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Let R be a left Artinian ring with radical J. Let R = I0 2 I, 2 ‘. . I I, _ I 2 
be a composition series of the two-sided R-module R. R is called an 

ring if, for each i, every endomorph&m of the left R-module Ii_ Jf; is 
given by the right-multiplication of an element of . The notion of the 
exactness is independent of the choice of the above composition series and is 
left-right symmetric; in particular, every exact ring is right Artinian too. Let 
e,f be primitive idempotents of R, and let E, F be the injective envelopes of 
the simple left R-module Re/Je and the simple right R-rnod~~e~~~, respec- 
tiveiy. Then we show that if R is exact then both E and F have finite 
composition lengths which are the same as that of the right ideal 

respectively, and more precisely, the follo ng are equa!: (1) the 
of the simple left R-module Rf/Jf in (t composition factor 

module series of) E, (2) the multiplicity offlil/fJ in eR, (3) the rn~lti~li~~~y of 
eR/eJ in F3 (4) the multiplicity of Re/Je in Rj Every commutative Artinian 
ring as weil as every semi-simple Artinian ring is obviously an exact ring, 
while a typical example of noncommutative and nonsemisim 
given by split algebras, i.e., those finite-dimensional algebras 
for which the factor algebra R/J is the direct sum of full 
over K. For another interesting example, we show in Section 2 that every 
serial ring is exact. This is based on a certain property of rings having 
injective left ideal #O, and in this connection, we give a cba~a~te~izat~~~ of 
seriai rings that R is serial if and only if every factor ring of R has an 

left ideal #O. This characterization may be of interest when 
with the well-known theorem that R is serial if and only if every 

factor ring of R is of QF-3 type. A conjecture is proposec8: If R is an exact 
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ring, then R is self-dual, that is, the endomorphism ring of the injective 
envelope of the left R-module R/J is isomorphic to R itself. 

1. EXACT RINGS 

Throughout this paper, we assume that R is a left Artinian ring with 
identity element 1 and J the radical of R. Let I?= R/J be the semi-simple 
factor ring of R and R = R, @ R2 @ . . . @R, the direct decomposition of R 
into orthogonal simple components. For any primitive idempotent element e 
of R its coset d modulo J is also a primitive idempotent element of R and 
contained in one of &‘s. For each a let e, be a primitive idempotent element 
of R such that Ca E R,. Then Re?‘, is a simple left R-module, and the left R- 
module Ra is the direct sum of, say n(a) copies of Rc?~. Every simple left R- 
module is isomorphic to some Z?Ca, and &?a GI R&b if and only if a = p. 
Moreover, R is a direct sum of indecomposable left ideals each of which is 
isomorphic to one of Re,‘s and the multiplicity of Re, in the decomposition 
is n(a), i.e., we have RR E 2 0 R(Re,) n(a) The similar facts are also true for . 
simple right R-modules ,FaR and indecomposable right ideals e,R; in 
particular, we have (RJ, z (PaR)g’“’ and R, E C @ (e,R)i@). 

Let M be a simple two-sided R-module. Since J is nilpotent, M is then 
annihilated by J on both left- and right-hand sides and so can be regarded as 
a simple two-sided R-module. Since furthermore M= RM= JJ zSM and 
each l?$4 is a two-sided R-submodule of M, it follows that R,M # 0 - - 
whenceR,M=Mforsome~;butthenR,M=R,R,M=Oforeverya#/2. 
Thus /z is the only index such that RAM = M. Similarly, there is a unique 
index p such that MxO = M, and we have MEa = 0 whenever a # p. This 
means that M can actually be regarded as a simple two-sided R,-ED-module. 
We shall call R,, and RP the left and the right simple components belonging 
to M, respectively. Since R, is a simple ring, R0 is considered a subring of 
the endomorphism ring D of the left RA-module M. We call M exact if 
Rp = D, i.e., if every endomorphism of the left R-module M is given by the 
right-multiplication of an element of R. Now since I?, is a direct sum of 
simple left ideals isomorphic to RgA, the left R,-module M is also a direct 
sum of copies of RF;,, which implies clearly that M is a (projective) 
generator. Therefore, it follows from the Morita theorem [4, Lemma 3.31 that 
if M is exact then the right RO-module M is finitely generated and projective 
and RA coincides with its endomorphism ring. Thus we know that the notion 
of the exactness for M is left-right symmetric and besides that if M is exact, 
then M is a progenerator with respect to both Rt and R,. 

LEMMA 1. Let M be an exact simple two-sided R-module with left simple 
component R-,, and right simple component EO. Then 
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ProoJ (i) Since FP is a primitive idempotent element in the 
endomorphism ring RD of RM, Me, = MFD is an indecom~osab~e submo 
of JM. But $W and hence &e, is completely reducible, so it fdiows 
JVe, is a simple submodule of RM. Thus JVe, EC ,RFA. By left-right 
analogy, we can prove that enM, z FQR,. 

(ii) y Morita [4, Theorem 3.41, the functor HomF,,(M, ) = 
om(,M, ) gives an isomorphism from the category of left RA-modules onto 
e category of left R,-modules. In particular, since RCA is a simple left RA- 

module, the corresponding Hom@4, ,&J must be a simple left R,-module; 
but RF,, is (up to isomorphism) the only simple left RQ-module, so that we 
have ,Hom@4, ,RFA) z JFD. Let now a # .A. Then that 

om(JM, ,Rga) = 0 follows from the fact that $?E, 2 ,Rc?~ and JU is a 
direct sum of copies of ,RFA. The other part can be proved in the similar 
way if we observe HomFO(M, ) instead of HomF,,(M, ). 

(iii Consider again the isomorphism functor 

,HsmC, , ,ECe) r R&p _ by (ii), we have 
,Hom(JG, RRC.l)l_)n(p) z R (Rep)“(“) z RRP. On the otherR hand, that 
endsmorphism ring of $4 means that ,Hom(&, RM) 
that R(REA)nCP) r ,M. Similarly, we have that (EDR)i(- 

omKp(M >~ 

Now the left Artinian ring R has a two-sided composition series, say 

each Ji is a two-sided ideal of R and each factor module PiP,/%i is a simple 
two-sided R-module. R is called an exact ring if each simple two-sided R- 
module IieI/pJi is exact. By the Jordan-Holder theorem, the composition, 
factor module series 1,/I,, IJI, ,+, 1,-,/I, is, up to isomorphism and order, 
uniquely determined by R. Therefore, the notion of the exactness for 
depends only om R and independent of the choice of the composition seri 
We now fix the above composition series once for all, and let 
denote the left and the right simple components belonging to Bi- ,/Pi, respec- 
tively. If R is exact, then the right R-module diei/,Ti is of finite length 
(indeed, its length is n@(i)) by Lemma l(iii)) for each i and consequently the 
right R-module R is of finite length, i.e., is right Artinian. Thus the 
concept of the exactness for R is left-right symmetric. 
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THEOREM 2. Let R be an exact ring. Then, for any indices i and a, 
RC1i--leJ1iea) 2 RRg.a(ij or Ii- 1 e, = Iiea according to a = p(i) or a # p(i). In 
particular, the series of left ideals Re, = I,, e, =) I1 e, 2 . . . 1 I, _ 1 e, 3 
Isea = 0 gives a composition series of the left ideal Re, tf those terms Iteu 
for which a # p(i) are deleted out of the series. 

Proof. If we observe that Ii_ i e, n Ii = lie,, we have the isomorphism 
R(Ii--l e,/Iie,) 2 R((Ii- 1 e, + IJI,) = R(Ii- JIi) e, . Since Ii- ,/Ii is an exact 
simple two-sided R-module, it follows from Lemm_a l(i) that R(li-,/li) e, z 
.RZAo, if a =p(i). On the other hand, since Fe E R,, we have (Ii-,/Ii) eIy = 
(lie i/Ii) Fe = 0 if a # p(i). This proves our theorem. 

From Theorem 2 and its left-right analogy follows 

COROLLARY 3. Let R be an exact ring. Then, for any indices a and p, 
the following are equal: 

(a) The number of indices i such that A(i) = a and p(i) = p. 
(b) The multiplicity of the simple left R-module Rem in the composition 

factor module series of the left ideal Re, (i.e., the left Cartan invariant of R 
corresponding to p, a). 

(6) The multiplicity of the simple right R-module e$ in the 
composition factor module series of the right ideal e,R (i.e., the right Cartan 
invariant of R corresponding to a, p). 

Let Di be the endomorphism ring of the left R-module Ii-i/Ii. We regard 
RPci, as a subring of Di. Then Rosenberg and Zelinsky [8, Lemma 31 
virtually proved that the injective envelope E, of the simple left R-module 
RFa is of finite length if and only if Di is finitely generated as a left RPu,- 
module for every i such that A(i) = a. Therefore, as a particular case, if R is 
exact, then E, is of finite length for all a. However, by using their method, 
we can get the following more precise result: 

THEOREM 4. Let R be an exact ring. For any indices i and a, let r,(I,) 
denote the right annihilator of Ii in the injective envelope E, of the simple 
left R-module Re:b,. Then R(ra(Ii)/ra(Ii- 1)) z RRe0o) or r,(Ii) = ra(Iip 1) 
according to a = A(i) or a # A(i). In particular, the series E, = r,(I,) 3 
r,(Is-l) 2 f.f 3 r,(I,) I> r,(I,,) = 0 gives a composition series of REa tf those 
terms r,(I,) for which a # A(i) are deleted out of the series. 

Proof Consider the exact sequence of two-sided R-modules 

’ q R (Ii - l/‘i)R + R (R/Ii)R + R (R/Ii - I )R + 0. 
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Since REa is injective, we have then an exact sequence 

0 -+ .Hom,(R/Ii- I, E,) --f ~~om~(~/~j~ E,) 

+ RHomR(Ii-l/~i4En)+ 

The second and the third terms of this sequence are naturally ide~t~~ed with 
r,(IieI) and v,(li), respectively, while the fourth term coincides with 
Hom,(BiP ,/Ii, RFa) since R(li-I/li) is completely reducible and Rca Ss the 
only simple submodule of REa. Thus we have ~(~~(~~)/~~(~i-,)) z 
RHomR(B,- ,/Ii, RF*)* Since, however, Ii- r/Ii is an exa.ct simple 
module, the right side of this isomorphism is isomorphic to R 
according to OL = n(i) or (x # d(i) by Lemma l(G). This completes the proof 
of our theorem. 

The following is an immediate consequence of Theorem 4 and its left-right 
analogy: 

CQROLLARU 5. Let R be an exact ring. Let a and p be a%y indices, and 
let E, and F, be the injective envelopes .of the simple left 
the simple right R-module .FBR-, respectively. Then the foil 

(a> The number of indices i such that A(i) = a 

(d) The multiplicity of the simple left R-module 
factor module series of E,. 

(e) The multiplicity of the simple right -module F, 
composition factor module series of F, . 

Remark. According to Corollaries 3 and 5, (a>-(e) given t 

equal if is exact. 

EXAMPLE 1. Every commutative Artinian ring is exact. This is because 
if is a commutative ring, then every simple -module is isomorphic to the 
factor module R/I modulo a maximal ideal I of and its ~~domor~h~srn 
ring is the factor field R/I. 

EXAMPLE 2. Every Artinian semi-simple ring R is exact. For, in this 
case, the simple components R,, R2,..., R, sf R form the two-sided 
composition factor module series of R and the endomorphism rfing of each 
left R-module R, is the simple ring R, itself. 

EXAMPLE 3. Let R be a finite-dimensional algebra over a field K; is 
then a left and right Artinian ring. R is called split if each simple component 
dp, of R= R/J is a full matrix algebra over K (which is necessarily of degree 
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n(a)). Now let R be split, and consider two simple components R, and Rb. 
If we denote by M,,, the set of all n(a) X n(,&) matrices over K, then M,,, is 
regarded as a two-sided R,-ED-module and indeed it is an exact simple two- 
sided module, as can be seen easily. Moreover, every simple two-sided R,- 
RD-module (which is element-wise commutative with K) is isomorphic to 
M a,B. For, such a two-sided module is, as is well known, converted into a 
simple left module of the tensor product algebra Ra X RD over K (because R0 
is the opposite algebra of itself), but this algebra is also a full matrix algebra 
over K (of degree n(a) n(J)) and so has, up to isomorphism, only one simple 
left module. Thus we know that every split algebra is an exact ring. It 
follows in particular that if R is a split algebra, then (a)--(c) in Corollary 3 
are equal. However, the equality of (b) and (c) was already observed by 
Nakayama [5, Theorem 31, and indeed it was shown that these conditions 
are also the same as the dimension of e,Re, over K. On the other hand, in 
view of the fact that M,,o is the only simple two-sided Re-R,-module for 
split algebra R, we have that (a) is nothing but the multiplicity of M,,, in 
the two-sided composition factor module series of R. 

Remark. Let K be a commutative Artinian ring and R a finite algebra 
over K, that is, R is an Artinian algebra. Let N be the radical of K and F the 
injective envelope of the K-module K/N (in case K is a field, F obviously 
coincides with K). Let Q = Hom,(R, F). Then Q is converted into a two- 
sided R-module in the natural manner, and, as a left R-module, Q is a 
finitely generated injective cogenerator whose socle is isomorphic to R= R/J 
and whose endomorphism ring coincides with (the right operator ring) R 
(Azumaya [ 1, Theorem 191). Therefore Q defines a Morita duality between 
the category of finitely generated left R-modules and the category of finitely 
generated right R-modules [4, Theorem 6.4; 1, Theorem 81. Moreover, the Q- 
dual Hom,(RPe, Q)R (E Hom,(RFa, F)R) of R&c is isomorphic to PaRR and 
the Q-dual ,Hom,(F& Q) of ZaRR is isomorphic to .RP;, for every a [ 1, 
Lemma 2, p. 2741. We now consider the projective right ideal _e,R. Since it 
has a unique maximal right subideal e,J and (eaR/eaJ)R E tTaR,, its Q-dual 
is an injective left R-module having a unique simple submodule, which is 
isomorphic to RFa. Thus the Q-dual of e,R is isomorphic to the injective 
envelope E, of the simple left R-module Rc?~. Therefore we know that for 
each p, (c) in Corollary 3 is equal to (d) in Corollary 5 (even if R is not 
exact). Similarly, for each /3, the Q-dual of the left ideal Re, is isomorphic to 
the injective envelope F, of the simple right R-module ZbR, and therefore (b) 
in Corollary 3 is equal to (e) in Corollary 5 for every a. Taking these 
phenomena into consideration, we are now tempted to conjecture that every 
exact ring is self-dual, that is, if R is an exact ring and Q the injective 
envelope of the R-module R= R/J, or equivalently, Q = C @ EEca), then the 
endomorphism ring of Q is isomorphic to R. 
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2. SERIAL RINGS 

We assume again that R is a left Artinian ring and J, zV A,, ems n(a), k, 
etc. have the same meanings as in Section 1. Suppose now that R has a 
nonzero injective left ideal L. Then L is a direct summand of , that is3 
R = L @ k ’ for a suitable left ideal L’ of R. e refine this decompo5itio~ 
into an indecomposable direct decomposition of R. Each indecomposable 
summand is then isomorphic to one of Re,‘s, and it is injective provided it is 
a summand of L. Thus we know that R has a nonzero injective left ideal if 
and only if Re, is injective for some a. 

PROPOSITIQN 6. Let Re, be injective, and let M be a ~a~t~f~l lefi 
module. Then A4 has a direct summand isomorphic to Re,. 

ProoJ: Since R is left Artinian, Re, contains a simple left subideal S,. 
Then that Re, is indecomposable and injective means that Re, is the 
injective envelope of S, and hence S, is a unique simple left subideal of 

ince M is faithful, there is a u E M such that S,u # 0. Then the right 
ication of u gives a homomorphism .Re --i ,&f whose kernel does not 

contain S, and so is 0. Thus the homomorphism is a mo~omorphism~ which 
means that M contains the isomorphic image Re,u of Re,. Since 
hence Re,u is injective, this is a direct summand of M. 

COROLLARY I. Let R have an injective left ideal ~0, apld M a fait,hful 
inde~omposabie left R-module. Then there is a unique a such that Re, is 
injective, and we have that .Re, z &l; M is necessarily injective, of finite 
length, alzd has a unique maximal submodule as well as a unique simple 
s~bmod~~e. 

Consider now a decomposition of R into a direct sum of ~ndecom~osab~c 
left ideals, Then the multiplicity of Re, in the decomposition is n(a) for 
every a, and thus the decomposition can be written in the following form: 

nc:1 n(2) n(k) 

R = c @L’,“@ 1 @L1”@ ..~ 9 s @Lt), 
i=l i=l ikl 

where RLz) 2 RLz) E . .. E RLF(a” g ,Re, for every a = I, 2,..., k. 

THEOREM 8. Let Re, he injective. Then the socle of the left ideal 
Cf?> @ L$ is an exact simple two-sided ideal of 

ProoJ For simplicity, denote n and Li for n(a) and Lz’, respectively, 
and let L = L, @L, @ .I. @L,. Then, for each i (= I, I&..., n>, RLi z R 
and so I,! is left injective and has a unique simple left subideal Si, which is 
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isomorphic to the unique simple left subideal S, of Re,. Moreover, S = S, @ 
s, @ .*- 0 S, is the socle of the left ideal L. 

First we show that S is a two-sided ideal of R. Suppose not, i.e., suppose 
that there is an a E R such that Sa V! S. Since Sa = S,a + S,a + -.. + Sna, 
this implies that Sia rf S for some i. We fix this i, and consider the 
epimorphism J RLi --t RLia given by the right-multiplication of a. If 
Ker(f) # 0, then it contains Si, i.e., S,a = 0, which contradicts to that 
S,a r-k S. Thus Ker(f) = 0, and f is an isomorphism. Therefore, the left ideal 
L,a is also injective and S,a is a unique simple left subideal of Lia. 
Consider now the intersection L n L,a. If this is nonzero, then it must 
contain S,a; therefore we have Sia c L whence S,a c S, which contradicts 
again to our assumption that Sia & S. Thus L f? L,a = 0 and so we have 
L+Lia=L@Lia=L,@L,@ .a. @L, @Lia. This left ideal is injective, 
because so is each summand. Therefore it is a direct summand of R, i.e., R = 
L,OL,O ... @L, @ Lia @L’ for some left ideal L’. If we replace L’ by 
an indecomposable direct decomposition of L’, then we have an indecom- 
posable direct decomposition of R in which the multiplicity of Re, is at least 
y1 + 1. But this is a contradiction, due to the Krull-Schmidt theorem. Thus, 
in any case, our assumption that Sa d S is impossible. This shows that S is 
a two-sided ideal of R. 

Next we show that S is a simple two-sided ideal. Namely, let T be a 
nonzero two-sided ideal of R such that T c S. Since S is a direct sum of 
simple left ideals S,, S2,..., S, isomorphic to S,, T has the same structure, 
that is, T is also a direct sum of simple left ideals isomorphic to S,. 
Therefore it follows that each Si is a homomorphic image of T, i.e., there is 
an epimorphism gi: R T-t RSi. Since Sic Li and Li is left injective, there 
exists a bi E L, such that gi(x) = xb, for all x E T, and this implies that Si = 
Tb, c T. Since this is the case for every i, we have S = S, + S, + . . . + 
S, c T whence S = T, which shows that S is a simple two-sided ideal. 

Finally let h: $3 --t $3 be any endomorphism of $3. Since S c L and RL = 
L,@L,@ . . . @ L, is injective, there exists a c E L such that h(y) = yc for 
all y E S. This shows that the simple two-sided R-module S is exact. 

COROLLARY 9. Let R be a left Artinian ring such that every factor ring 
ofR has a nonzero injective left ideal. Then R is an exact ring. 

Proof Since R itself has a nonzero injective left ideal, R has an exact 
simple two-sided ideal I, by Theorem 8. If I, #R, then consider the factor 
ring R/I,. Since it is left Artinian and has a nonzero injective left ideal by 
assumption, it has an exact simple two-sided ideal, say I,/I, again by 
Theorem 8, where I, is a suitable two-sided ideal of R containing I,. 
Continuing in this way, we have a properly ascending chain I, c I, c I, c . . . 
of two-sided ideals of R such that I,, I,/I,, 13/12,..., are exact simple two- 
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sided R-modules. ut since R is left Artinian (whe e Wsetherian) the chain 
tcrm~~ates at, say th step, which means that I, = . Thus Is31spl 3 ~.. 3 
I, .X I, 10 gives a two-sided composition series of R, and this shows that 
is an exact ring. 

Now a left Artinian ring R is called a left QF-3 ring if for every simple left 
ideal S, of R its injective envelope E(S,) is isomorphic to Re, for some a. 

PRQPQSITION 10. Let R be a left Artinian ring such that each Reu has a 
unique simple left subideal and the injectiue envelope of euery simple ieJt 
ideal of R has a unique maximal submodule. Then is a lejrt QF-3 ring. 

PTQO$ Let S, be a simple left ideal of R. Since 
ideals each of which is isomorphic to one of 
isomorphic to the unique simple Ieft subideal S, of Re, for some a. Consider 
then the injective envelope E(Re,) of this left ideal Re,. Since 
essential over S,, E(Re,) is also essential over S, and therefor 
injective envelope of S,. It follows then that E e,) is isomorphic to E(S,) 
and so has a unique maximal submodule. But this fact implies that E(Re,) is 
a homomorphic image of Re, for some /I’; indeed if U is the unique rna~~rna~ 
submodule of E(Re,) and if ,(E(Re,)/l-I) ” ,(@& then Re, is the 
cover of E(Re,). Let f: .Res -+ ,E(Re,) be an e~imo~~~isrn. T 
image S-‘(Re,) of the submodule Re, of E(Re,) is mapped onto Re, by J 
Since, however, Re, is projective, it follows that Ker(f) is a direct summand 
off-“(Re,), i.e., f-‘(Re ,> = Ker(f) @ V for a suitable left subideal V of 
Web. Y is nonzero and hence contains the unique simple left subideal Sn of 

This and the fact that Ker(f) n V= 0 imply that 
and therefore Ker(f) = 0, i.e., f is an 
&(SO), which proves that R is a left 

Let M be a left R-module. M is called ~~ise~~ai if M has a unique 
composition series. In this case, the finite number of members of the 
composition series exhaust all submodules of M and so every subm le sf 
M and every homomorphic image of M are uniserial too. Suppose is of 
finite length 1. Then, as is well known, the following conditions are 
equivaient : 

(a) M is uniserial, 

(b) The upper Loewy series M EJ JM 2 J2M 1 ... 1 J’M (=O) is a 
composition series of M, 

(c) The lower Loewy series (M=) rM(J’) I r&r-‘) 3 ..I 1 T,,#) 13 0 
is a composition series of M, where rM( ) means the right annihilator in 

Thus if M is uniserial then Jikf = r&- ‘)> J2M = rM(Jle2 
rM(J) and E is the least positive integer such that J’M = 0. Now 
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serial ring (generalized uniserial ring in the terminology of Nakayama [6]) if 
the left ideal Re, as well as the right ideal e,R is uniserial for every 
a = 1, 2,..., k. Clearly every serial ring is both left and right Artinian. It was 
proved by Nakayama [6, Theorem 171 that if R is serial, then every left R- 
module is a direct sum of submodules each of which is a homomorphic 
image of one of Rem’s, and in particular every indecomposable left R-module 
is a homomorphic image of some Re, and therefore is uniserial. But the 
injective envelope of every simple left R-module is indecomposable and so 
uniserial. Therefore it follows from Proposition 10 that every serial ring is a 
left QF-3 ring. This is of course included in the theorem that a ring is serial 
if and only if every its factor ring is a left QF-3 ring, which was obtained by 
Morita [4, Theorem 17.81, Wall [ 10, Theorem 21 (finite-dimensional algebra 
case), and Fuller [3, Theorem 3.61 (Artinian ring case). Since, however, no 
proof is given explicitly to the “only if’ part of the theorem in any of these 
papers, the above observation might not be redundant. (Another proof for 
the proposition is given by using Fuller [2, Theorem (4.1)].) Now, clearly 
every factor ring of a serial ring is serial and every left QF-3 ring has,a 
nonzero injective left ideal. Thus from Corollary 9 follows 

THEOREM Il. Every serial ring is an exact ring. 

We now want to prove the following characterization of serial rings: 

THEOREM 12. Let R be a left Artinian ring. Then the following 
conditions are equivalent: 

(1) R is a serial ring. 
(2) Every factor ring of R has a nonzero injective left ideal. 

ProoJ: We need only to prove that (2) implies (l), so that we assume (2). 
Let A4 be any indecomposable left R-module. Let I be the annihilator of &I in 
R. Then I is a proper two-sided ideal of R, and M can be regarded as a 
faithful indecomposable left R/I-module. But since R/I has a nonzero 
injective left ideal by assumption, it follows from Corollary 7 that A4 has a 
unique maximal submodule M, and a unique simple submodule U. If 
M, # 0, then M, necessarily contains U and therefore is indecomposable. 
Then M, must contain a unique maximal submodule M,. If M, # 0, then M, 
contains U and so is indecomposable. Hence M, has a unique maximal 
submodule M, . In this way we have a sequence M,,M,, M, ,..., of 
submodules of M such that each member is unique maximal in its preceding 
member. Since, however, M is of finite length by Corollary 7, the sequence 
must terminate, or equivalently, there is a positive integer r such that M, = 0 
and M, M, , M, ,..., M, gives a unique composition series of M. Thus we see 
that condition (2) implies that every indecomposable left R-module is 
uniserial and in particular 
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(3) The le$ ideal Re, and the injective envelope E, of the simple l&t 
R-module ffFa are uniserial for every a = 1, 2,..., k. 

It is, however, proved by Fuller [3, Theorem 5.43 that this condition (3) 
implies condition (l), and thus the proof of our theorem is completed. 

Remark By virtue of Theorem 12, it turns out that Corollary 9 and 
Theorem 11 represent one and the same fact. 

Finally, it might be of some interest to give another proof to the 
implication (3) * (1) (Fuller’s theorem) by using the following property of 
exact rings: 

PROPOSITION 13. Let R be an exact ring. Then, for any u, the right ideal 
e,R is uniseriai if and only if the left R-module E, is uniserial. 

Proof. Let R =I,r,I, 3 ... lIsel 2 I, = 0 be a two-sided composition 
series of the exact ring R, and let EACj, and EDCi, be the left and the right 
simple components belonging to Zj- JZi, respectively. Let t be the number of 
those integers i between 1 and s for which a = A,(i), and let i(1)? i(2),..., z’(t) be 
these t integers numbered in increasing order: i(l) < i(2) < . ~ 1 < i(t). Then: 
according to Theorems 2 and 4, the corresponding series e,R I e,Z,(,, =: 
e,Zi(2) 13 ... 3 eJict, = 0 and E, = r,(Z& 1 ra(Ii+,,) 3 ... II) r,(IiCL1) I> 0 
give composition series of e, R and E, , respectively, where r,( ) means the 
right annihilator in E,. 

ssume that e,R is uniserial. Then we have e,J’ = e,ZiCj) for every j 
(= 1, 2,..., t). On the other hand, ra(Jj) = r,(e,Jj) and y,(ZiCjI) = r,(e,ZiCj,) 
for every j by 13, Lemma Ill]. Therefore we have r,(Jj) = y,(ZiCj)) for 
every j. Thus the series E, = r,(J’) 2 r,(Jtp’) =) ... 2 r,(J) 3 0 is a 
composition series of E,, which means that E, is uniserial. 

Conversely, suppose that E, is uniserial. Then we have r,(J’) = Ta(Zi(,j)) 
for every j. But r,(Jj) = r,(e,.Zj) and r,(Zitj)) = r,(euZiCj,), as seen above. 

oreover, both e,Jj and e,Zicj, are, respectively, the left annihilators of 
r,(e,Jj) and r,(e,ZiCj,> in e,R by [3, Lemma 2.3(b)]. Thus we have e/ = 
enZiCi) for every j, and therefore e,R 2 e,Jx eaJ2 2 I.. 3 e,J” = 0 gives a 
composition series of e,R. This means nothing but that e,R is uniseria!. 

Having established Proposition 13, we now assume condition (3) above. 
n in particular each Re, has a unique simple Left su ideal and each En 
a unique maximal submodule. Hence, by 0, R is a left Q-r;l3 

ring and so has a nonzero injective ieft ideal. t 1 be any proper two-sided 
ideal of R. Then the factor ring R/I also satisfies the same condition as (3): 
this is because of the fact that if Z&?= is right annihilated by Z, then the left 
R/Z-modules We,/Ze, and ra(Z) become, respectively, the projective cover 
and the injective envelope of the simple left R/Z-module 
Lemma 4.51 (or by [ 1, Theorem 171). Thus it fohows that 
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nonzero injective left ideal, and therefore by Corollary 9 R is an exact ring. 
This, together with the assumption that each E, is uniserial, implies that 
each e, R is uniserial by Proposition 13. Since Re, is uniserial also by 
assumption, we show that R is a serial ring. Thus we complete the second 
proof to the implication (3) * (1). 

Remark. A uniserial (left or right) R-module is called homogeneously 
uniserial if its composition factor modules are all isomorphic, while R is 
called a uniserial ring if the left ideal Re, as well as the right ideal e,R is 
homogeneously uniserial for every a. (Although we use here the conventional 
terminology of uniserial ring, this is clearly inadequate at the present time. 
We could change it to homo-serial ring, for instance.) It is the well-known 
theorem by Nakayama, Ikeda, Osima, and Wall that R is uniserial if and 
only if every factor ring of R is a quasi-Frobenius ring (Nakayama [7, 
Lemma 21, Wall [9, Theorem 21). We now want to point out that we can 
deduce from Corollary 7 a somewhat simplified proof to the “if’ part of the 
theorem. To do so, let R be a quasi-Frobenius ring. Then the left R-module 
R is injective, and hence its direct summand Re, is injective for every 
a = 1, 2,..., k. Therefore, if we assume that there is a faithful indecomposable 
left R-module, then it follows from Corollary 7 that k = 1. Thus we have 

PROPOSITION 14. Let R be a quasi-Frobenius ring and let R have a 
faithful indecomposable left module. Then R has, up to isomorphism, the only 
simple left R-module (i.e., R is a primary ring). 

Assume now that every factor ring of R is quasi-Frobenius. Then, of 
course, condition (2) in Theorem 12 is satisfied. Hence we can deduce from 
Corollary 7 that every indecomposable left ,R-module M is uniserial, as was 
shown in the first half of the proof of Theorem 12. Let I be the annihilator of 
M in R. Then I is a proper two-sided ideal of R, so R/I is a quasi-Frobenius 
ring, and M can be regarded as a faithful indecomposable left R/l-module. 
Therefore, it follows from Proposition 14 that R/I has only one simple left 
module, so that M is homogeneously uniserial. In particular, every indecom- 
posable left ideal Re, is homogeneously uniserial. Since the notion of quasi- 
Frobenius rings is left-right symmetric, we should conclude that every 
indecomposable right ideal e,R is homogeneously uniserial too, and thus R 
is a uniserial ring. 
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