollary 9 follows

THEOREM 11. Every serial ring is an exact ring.

We now want to prove the following characterization of serial rings:

THEOREM 12. Let R be a left Artinian ring. Then the following
conditions are equivalent:

(1) R is a serial ring.
(2) Every factor ring of R has a nonzero injective left ideal.

Proof. We need only to prove that (2) implies (1), so that we assume (2).
Let M be any indecomposable left R-module. Let 7 be the annihilator of M in
R. Then [ is a proper two-sided ideal of R, and M can be regarded as a
faithful indecomposable left R/I-module. But since R/I has a nonzero
injective left ideal by assumption, it follows from Corollary 7 that M has a
unique maximal submodule M, and a unique simple submodule U. If
M, +# 0, then M, necessarily contains U and therefore is indecomposable.
Then M, must contain a unique maximal submodule M,. If M, + 0, then M,
contains U and so is indecomposable. Hence M, has a unique maximal
submodule M,. In this way we have a sequence M,,M,,M,..., of
submodules of M such that each member is unique maximal in its preceding
member. Since, however, M is of finite length by Corollary 7, the sequence
must terminate, or equivalently, there is a positive integer » such that M, =0
and M, M, M,,..., M, gives a unique composition series of M. Thus we see
that condition (2) implies that every indecomposable left R-module is
uniserial and in particular
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(3) The left ideal Re, and the injective envelope E,, of the simple left
R-module Ré, are uniserial for every a =1, 2,..., k.

It is, however, proved by Fuller [3, Theorem 5.4] that this condition (3)
implies condition (1), and thus the proof of our theorem is completed.

Remark. By virtue of Theorem 12, it turns out that Corollary 9 and
Theorem 11 represent one and the same fact.

Finally, it might be of some interest to give another proof to the
implication (3)= (1) (Fuller’s theorem) by using the following property of
exact rings:

ProrosiTioN 13. Let R be an exact ring. Then, for any a, the right ideal
e, R is uniserial if and only if the left R-module E , is uniserial.

Proof. Let R=I[,>1,>.--2I_, D21 =0 be a two-sided composition
series of the exact ring R and let R, and R o be the left and the right
simple components belonging to I, _,/I,, respectively. Let ¢ be the number of
those integers { between 1 and s for which a = A(¥), and let (1), i(2)...., {{) be
these ¢ integers numbered in increasing order: /(1) < #(2) < --- < i{#}. Then,
according to Theorems 2 and 4, the corresponding series ¢, R De f;,, D
elin > Dedyy, =0 and E, =r,U;) 21l )2 27,Uiy) 20
give composition series of e_ R and E, respectively, Where r,( ) means the
right annihilator in £ .

Assume that e, R is uniserial. Then we have e,/ =e_ I, for every j
(=1, 2,...,£). On the other hand, r (/) =r,(e, /) and r,(I; ;) =role 4y ;)
for every j by [3, Lemma 1.1(a)]. Therefore we have r (/') =r, (/) for
every j. Thus the series E,=r (J)>r (J )D--Dr (/)20 is a
composition series of £, which means that £ is uniserial.

Conversely, suppose that E, is uniserial. Then we have r,(J)) =r,(J;;)
for every j. But r (F)=r,{e,J’) and r,(I;;) =r.{e,1;,). as seen above.
Moreover, both e,/ and e,{, are, respectively, the left annihilators of

a”i(j .
r. (e, J’) and ra(eall(j)) in e R by [3, Lemma 2.3(b}]. Thus we have ¢’ =
e Iy for every j, and therefore e,Roe, Joe J" oD, J'=0 gives a

composition series of e, R. This means nothing but that e, R is uniserial.

Having established Proposition 13, we now assume condition (3) above.
Then in particular each Re, has a unique simple left subideal and each £
has a unique maximal submodule. Hence, by Proposition 10, R is a left QF-3
ring and so has a nonzero injective left ideal. Let 7 be any proper two-sided
ideal of R. Then the factor ring R/I also satisfies the same condition as (3};
this is because of the fact that if Ré, is right annihilated by 7, then the left
R/I-modules Re,/le, and r, (I} become, respectively, the projective cover
and the injective envelope of the simple left R/I-module Re, by |3,
Lemma 4.5] {or by [l, Theorem 17]). Thus it follows that R/I also has a
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nonzero injective left ideal, and therefore by Corollary 9 R is an exact ring.
This, together with the assumption that each E, is uniserial, implies that
each e, R is uniserial by Proposition 13. Since Re, is uniserial also by
assumption, we show that R is a serial ring. Thus we complete the second
proof to the implication (3)=- (1).

Remark. A uniserial (left or right) R-module is called homogeneously
uniserial if its composition factor modules are all isomorphic, while R is
called a wuniserial ring if the left ideal Re, as well as the right .ideal e, R is
homogeneously uniserial for every a. (Although we use here the conventional
terminology of uniserial ring, this is clearly inadequate at the present time.
We could change it to homo-serial ring, for instance.) It is the well-known
theorem by Nakayama, Ikeda, Osima, and Wall that R is uniserial if and
only if every factor ring of R is a quasi-Frobenius ring (Nakayama [7,
Lemma 2], Wall [9, Theorem 2]). We now want to point out that we can
deduce from Corollary 7 a somewhat simplified proof to the “if” part of the
theorem. To do so, let R be a quasi-Frobenius ring. Then the left R-module
R is injective, and hence its direct summand Re, is injective for every
a =1, 2,..., k. Therefore, if we assume that there is a faithful indecomposable
left R-module, then it follows from Corollary 7 that k£ = 1. Thus we have

ProposiTiON 14. Let R be a quasi-Frobenius ring and let R have a
Jaithful indecomposable left module. Then R has, up to isomorphism, the only
simple left R-module (i.e., R is a primary ring).

Assume now that every factor ring of R is quasi-Frobenius. Then, of
course, condition (2) in Theorem 12 is satisfied. Hence we can deduce from
Corollary 7 that every indecomposable left R-module M is uniserial, as was
shown in the first half of the proof of Theorem 12. Let I be the annihilator of
M in R. Then [ is a proper two-sided ideal of R, so R/I is a quasi-Frobenius
ring, and M can be regarded as a faithful indecomposable left R/I-module.
Therefore, it follows from Proposition 14 that R/l has only one simple left
module, so that M is homogeneously uniserial. In particular, every indecom-
posable left ideal Re, is homogeneously uniserial. Since the notion of quasi-
Frobenius rings is left-right symmetric, we should conclude that every
indecomposable right ideal e, R is homogeneously uniserial too, and thus R
is a uniserial ring.
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