
Coalgebraising Subsequential Transducers

Helle Hvid Hansen1,2

Section Theoretical Computer Science
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

Abstract

Subsequential transducers generalise both classic deterministic automata and Mealy/Moore type state ma-
chines by combining (input) language recognition with transduction. In this paper we show that normal-
isation and taking differentials of subsequential transducers and their underlying structures can be seen
as coalgebraisation. More precisely, we show that the subclass of normalised subsequential structures is a
category of coalgebras which is reflective in the category of coaccessible subsequential structures, and which
has a final object. This object is then also final for coaccessible structures. The existence and properties
of the minimal subsequential transducer realising a partial word function f can be derived from this result.
We also show that subsequential structures in which all states are accepting, can be seen as coalgebras by
taking differentials. The coalgebraic representation obtained in this way gives rise to an alternative method
of deciding transducer equivalence.

Keywords: Subsequential transducer, word function, coalgebra, normalisation, differential.

1 Introduction

Subsequential transducers generalise deterministic finite automata (DFA’s) as well
as Mealy/Moore type state machines, by combining the notion of final state with
output on transitions, and allowing for initial and terminal output. This combi-
nation of language recognition and transduction makes subsequential transducers
useful in areas such as lexical analysis, coding theory, and more recently, in speech
and language processing (cf. [9]). The semantics of subsequential transducers is
given in terms of partial word functions f : A∗ ��� B∗. Subsequential transducers
were introduced (cf. [17]) as a generalisation of sequential transducers. Sequential
transducers and sequential functions were studied as early as the 1950’s ([11]) and
their theory is well established ([7]). Existing results on subsequential transduc-
ers include a characterisation of the functions which can be realised by a finite

1 Supported by NWO grant 612.000.316.
2 Email:hhhansen@few.vu.nl

Electronic Notes in Theoretical Computer Science 203 (2008) 109–129

1571-0661 © 2008 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.05.022
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82165524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:hhhansen@few.vu.nl
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

subsequential transducer ([5,4]), and algorithms for determinisation and minimisa-
tion ([2,6]).

Automata have traditionally been studied from an algebraic perspective ([7])
with focus on the notions of structure, congruence and initiality. Coalgebra, on
the other hand provides abstract notions of behaviour, bisimilarity and minimality
arising from finality, and it has proved to be an equally suitable mathematical
framework for modelling and studying the behaviour of state-based systems ([15]).
In particular, classic deterministic automata and Mealy/Moore machines can all be
described coalgebraically in such a way that their traditional semantics coincides
with the final semantics (cf. [13,8]). The question naturally arises of whether the
coalgebraic modelling generalises to subsequential transducers.

Our motivation is the following. Firstly, we hope to provide a deeper understand-
ing of existing notions and constructions on subsequential transducers by showing
that they are instances of more general mathematical notions. Secondly, if we can
establish that subsequential transducers, or more precisely, the underlying struc-
tures, can be seen as coalgebras, we obtain a range of results and techniques from
the general theory of coalgebra which could be applied to them. We mention coal-
gebraic modal logic (cf. [10,16,19]) for purposes of logic specification and reasoning,
and the very recent regular expressions for polynomial functors ([3]) which provide
a Kleene-style theorem and a generic synthesis procedure.

In this paper, we will see that, in general, subsequential structures cannot be
regarded as coalgebras. The reason is that their semantics requires a more general
notion of morphism than is provided by coalgebra. However, we show that the so-
called normalised subsequential structures can correctly be seen as coalgebras, and
that there exists a final normalised subsequential structure. With respect to finality,
the restriction to normalised structures is no real loss, as it is well-known that every
subsequential transducer/structure can be normalised. We investigate this result in
the coalgebraic setting and show that normalised subsequential structures are full
and reflective in the category of coaccessible subsequential structures (the class of
subsequential structures in which all states have a well-defined behaviour). This
result parallels the fact that minimal DFA’s form a reflective subcategory of all
DFA’s, and is an argument for saying that the coalgebraic description is the right
way of thinking about subsequential structures.

Moreover, we show that the class of subsequential transducers in which all states
are accepting (step-by-step subsequential structures) can be viewed as coalgebras.
This transformation is essentially obtained by taking the differential of a function
f : A∗ ��� B∗. The practical interest of this coalgebraic representation is that it
provides us with an alternative method for deciding transducer equivalence, which
does not require normalisation. We illustrate with an example in section 4.3. Nor-
malisation and taking differentials are both known existing constructions (cf. [4,6])
that transform a subsequential structure or function into a more manageable (com-
putationally, conceptually) representation. The results of this paper show that these
transformations are a form of coalgebraisation.

The paper is structured as follows. In section 2 we introduce relevant notions

H.H. Hansen / Electronic Notes in Theoretical Computer Science 203 (2008) 109–129110

on sets, words and functions, and give a brief overview of basic coalgebraic notions.
In section 3 we review the definition of subsequential transducers and some known
results. Finally in section 4, we carry out the coalgebraic modelling of normalised,
sequential and step-by-step subsequential transducers.

2 Preliminaries

2.1 Sets, words, functions.

Let X and Y be sets. A (partial) function from X to Y is denoted by f : X ��� Y .
We will write f : X → Y when f is a total function from X to Y . For a function
f : X ��� Y , and subsets C ⊆ X and D ⊆ Y , the f -image of C is denoted f(C), the
inverse f -image of D is f−1(D), and the restriction of f to C is f�C . The domain
and range of f are denoted dom(f) and ran(f), respectively. As is standard, we
can view a partial function f : X ��� Y as a total function f : X → Y ∪ {�}, where
� is the undefined value, by letting f(x) = � for all x �∈ dom(f).

The free monoid over a set X is the monoid (X∗, ε, .) where X∗ is the set
of all words over X, ε is the empty word, and u.w, or simply uw, denotes the
concatenation of two words u, w ∈ X∗. If f, g : X → B∗, then f.g : X → B∗ is
the function defined by (f.g)(x) = f(x).g(x). The free group over X is denoted by
X(∗), and the formal inverse of x ∈ X is written x. For w ∈ X∗, the inverse of
w = x1x2 . . . xk is w = xk . . . x2 x1, and ε = ε. We will apply concatenation and
inverse to obtain prefixes and suffixes of words: If w = uv ∈ X∗, then u.w = v and
w.v = u. In the case u is not a prefix of w ∈ X∗, then u.w is read as an element
of X(∗). For example, aaa.ab = aa.b. For all u, w ∈ X∗, we write u � w if u is a
prefix of w. A subset T ⊆ X∗ is called prefix-closed if u � w ∈ T implies u ∈ T .
A partial function f : A∗ ��� B∗ is prefix-preserving if dom(f) is prefix-closed, and
for all u, w ∈ dom(f), if u � w then f(u) � f(w). For a set S ⊆ A∗ of words, we
denote by lcp(S) the longest common prefix of words in S with the convention that
lcp(∅) is undefined.

Let f : A∗ ��� B∗ be a partial function, and w ∈ A∗. The maximal output of f

on input w is given by

f [w] := lcp(f(wA∗)) = lcp({f(wu) | wu ∈ dom(f)}).

The derivative of f with respect to w is the partial function f·w : A∗ ��� B∗ defined
for all u ∈ A∗ by

(f ·w)(u) =

⎧⎨
⎩

f [w].f(wu) if wu ∈ dom(f)

� otherwise

The derivative of f is sometimes called the residual of f in the literature on subse-
quential transducers.

H.H. Hansen / Electronic Notes in Theoretical Computer Science 203 (2008) 109–129 111

2.2 Coalgebra and Automata

We now recall the basic coalgebraic definitions relevant for this paper, and fix nota-
tion. Our coalgebras will be based on Set, the category of sets and (total) functions.
Given a functor T : Set → Set, a T-coalgebra is a pair S = (S, σ) where S is a set
and σ : S → T(S) is a function. A function f : S1 → S2 is a T-coalgebra morphism
from (S1, σ1) to (S2, σ2) (written: f : (S1, σ1) → (S2, σ2)), if T(f) ◦ σ1 = σ2 ◦ f .
The category of T-coalgebras and T-coalgebra morphisms is denoted by Coalg(T).
In this paper all functors considered are polynomial, i.e. they are constructed from
constant sets, identity, product, coproduct and exponentiation.

A pointed T-coalgebra (S, σ, s0) consists of a T-coalgebra (S, σ) and an initial
state s0 ∈ S. A morphism of pointed T-coalgebras from (S1, σ1, s1) to (S2, σ2, s2)
is a T-coalgebra morphism f : (S1, σ1) → (S2, σ2) for which f(s1) = s2. Pointed
T-coalgebras and their morphisms form a category PtCoalg(T). If (S, σ) is a T-
coalgebra for a polynomial functor T, and S′ ⊆ S, then (S′, σ�S′) is a subcoalgebra
of (S, σ) if the inclusion map i : S′ → S is a T-coalgebra morphism. Given a
point s in (S, σ), we denote by 〈s〉 the subcoalgebra generated by s in (S, σ) which
is the least subcoalgebra (S′, σ′) (w.r.t. inclusion) that contains s. For polynomial
functors such a least subcoalgebra always exists, and it can be obtained essentially
by taking the transition closure of {s}.

We use the notion of T-bisimilarity of coalgebras (see e.g. [15]). Let two T-
coalgebras S1 = (S1, σ1) and S2 = (S2, σ2) be given. A relation Z ⊆ S1 × S2 is a
T-bisimulation between S1 and S2, if Z can be equipped with coalgebraic structure
ζ : Z → T(Z) such that the projections πi : Z → Si, i ∈ {1, 2} are T-coalgebra
morphisms. Two states s1 ∈ S1 and s2 ∈ S2 are T-bisimilar (notation: s1 ∼ s2) if
there exists a T-bisimulation Z between S1 and S2 such that 〈s1, s2〉 ∈ Z.

A final T-coalgebra (Φ, φ) is a final object in the category Coalg(T). This means
that for every T-coalgebra (S, σ) there exists a unique T-coalgebra morphism h :
(S, σ) → (Φ, φ). In general, a final T-coalgebra may not exist, but if it does, then
the final map h assigns to a state s in a T-coalgebra (S, σ) its behaviour h(s). In a
final T-coalgebra (Φ, φ), the principle of coinduction holds: For all s, t ∈ Φ: s ∼ t

iff s = t.
Many known structures are identified as being coalgebras (see e.g. [15,16]). We

mention in particular two types of automata which are special instances of sub-
sequential transducers. The first is classic deterministic finite automata over an
alphabet A (see e.g. [13]). These are coalgebras for the functor DFA(X) = 2×XA,
where the output function o : Q → 2 = {0, 1} defines whether a state q ∈ Q is
accepting (o(q) = 1) or not (o(q) = 0); and the transition function d : Q → QA

defines for each q ∈ Q, the next state d(q)(a) on input a. It is straightforward to
show that DFA-coalgebra morphisms coincide with the well known morphisms of
deterministic automata, the final DFA-coalgebra consists of the set of all languages
P(A∗), and the final DFA-coalgebra morphism is the map that sends a state q to
the set of words accepted from q. The second example is given by Mealy machines
(cf. [8]). A Mealy machine with input in A and output in B is a coalgebra of the
type t : Q → (B×Q)A. In this case, the final Mealy coalgebra has as its carrier the

H.H. Hansen / Electronic Notes in Theoretical Computer Science 203 (2008) 109–129112

set of causal stream functions, that is, functions f : Aω → Bω where for any stream
α ∈ Aω the n’th element of f(α) is determined by the first n elements of α.

3 Subsequential Transducers

In this section we fix notation, and review the basic definitions of subsequential
transducers and their morphisms. These follow Choffrut [6] more or less, but the
presentation here is slightly different in order to make the connection with coalgebra
more clear.

3.1 Basic definitions

Definition 3.1 (subsequential structure & transducer) A subsequential struc-
ture is a triple S = (Q, t, r) where Q is a set of states, and t, r are maps of the
following type:

t : Q → (A ��� (B∗ × Q)) (transition structure)

r : Q ��� B∗ (terminal output function)

A subsequential transducer is a 5-tuple T = (Q, t, r, i, m) where (Q, t, r) is a subse-
quential structure, i ∈ Q is the initial state, and m ∈ B∗ is the initial prefix. The
set of final (or accepting) states of T is F := dom(r). If q �∈ dom(r) then q is called
an internal state.

Remark 3.2 (notation) For all states q ∈ Q, we will write supp(q) instead of
dom(t(q)). The transition structure t will often be described in terms of an output
function o : Q → (A ��� B∗) , and a next-state function d : Q → (A ��� Q) where
we quietly assume that for all q ∈ Q, dom(o(q)) = dom(d(q)).

We extend the definition of o and d from letters to words in the usual man-
ner. For a state q, a ∈ A and w ∈ A∗, we define d(q)(ε) = q and d(q)(wa) =
d(d(q)(w))(a), similarly, o(q)(ε) = ε and o(q)(wa) = o(q)(w).o(d(q)(w))(a), with
the proviso that the left-side is defined only if the right-side is.

The usual notion of path in subsequential structures applies. A path is called
final if it ends in a final state, and a state q coaccessible if there exists a final path
starting in q. The set of coaccessible states of a subsequential structure S will be
denoted by Coacc(S). In a subsequential transducer a final path is successful if it
starts in the initial state, and a state q is accessible if it is reachable from the initial
state. A subsequential transducer is called trim if all states lie on a successful path.

Definition 3.3 (realisation, behaviour) Given a subsequential structure S =
(Q, o, d, r) a state q ∈ Q realises a partial function [[q]]S : A∗ ��� B∗ defined for
all w ∈ A∗ by: [[q]]S(w) = o(q)(w).r(d(q)(w)). We call [[q]]S the behaviour of q (in
S). Given two subsequential structures S and S

′, two states q in S and q′ in S
′ are

equivalent if [[q]]S = [[q′]]S′ . A subsequential transducer T = (S, i,m) realises a partial
function [[T]] : A∗ ��� B∗ defined as follows for w ∈ A∗: [[T]](w) = m.[[i]]S(w). We

H.H. Hansen / Electronic Notes in Theoretical Computer Science 203 (2008) 109–129 113

refer to [[T]] as the behaviour of T. Two subsequential transducers T1 and T2 are
equivalent if [[T1]] = [[T2]].

For notational simplicity, we sometimes leave out the subscript when S is clear
from the context, or we use some appropriate indexing, for example, [[q]]1 instead
of [[q]]S1 etc. Before we give the definition of morphisms between subsequential
transducers, we look at an example.

Example 3.4 Consider the subsequential transducers T and T
′ as illustrated be-

low. The inital prefix in both transducers is the empty word, and the terminal
output functions r and r′ are indicated with double arrows. The states q2 and q′2
are internal.

T : ε �� q0

ε��

a|ab �� q1
a|rac ��

raxa��

q2
a|ada �� q3

bra
��

T
′ : ε �� q′0

ε��

a|abra �� q′1
a|ca ��

xa��

q′2
a|dab �� q′3

ra��

We see that dom([[T]]) = dom([[T′]]) = {ε, a, aaa}, and the two transducers com-
pute the same partial function f : {a}∗ ��� {a, b, c}∗: f(ε) = ε, f(a) = abraxa,
f(aaa) = abracadabra.

Intuitively, we would like the state map α(q) = q′, q ∈ Q, to be a morphism from
T to T

′, since T
′ is just like T except that, internally, T

′ produces its output a bit
faster than T. In other words, we could shift some of the output letters “upstream”
in T and obtain an obviously isomorphic copy of T

′.

The above example illustrates the idea behind the notion of subsequential mor-
phism.

Definition 3.5 (subsequential morphism) Let Sj = (Qj , oj , dj , rj), j = 1, 2, be
two subsequential structures. A partial function α : Q1 ��� Q2 is a subsequential
morphism from S1 to S2, if there exists a function β : Q1 → B∗ such that the
following conditions are satisfied for all q ∈ dom(α):

(supp) supp(q) = supp(α(q)),

(next) ∀a ∈ supp(q) : α(d1(q)(a)) = d2(α(q))(a),

(out) ∀a ∈ supp(q) : β(q).o2(α(q))(a) = o1(q)(a).β(d1(q)(a)),

(acc) q ∈ dom(r1) ⇐⇒ α(q) ∈ dom(r2), i.e., α−1[F2] = F1,

(term-out) ∀q ∈ dom(r1) : β(q).r2(α(q)) = r1(q).

We will often use the notation (α, β) : S1 ��� S2 to say that α is a subsequential
morphism from S1 to S2 with witnessing function β.

Given two subsequential transducers Tj = (Sj , ij , mj), j = 1, 2, and a subse-
quential morphism (α, β) : S1 ��� S2, then (α, β) is a subsequential (transducer)

H.H. Hansen / Electronic Notes in Theoretical Computer Science 203 (2008) 109–129114

morphism from T1 to T2 if α and β satisfy:

(init) α(i1) = i2,

(ε-in) m2 = m1.β(i1).

Stated informally, the map β : Q1 → B∗ in the above definition defines the
speed-up in output which would synchronise T1 with T2 at all computation steps,
including incomplete computations that have not yet reached a final state. We
note that if we would allow β to be a function to the free group B(∗) (as in [6]),
then β would allow not only the speeding up of output, but also delaying output.
The reader can now verify that in Example 3.4 the map α(q) = q′, q ∈ Q, is a
subsequential morphism by taking β(q0) = ε, β(q1) = ra, β(q2) = a and β(q3) = b.

Looking closer at Definition 3.5 we note that a subsequential transducer mor-
phism α : T1 ��� T2 must be defined on all accessible states due to the conditions
(init) and (next). For subsequential structures (where the notion of accessibility
does not apply), coaccessibility is the crucial property which makes a state inter-
esting. The following lemma is well-known for deterministic transition structures.

Lemma 3.6 If α : S1 ��� S2 is a subsequential morphism and S1 = (Q1, o1, d1, r1)
and S2 = (Q2, o2, d2, r2), then for all q ∈ dom(α) and all w ∈ A∗: d1(q)(w) ∈ F1

iff d2(α(q))(w) ∈ F2. In particular, for all q ∈ dom(α), q is coaccessible iff α(q) is
coaccessible.

Proof. By induction on the length of w, details are left to the reader. �

We observe that given α : Q1 ��� Q2, if a β : Q1 → B∗ exists which makes
α a subsequential morphism, then there is only one possible definition of β on
coaccessible states.

Lemma 3.7 If α : S1 ��� S2 is a subsequential morphism with β : Q1 → B∗ as
witnessing function, then β�Coacc(S1) is uniquely defined.

Proof. Let S1 = (Q1, o1, d1, r1) and S2 = (Q2, o2, d2, r2) be subsequential struc-
tures. If q0

a1→ q1
a2→ . . .

an→ qn, n ≥ 0, is a final path in S1, then qn ∈ F1 and β(qn)
is determined by (term-out). Now for i = 0, . . . , n − 1, β(qi) is defined by β(qi+1)
and (out):

β(qi) = o1(qi)(ai+1).β(qi+1).o2(α(qi))(ai+1). (1)

The (out)-condition ensures that o2(α(qi))(ai+1) is a suffix of o1(qi)(ai+1).β(qi+1),
so β indeed takes values in B∗. �

Subsequential morphisms do not preserve behaviour of states, i.e., (α, β) : S1 ���
S2 does not imply that for all q in dom(α), [[q]]1 = [[α(q)]]2. Instead we have:

Lemma 3.8 If (α, β) : S1 ��� S2, then for all q ∈ dom(α), [[q]]1 = β(q).[[α(q)]]2.

Proof. Let (α, β) : S1 ��� S2 be a subsequential morphism from S1 = (Q1, o1, d1, r1)
to S2 = (Q2, o2, d2, r2). From Lemma 3.6 it follows immediately that dom([[q]]1) =
dom([[α(q)]]2). Now let w = a1a2 . . . an ∈ dom([[q]]1), and let q0, q1, . . . , qn be the

H.H. Hansen / Electronic Notes in Theoretical Computer Science 203 (2008) 109–129 115

run on w in S1, i.e., q0 = q and for j = 0, . . . , n − 1, qj+1 = d1(qj)(aj+1). We then
have:

[[q]]1(w) = o1(q0)(a1) . . . o1(qn−1)(an).r1(qn)

(out), (term-out) = β(q0).o2(α(q0))(a1)β(q1).β(q1).o2(α(q1))(a2)β(q2). . . .

. . . β(qn−1).o2(α(qn−1))(an).β(qn).β(qn).r2(α(qn))

= β(q0).o2(α(q0))(a1).o2(α(qn−1))(an).r2(α(qn))

(next) = β(q).[[α(q)]]2(w). �

Proposition 3.9 If there exists a subsequential transducer morphism α : T1 ���
T2, then [[T1]] = [[T2]].

Proof. Let T1 = (S1, i1, m2), T2 = (S2, i2, m2) and (α, β) : T1 ��� T2 be a subse-
quential transducer morphism. By definition, for w ∈ A∗: [[T1]](w) = m1.[[i1]]1(w).
From Lemma 3.8 and (init), we get [[T1]](w) = m1.β(i1).[[i2]]2(w), and finally from
(ε-in), [[T1]](w) = m2.[[i2]]2(w) = [[T2]](w). �

Subsequential morphisms can be composed as described in the following lemma
(the straightforward proof is omitted).

Lemma 3.10 If (α1, β1) : S1 ��� S2, and (α2, β2) : S2 ��� S3, are subsequential
morphisms, then (α2 ◦ α1, β1.(β2 ◦ α1)) : S1 ��� S3.

It follows that subsequential structures and subsequential morphisms form a
category SubSeq. Similarly, subsequential transducers and subsequential transducer
morphisms form a category SubSeqTra.

3.2 Normalised Subsequential Transducers

Minimisation via quotienting with a suitable congruence is a standard automata-
theoretic construction. A congruence is the kernel of a morphism, and for classical
automata it is clear that morphisms preserve state behaviour. However, we also
know that subsequential morphisms, in general, do not preserve state behaviour.
The observation made by Choffrut [5] was that a subsequential transducer can be
transformed into an equivalent one in which output is produced at maximal speed,
and that in this normalised transducer, state equivalence can be determined much
in the same way as for DFA’s (as also remarked in [6]). In terms of subsequential
morphisms (α, β), normalisation can be seen as an optimisation with respect to β,
and quotienting with state equivalence as an optimisation with respect to α. A
minimal subsequential transducer is optimal with respect to both.

Definition 3.11 (normalised, minimal) Let S = (Q, o, d, r) be a subsequential
structure, and q ∈ Q. We define a function β̂S : Q → 1 + B∗ by

β̂S(q) = [[q]]S[ε] = lcp({o(q)(w).r(d(q)(w)) | w ∈ A∗}). (2)

That is, β̂S(q) is the longest common prefix over all output words on final paths

H.H. Hansen / Electronic Notes in Theoretical Computer Science 203 (2008) 109–129116

starting in q. We say that a state q ∈ Q is normalised if β̂S(q) = ε. Note that q is
coaccessible, iff β̂S(q) ∈ B∗. A subsequential structure S is normalised, if all states
in S are normalised, and S is minimal, if it is normalised, and no two states are
equivalent. A subsequential transducer T is normalised (minimal) if the underlying
subsequential structure is normalised (minimal).

Again, we may leave out the subscript in β̂S when S is clear from the context.
In [6] an algorithm is given to compute β̂S for finite S. A subsequential structure
S can be normalised under the following transformation, which can be seen as the
morphism (id�Coacc(S), β̂), cf. Theorem 4.5.

Definition 3.12 (normalisation) Let T = (Q, o, d, r, i,m) be a subsequential
transducer. Define N(T) = (Coacc(T), o′, d, r′, i,m′) where for all q ∈ Q, and all
a ∈ A:

m′ = m.β̂(i), o′(q)(a) = β̂(q).o(q)(a).β̂(d(q)(a)), r′(q) = β̂(q).r(q) (3)

N(T) is called the normalisation of T. Similarly, if S = (Q, o, d, r) is a subsequential
structure, then the normalisation of S is N(S) = (Coacc(S), o′, d, r′), where o′ and
r′ are defined as in (3).

Finally we recall the construction of a minimal subsequential transducer from
an arbitrary function f : A∗ ��� B∗ (cf. [6]).

Definition 3.13 (minimal realisation) Let f : A∗ ��� B∗ be given. We define
the subsequential transducer Tf = (Δf , o, d, r, i, m) by taking:

Δf = {f ·w | w ∈ A∗}, o(f ·w)(a) = f [w].f [wa],

i = f ·ε, d(f ·w)(a) = f ·wa,

m = f [ε], r(f ·w) = f [w].f(w).

It is straightforward to check that Tf realises f , and Tf is minimal.

4 Coalgebraic Modelling

Our aim is to find out whether subsequential transducers can be seen as coalgebras.
It is easy to see that a subsequential structure (Q, t, r) has the type of a coalgebra
for the Set-functor S defined by:

S(X) = (1 + B∗ × X)A × (1 + B∗),

S(f : X → Y) = (1 + IdB∗ × f)IdA × (1 + IdB∗).
Instantiating the definitions of S-coalgebra and S-coalgebra morphism yields:

Definition 4.1 (Coalg(S)) An S-coalgebra consists of a carrier set Q and a map
〈t, r〉 : Q → S(Q), i.e.,

H.H. Hansen / Electronic Notes in Theoretical Computer Science 203 (2008) 109–129 117

〈t, r〉 : Q → (1 + B∗ × Q)A × (1 + B∗)

q �→ 〈 t(q) , r(q) 〉
Again, we will describe t in terms of an output function and a next-state function
(cf. Remark 3.2), and supp(q) := {a ∈ A | t(q)(a) �= �}, for all q ∈ Q.

If Sj = (Qj , oj , dj , rj), j = 1, 2, are S-coalgebras, a function α : Q1 → Q2 is an
S-coalgebra morphism if for all q ∈ Q1:

(supp) supp(q) = supp(α(q)),

(next) ∀a ∈ supp(q) : α(d1(q)(a)) = d2(α(q))(a),

(out)n ∀a ∈ supp(q) : o2(α(q))(a) = o1(q)(a),

(acc) q ∈ dom(r1) ⇐⇒ α(q) ∈ dom(r2),

(term-out)n ∀q ∈ dom(r1) : r2(α(q)) = r1(q).

Lemma 4.2 Let Sj = (Qj , oj , dj , rj), j = 1, 2, and be S-coalgebras. A total function
α : Q1 → Q2 is an S-coalgebra morphism if and only if (α, ε) is a subsequential
morphism.

Proof. Follows almost immediately from Definitions 4.1 and 3.5. �

In other words, S-coalgebra morphisms do not allow the shifting of output letters
via some function β : Q → B∗. This means that, in general, subsequential structures
can be seen as coalgebras only at the level of objects, but the coalgebraic notion
of morphism is too strict with respect to the intended semantics of subsequential
transducers. However, in the next section we show that normalisation is a natural
transformation from subsequential structures to coalgebras.

4.1 Normalisation is Coalgebraisation

From now on we will restrict ourselves to coaccessible subsequential structures, that
is, subsequential structures in which all states are coaccessible. In the literature on
automata, (co)accessibility is often assumed (cf. [6]). From an algorithmic point of
view this is justified by the fact that it is straightforward to make a finite automaton
(co)accessible. Our motivation is mainly technical, since coaccessibility allows us to
work with total maps as morphisms, and it ensures that all states have non-empty
behaviour.

Let CSubSeq be the (non-full) subcategory of SubSeq consisting of coaccessi-
ble subsequential structures and total subsequential morphisms between them. Let
NSubSeq be the full subcategory of CSubSeq consisting of normalised subsequential
structures and total subsequential morphisms. We will show that normalised sub-
sequential structures are essentially coalgebras, and that NSubSeq is reflective in
CSubSeq.

We recall the definition of a reflective subcategory (see e.g. [1]). Let C be a
subcategory of D, and D and object in D. A C-reflection arrow for D is a D-
morphism rD : D → CD to some C-object CD which has the following universal

H.H. Hansen / Electronic Notes in Theoretical Computer Science 203 (2008) 109–129118

property. For any C ′ ∈ C and any D-morphism f : D → C ′ there is a unique
C-morphism f ′ : CD → C ′ such that f = f ′ ◦ rD. That is, the following diagram
commutes:

D
rD ��

f ���
��

��
��

� CD

f ′
��

C ′

A subcategory C of D is reflective in D if every D-object has a C-reflection arrow.
An equivalent formulation is the following: A subcategory C of D is reflective in D
if the embedding functor E : C → D has a left adjoint R : D → C. This left adjoint
R is called a reflector.

First we make some observations regarding subsequential morphisms. Note that
from Lemma 3.8 it follows that for any subsequential morphism (α, β) : S1 ��� S2,
and all states q in dom(α):

β̂1(q) = β(q).β̂2(α(q)). (4)

Using (4) and Lemma 4.2 it is easy to show the following (proof is left to the reader).

Lemma 4.3 (i) If (α, β) : S1 → S2 is a CSubSeq-morphism, and S2 is normalised,
then β = β̂1.

(ii) If S1 and S2 are normalised and (α, β) : S1 → S2 is a total subsequential
morphism, then β = ε.

(iii) NSubSeq is a full subcategory of Coalg(S).

Next we show that the normalisation operation N defined in Def. 3.12 can be
extended to a functor from CSubSeq to NSubSeq.

Proposition 4.4 For α : S1 → S2 in CSubSeq define N(α) := α. The map N is a
functor from CSubseq to NSubSeq.

Proof. Assume (α, β) : S1 → S2 in CSubSeq, and N(Sj) = (Sj , o
′
j , dj , r

′
j), j = 1, 2.

We must prove that α : N(S1) → N(S2) in NSubSeq. By Lemma 4.3.(iii) this
amounts to showing that α : N(S1) → N(S2) is a Coalg(S)-morphism. Conditions
(supp), (next) and (acc) follow from the assumption that (α, β) : S1 → S2 is a
subsequential morphism. To see that o′1(q)(a) = o′2(α(q))(a) we have for q ∈ dom(α)
and a ∈ A using (out) and (next) for (α, β), and equation (4):

o′1(q)(a) = β̂1(q).o1(q)(a).β̂1(d1(q)(a))
(4)
= β̂2(α(q)).β(q).o1(q)(a).β(d1(q)(a)).β̂2(α(d1(q)(a)))

(out)
= β̂2(α(q)).o2(α(q))(a).β̂2(α(d1(q)(a)))

(next)
= o′2(α(q))(a).

Similarly, using (4) and (term-out) for (α, β) we have for q ∈ dom(α):

H.H. Hansen / Electronic Notes in Theoretical Computer Science 203 (2008) 109–129 119

r′1(q) = β̂1(q).r1(q) = β̂2(α(q)).β(q).r1(q) = β̂2(α(q)).r2(α(q))

= r′2(α(q)). �

We now show that normalised subsequential structures form a reflective subcat-
egory of CSubSeq.

Theorem 4.5 NSubSeq is a reflective subcategory of CSubSeq.

Proof. For a coaccessible S = (Q, o, d, r), the map idQ, is an NSubSeq-reflection
arrow for S: It is straightforward to check that (idQ, β̂S) : S → N(S) is a surjective
subsequential morphism, and that for any normalised S

′ ∈ NSubSeq, and CSubSeq-
morphism (α, β) : S → S

′, the unique NSubSeq-morphism α′ : N(S) → S
′ such that

(α′, ε) ◦ (idQ, β̂S) = (α, β) is just α′ = α. �

The above theorem easily extends from structures to transducers.

Corollary 4.6 Normalised subsequential transducers form a reflective subcategory
of coaccessible subsequential tranducers.

From Definition 3.11 it is clear that if a function f : A∗ ��� B∗ is the behaviour
of some state q in a normalised subsequential structure, then f [ε] = ε, and hence
f ·ε = f . We now show that the set Φ := {f : A∗ ��� B∗ | f [ε] = ε} of all such
(normalised) functions carries a normalised subsequential structure, and that this
object is final in NSubSeq with the behaviour map [[]] as the unique subsequential
morphism into Φ. The subsequential structure on Φ is obtained as follows: We
define τ : Φ → (1 + B∗ × Φ)A and ρ : Φ → 1 + B∗ by:

τ(f) = 〈f [a], f ·a〉 if dom(f ·a) �= ∅, otherwise τ(f) = �,

ρ(f) = f(ε).
(5)

Theorem 4.7 The subsequential structure Φ = (Φ, τ, ρ) is a final object in the cat-
egory NSubSeq of normalised subsequential structures and total subsequential mor-
phisms.

Proof. We first show that derivatives are normalised. Let f : A∗ ��� B∗ and
a ∈ A. By definition, (f ·a)[ε] = lcp({ f [a].f(aw) | aw ∈ dom(f)}) and f [a] =
lcp({f(aw) | aw ∈ dom(f)}), hence (f ·a)[ε] = ε. It follows that τ is well-defined,
and (Φ, τ, ρ) is a normalised subsequential structure.

In the rest of this proof we will denote the output and next-state components of
τ by oτ and dτ , respectively. We show that if S = (Q, o, d, r) is a normalised sub-
sequential structure, then the behaviour map h := [[]]S : Q → Φ is a subsequential
morphism, i.e., an S-coalgebra morphism. Recall that by definition of normalised
structures, all states in S are coaccessible, hence [[]]S is total.

Let q ∈ Q, and a ∈ A. We have: a ∈ supp(q) iff there exists a q′ ∈ Q such that
d(q)(a) = q′. By coaccessibility, this is equivalent with the existence of a w ∈ A∗

such that d(q)(aw) ∈ F , which in turn is equivalent with the existence of a w ∈ A∗

such that aw ∈ dom(h(q)), i.e., dom(h(q)·a) �= ∅, i.e., a ∈ supp(h(q)).

H.H. Hansen / Electronic Notes in Theoretical Computer Science 203 (2008) 109–129120

To see that oτ (h(q))(a) = o(q)(a), we note that, again by coaccessibility, o(q)(a) �
lcp([[q]](aA∗)) = h(q)[a], and since in particular d(q)(a) is normalised, we also have
h(q)[a] � o(q)(a), hence o(q)(a) = h(q)[a] = oτ (h(q))(a).

In order to show h(d(q)(a)) = h(q)·a, let w ∈ A∗, then

h(d(q)(a))(w) = o(d(q)(a))(w).r(d(d(q)(a))(w))

= o(q)(a).o(q)(aw).r(d(q)(aw))

= h(q)[a].h(q)(aw)

= (h(q)·a)(w).

Also ρ(h(q)) = h(q)(ε) = r(q). We leave it to the reader to verify that the map
h : (Q, o, d, r) → (Φ, oτ , dτ , ρ) is unique. �

Remark 4.8 (final object in Coalg(S) and SubSeq) Note that Φ is not final in
Coalg(S), since the behaviour map will not in general be an S-coalgebra morphism
(cf. Lemma 4.3.(i)). However, Φ is also not final in SubSeq, where non-trivial β’s
are allowed. The reason is that the behaviour map may fail to satisfy condition
(supp) of Definition 3.5. For example, if a state q is coaccessible, but d(q)(a) is
not, yet still present, then a ∈ supp(q) but a �∈ supp([[q]]). Adding a sink state
(the empty map) to Φ will not solve this problem, since transitions between states
with undefined behaviour cannot be matched (as required by (supp)) by transitions
to/from the sink state.

Corollary 4.9 The normalised subsequential structure Φ = (Φ, τ, ρ) (as defined in
(5)) is a final object in CSubSeq.

Proof. This is a consequence of Theorems 4.5 and 4.7. There are several ways of
formulating the proof, here is one: For any S ∈ CSubSeq, Theorem 4.5 tells us that
there is a bijection of Hom-sets: CSubSeq(S, Φ) ∼= NSubSeq(N(S),Φ). Hence the
unique morphism [[]]N(S) : N(S) → Φ corresponds to a unique morphism hS : S → Φ.
Concretely, one can show that hS = ([[]]N(S), ε) ◦ (idQ, β̂S) = ([[]]N(S), β̂S) is the
unique subsequential morphism from S to Φ. �

Recall the minimal subsequential transducer Tf of a function f : A∗ → B∗ (cf.
Definition 3.13). We now show that the existence and properties of Tf given in [6]
are a consequence of Theorem 4.7. Recall the following notation. Given a function
f : A∗ ��� B∗ in Φ, 〈f〉Φ denotes the subcoalgebra generated by f in (Φ, τ, ρ).

Corollary 4.10 (i) For any f : A∗ ��� B∗, Tf = (〈f ·ε〉Φ, f ·ε, f [ε]).

(ii) For any trim subsequential transducer T = (S, i,m) and f = [[T]], the behaviour
map [[]]N(S) is the unique subsequential transducer morphism (with witnessing
function β̂S) from T onto the minimal subsequential transducer Tf .

(iii) Two subsequential transducers T1 and T2 are equivalent iff there exists a subse-
quential transducer T and subsequential morphisms αj : Tj → T, for j ∈ {1, 2}.

H.H. Hansen / Electronic Notes in Theoretical Computer Science 203 (2008) 109–129 121

Proof. Item (i): Almost immediate, left to the reader. Item (ii): The proof can be
found in [6], but it follows essentially from (Φ, τ, ρ) being final in CSubSeq (Corol-
lary 4.9) and item (i). Item (iii): The direction from right to left follows from the
fact that subsequential transducer morphisms preserve behaviour (Proposition 3.9);
the other direction follows from (ii). �

4.2 Coalgebras for Sequential Transducers

A subsequential structure S = (Q, o, d, r) is sequential if dom(r) = Q and for all
q ∈ Q : r(q) = ε. A sequential transducer T = (S, i) consists of a sequential
structure S and an initial state i in S. Sequential transducers can thus be seen as
the subsequential ones in which the initial prefix is the empty word ε, and all states
are final with terminal output ε. We can therefore leave out m and r from the
description of a sequential transducer, and simply write T = (Q, o, d, i). Moreover,
from their definition it is immediate that a sequential structure is normalised, since
for all states q, β̂(q) = r(q) = ε.

Sequential transducers are treated in detail by Eilenberg [7] under the name
generalised sequential machines. In particular, in Chapter XII of [7] the existence
of a final sequential structure is proved, but without any mention of the words coal-
gebra, finality and bisimulation. In this section, we give a coalgebraic formulation
of Eilenberg’s [7] results, and relate them to the results of section 4.1.

First we look at the morphisms. By working out the details of Definition 3.5 we
find that given two sequential structures S1 = (Q1, o1, d1) and S2 = (Q2, o2, d2), a
function α : Q1 → Q2 is a subsequential morphism from S1 to S2 if for all q ∈ Q1:

(supp) supp(q) = supp(α(q)),

(next) ∀a ∈ supp(q) : α(d1(q)(a)) = d2(α(q))(a),

(out)n ∀a ∈ supp(q) : o1(q)(a) = o2(α(q))(a).

(6)

A subsequential morphism between sequential structures will simply be called a
sequential morphism.

Let the functor S0 : Set → Set be defined by: S0(X) = (1 + B∗ × X)A. It
is easily seen that there is a 1-1 correspondence between sequential structures and
S0-coalgebras by taking the transition structure t : Q → (1 + B∗ × Q)A as the
coalgebra map (cf. Remark 3.2). Moreover, it follows almost immediately that a map
α is a sequential morphism if and only if α is an S0-coalgebra morphism. Denote by
Seq the category of sequential structures and sequential morphisms; and by SeqTra
the category of sequential transducers and sequential transducer morphisms.

Proposition 4.11 (i) Seq is isomorphic to Coalg(S0),

(ii) SeqTra is isomorphic to PtCoalg(S0).

As a consequence we also have that, up to isomorphism, Coalg(S0) is a full
subcategory of Coalg(S), and Seq is a full subcategory of NSubSeq. From now on
we will use the words sequential structure and S0-coalgebra interchangeably.

H.H. Hansen / Electronic Notes in Theoretical Computer Science 203 (2008) 109–129122

Eilenberg [7] proves that the class of prefix-preserving functions carries a final se-
quential structure. More precisely, he shows that for any sequential structure S and
state q in S, the behaviour of q, [[q]]S : A∗ ��� B∗, is prefix-preserving, and [[q]]S(ε) =
ε. Let Ψ ⊆ Φ be the set Ψ = {f : A∗ ��� B∗ | f is prefix-preserving & f(ε) = ε}. It
is straightforward to check that Ψ is closed under taking derivatives, hence it follows
that Ψ = (Ψ, τ�Ψ, ρ�Ψ), (with τ and ρ are defined as in (5)) is a subcoalgebra of Φ.
By definition, ρ(f) = f(ε) = ε for all f ∈ Ψ, hence Ψ is a sequential structure.

Theorem 4.12 (Eilenberg [7]) The sequential structure Ψ is final in Seq.

Proof. The proof can be found in Chapter XII of [7], but it also follows from the
finality of Φ (Theorem 4.7). Let S be an arbitrary sequential structure. Viewing S

as an object in NSubSeq, Theorem 4.7 tells us that the behaviour map [[]] : S → Φ
is the unique NSubSeq-morphism [[]]S : S → Φ. Since the image of [[]]S is contained
in Ψ, it follows that [[]]S : S → Ψ. Uniqueness in Seq follows from the uniqueness
of [[]]S in NSubSeq and the fact that Seq is fully embedded into NSubSeq. �

4.3 Coalgebras for Differentials

The reason why subsequential structures, in general, cannot be seen as coalgebras
essentially comes down to the fact that their semantics allows for asynchrony at
internal computation steps, whereas the coalgebraic notion of equivalence requires
synchrony at all steps. We have seen that normalisation is one way of eliminating
internal asynchrony. In this section, we will see that for the class of subsequen-
tial structures which have no internal states, and therefore also no proper internal
computations, there is an alternative coalgebraic representation which can be com-
puted locally. This should be seen in contrast with normalisation which requires the
computation of β̂. This computation is a global fixpoint computation involving all
states of the structure ([6]). Call a subsequential structure S = (Q, t, r) step-by-step
if dom(r) = Q (i.e. all states are final). A subsequential transducer (S, i,m) is
step-by-step if S is step-by-step. Let Step denote the full subcategory of CSubSeq
which has step-by-step subsequential structures as its objects.

Note that step-by-step subsequential transducers need not to be normalised,
hence two step-by-step subsequential transducers can realise the same function
without being in perfect synchrony. The differential (cf. [7,12,4]) captures this
equivalence notion, for the behaviour of step-by-step subsequential transducers on
nonempty words. Let f : A∗ ��� B∗ be a function with prefix-closed domain. The
differential of f is the partial function Df : A+ ��� B(∗) defined on dom(f) \ {ε}
for all a ∈ A, w ∈ A∗ by

Df (wa) = f(w).f(wa).

Df describes f in a step by step manner, since for all w = a1a2 . . . an ∈ dom(f),
n ≥ 1, we have

f(w) = f(ε)Df (a1)Df (a1a2) . . . Df (a1a2 . . . an). (7)

H.H. Hansen / Electronic Notes in Theoretical Computer Science 203 (2008) 109–129 123

We also have

Df·w(a) = (f ·w)(ε).(f ·w)(a) = f [w]f(w).f [w]f(wa) = f(w).f(wa) = Df (wa) (8)

from which it follows that for all w = a1a2 . . . an ∈ dom(f), n ≥ 1,

f(w) = f(ε) Df·ε(a1)Df·a1(a2)Df·a1a2(a3) . . . Df·a1...an1
(an) (9)

Proposition 4.13 A function f : A∗ ��� B∗ is realised by a step-by-step subse-
quential transducer if and only if dom(f) is prefix-closed.

Proof. Clearly, if f is realised by a step-by-step subsequential transducer, then
dom(f) is prefix-closed. To prove the other direction, it suffices to show that the
minimal realisation 〈f〉Φ is step-by-step, that is, for all w ∈ A∗, if w ∈ dom(f)
then ε ∈ dom(f ·w). But this is immediate from the definition of f ·w, since
(f ·w)(ε) = f [w].f(w). �

We observe that for any step-by-step subsequential structure S = (Q, o, d, r) and
q ∈ Q, the differential of the function [[q]]S can be computed based on o, d and r.
For all a ∈ A and w ∈ A∗, letting qw = d(q)(w), we have:

D[[q]]S(wa) = [[q]]S(w).[[q]]S(wa) = r(qw).o(qw)(a).r(qwa). (10)

The above suggests that we can view step-by-step subsequential structures as
coalgebras for the functor D : Set → Set defined by:

D(X) = (1 + B(∗) × X)A

D(f : X → Y) = (1 + IdB(∗) × f)IdA

(11)

Definition 4.14 (differential structure) Let S = (Q, o, d, r) be a step-by-step
subsequential structure. We define for q ∈ Q and a ∈ A the function ∂S : Q →
(A ��� B(∗)) by ∂S(q)(a) = r(q).o(q)(a).r(d(q)(a)). The differential structure of S is
the D-coalgebra Dif(S) = (Q, δ), where δ : Q → (1 + B(∗) × Q)A is defined by

δ(q)(a) =

⎧⎨
⎩

〈∂S(q)(a), d(q)(a)〉 if a ∈ supp(q),

� otherwise.

For a step-by-step subsequential transducer T = (S, i,m) we define Dif(T) = (Dif(S), i),
which we will also refer to as the differential automaton of the state i in S.

It should be clear that differential structures can be seen as sequential structures
with output in B(∗). The notions of behaviour and realisation from Definition 3.3
therefore apply, with identity taken in B(∗) where appropriate. Also clear should
be the fact that Seq and Coalg(S0) are full subcategories of Step and Coalg(D)
respectively. We can extend Dif to a functor by letting Dif act as identity on
morphisms.

H.H. Hansen / Electronic Notes in Theoretical Computer Science 203 (2008) 109–129124

Proposition 4.15 The map Dif() is a functor from Step to Coalg(D), and also
from the category of step-by-step subsequential transducers to pointed D-coalgebras.

Proof. Let Sj = (Qj , oj , dj , rj), j = 1, 2, be step-by-step subsequential structures.
We first claim that a function α : Q1 → Q2 is a subsequential morphism from S1 to
S2 iff dom(α) = Q1 and for all q ∈ Q1 the following hold:

(supp) supp(q) = supp(α(q)),

(next) ∀a ∈ supp(q) : α(d1(q)(a)) = d2(α(q))(a),

(out)s ∀a ∈ supp(q) :

r1(q).o1(q)(a).r1(d1(q)(a)) = r2(α(q)).o2(α(q))(a).r2(d2(α(q))(a)),

(term-out)s r1(q).r2(α(q)) ∈ B∗.

To prove this claim, assume (α, β) : S1 → S2 is a subsequential morphism (cf.
Def. 3.5). Since dom(r2) = Q2, the condition (acc) implies that α must be a total
function. Furthermore, condition (term-out) implies that

β(q) = r1(q).r2(α(q)). (12)

One can now easily verify that (out) reduces to (out)s. Conversely, for any total
function α which satisfies the above requirements, we can define β : Q → B∗ using
(12), since condition (term-out)s guarantees that β(q) ∈ B∗. It is now straightfor-
ward to verify that (α, β) is a subsequential morphism. From the above characteri-
sation, it clearly follows that α : S1 → S2 is a subsequential morphism if and only
if α : Dif(S1) → Dif(S2) is a Coalg(D)-morphism.

Similarly, it is easy to see that α : S1 → S2 is a subsequential transducer mor-
phism between step-by-step (S1, i1, m1) and (S2, i2, m2) if and only if

(init) α(i1) = i2,

(ε-in)s m1.r1(i1) = m2.r2(i2).

In particular, α is a morphism of pointed D-coalgebras. �

We note that Dif is not full. For step-by-step subsequential transducers this is
clear, since the condition (ε-in)s is not guaranteed by PtCoalg(D)-morphisms. But
also Dif : Step → Coalg(D) is not full. The following example shows this.

Example 4.16 Consider the following two simple step-by-step subsequential struc-
tures.

S1 : q1

ab
��

a|aa �� s1

ab
��

S2 : q2

cb
��

a|caa �� s2

b
��

It is easy to see that Dif(S1) and Dif(S2) are both isomorphic to the following

H.H. Hansen / Electronic Notes in Theoretical Computer Science 203 (2008) 109–129 125

D-coalgebra:

S : q a|baab �� s

Hence if we define α(q1) = q2 and α(s1) = s2, then α : Dif(S1) → Dif(S2) is a
Coalg(D)-morphism, however α is not a subsequential morphism between S1 and
S2, since condition (term-out)s fails at q1.

Proposition 4.15 tells us that step-by-step subsequential structures can be prop-
erly viewed as coalgebras without having to normalise. We now show that D-
bisimilarity in the differential structure exactly captures equality of differentials,
and hence equivalence of step-by-step transducers modulo the behaviour on ε.
The definition of D-bisimulation amounts to the following. Let (Q1, 〈∂1, d1〉) and
(Q2, 〈∂2, d2〉) be D-coalgebras. A relation R ⊆ Q1 × Q2 is a D-bisimulation if and
only if for all 〈q1, q2〉 ∈ R, we have for all a ∈ A, ∂1(q1)(a) = ∂2(q2)(a) (in the free
group B(∗)), and 〈d1(q1)(a), d2(q2)(a)〉 ∈ R.

Proposition 4.17 Let T1 = (S1, q1, m1) and T2 = (S2, q2, m2) be step-by-step sub-
sequential transducers, where S1 = (Q1, t1, r1) and S2 = (Q2, t2, r2). We have:

(i) D[[q1]]1 = D[[q2]]2 iff Dif(S1), q1 ∼ Dif(S2), q2.

(ii) [[T1]] = [[T2]] iff m1.r1(q1) = m2.r2(q2) and Dif(S1), q1 ∼ Dif(S2), q2.

Proof. Item (i), sketch only: (⇒) Show that R = {〈d1(q1)(w), d2(q2)(w)〉 | w ∈ A∗}
is a D-bisimulation. (⇐) Use (10). Item (ii): By definition, for j = 1, 2 and all
w = a1 . . . an ∈ A∗ (i.e. n ≥ 0) we have:

[[Tj]](w) = mj .[[qj]]j(w)
(7)
= mj .rj(qj).D[[qj]]j (a1) . . . D[[qj]]j (a1 . . . an).

Item (ii) now follows easily from (i). �

The main advantage of using the differential structures to decide equivalence
is probably that in order to check D-bisimilarity it is not be necessary to store a
representation of the differential structures, since for any step-by-step S, ∂S can
be computed on the fly from a representation of S (cf. Def. 4.14). Checking S-
bisimilarity of the normalisations, however, requires explicit computation of β̂, and
explicit storage of β̂ or the normalised structures themselves.

The final result of this section states that bisimilarity in the differential struc-
tures coincides with bisimilarity in the normalised structures. We start with the
following easy observation (the proof is obtained by writing out the details).

Lemma 4.18 For any step-by-step subsequential structure S, Dif(S) = Dif(N(S)).

Theorem 4.19 If S1, S2 are step-by-step subsequential structures, and q1, q2 are
states in S1, respectively S2, then

N(S1), q1 ∼ N(S2), q2 iff Dif(S1), q1 ∼ Dif(S2), q2.

Proof. Let S1 = (Q1, t1, r1) and S2 = (Q2, t2, r2) be step-by-step subsequential
structures; q1 ∈ Q1, q2 ∈ Q2, and let u1 and u2 denote the terminal output of

H.H. Hansen / Electronic Notes in Theoretical Computer Science 203 (2008) 109–129126

q1 and q2 in N(S1) and N(S2), respectively. We have: N(S1), q1 ∼ N(S2), q2 iff (by
Thm. 4.7) [[q1]]N(S1) = [[q2]]N(S2) iff [[(N(S1), q1, ε)]] = [[(N(S2), q2, ε)]] iff (Prop. 4.17.(ii)
and Lemma 4.18) u1 = u2 and Dif(S1), q1 ∼ Dif(S2), q2. It therefore suf-
fices to show that u1 = u2 follows from Dif(S1), q1 ∼ Dif(S2), q2. So assume
Dif(S1), q1 ∼ Dif(S2), q2. If supp(q1) = supp(q2) = ∅. then β̂1(q1) = r1(q1) and
β̂2(q2) = r2(q2), hence u1 = ε = u2. Now suppose a ∈ supp(q1) = supp(q2). We
then have that r1(q1) = β̂1(q1)u1, r2(q2) = β̂2(q2)u2; and o1(q1)(a) = β̂1(q1)w1,
o2(q2)(a) = β̂2(q2)w2 for some w1, w2 ∈ A∗. From Dif(S1), q1 ∼ Dif(S2), q2 it follows
that ∂S1(q1)(a) = ∂S2(q2)(a), that is, u1w1r1(s1) = u2w2r2(s2). Since β̂1(q1) and
β̂2(q2) are maximal, it follows that u1 = u2. �

Theorem 4.19 implies that we can obtain a minimal Coalg(D)-representation
of a step-by-step T by quotienting Dif(T) with D-bisimilarity. This could be an
interesting alternative to computing the minimal realisation of [[T]] via normalisation
and quotienting N(T) with S-bisimilarity. Of course, an actual implementation of a
step-by-step T should be based on the minimal realisation of [[T]], since the output
produced by Dif(T) would have to be reduced in the free group in order to obtain
the behaviour. The following example illustrates the difference between the two
types of minimal realisations.

Example 4.20 (minimal realisations) Consider the following transition dia-
gram of a step-by-step subsequential structure S = (Q, o, d, r), and its differential
structure Dif(S):

S : �������	0

b
��

a|ab ��

b|b

���������������� �������	1

a|bab

��

ba
��

b|ba�� Dif(S) : �������	0
a|babba ��

b|b

���������������� �������	1

a|bb
��

b|ba��

�������	3
a��

a|ab

		

b|ab

�������	2

b��
a|abb

�� b|b��
�������	3

a|bb
		

b|ba

�������	2

a|babba
�� b|b��

For i ∈ {0, 1, 2, 3}, let fi = [[i]]S. We then find that: f0(ε) = r(0) = b, f1(ε) =
r(1) = ba, f2(ε) = r(2) = b, and f3(ε) = r(3) = a. It can easily be checked that the
relation R = {〈0, 2〉; 〈1, 3〉; 〈0, 0〉; 〈1, 1〉; 〈2, 2〉; 〈3, 3〉} is the maximal D-bisimulation
on Dif(S). This tells us that Df0 = Df2 and Df1 = Df3 . Furthermore, since
f0(ε) = f2(ε), we can conclude that f0 = f2. We can obtain a minimal sequential
transducer with output in B(∗) which realises f1 by quotienting Dif(S) with R and
initialising this structure with the macro state containing 1, and adding initial prefix
f1(ε) = ba. (Similarly for the functions f0, f2 and f3):

(Dif(S)/R, 1, ba) :
ba���������

������0, 2
b|b

a|babba
��
������1, 3

b|ba��
a|bb

��

Alternatively, we could compute and minimise N(S). It can easily be verified that:

H.H. Hansen / Electronic Notes in Theoretical Computer Science 203 (2008) 109–129 127

β̂(0) = ε, β̂(1) = ba, β̂(2) = ε, β̂(3) = a. We now obtain a minimal realisa-
tion of f1 by quotienting N(S) with R, initialising with the macro state {1, 3} and
adding the initial prefix β̂(1) = ba. N(S) and (N(S)/R, 1, ba) are illustrated below:

N(S) : �������	0

b
��

a|abba ��

b|b

��������������� �������	1

a|b
��

ε��

b|ba��

�������	3
ε��

a|b
		

b|ba

�������	2

b��
a|abba

�� b|b��

(N(S)/R, 1, ba) :

ba�����
���

�

������0, 2

b
��

b|b

a|abba
��
������1, 3

ε��

b|ba��
a|b

��

5 Summary and Discussion

In the diagram below right we provide an overview of the relationships between the
various classes of subsequential structures and coalgebras that have been studied

SubSeq Coalg(S)� �
(not full!)����

CSubSeq
� �

		

N �� NSubSeq��refl
��

� �

full

����������

Seq
� �

full

		

��

full
��

Coalg(S0)��∼��
� �

full

		

��

full
��

Step Dif ��
� 	

full

���������������������

Coalg(D)

in this paper. The inclusion arrows
indicate embeddings of categories; a
double-headed arrow indicates that the
embedding is surjective on objects; and
the labels ‘full’, ‘refl’ and ∼ indicate
whether the embedding is full, reflective
or an isomorphism, respectively. The
functors N (normalisation) and Dif (dif-
ferential) are also indicated.

We note that the coalgebraic mod-
elling of normalised and step-by-step
subsequential structures does not cap-
ture the initial prefix. However, this
does not cause any essential problems. For example, when deciding equivalence
of step-by-step subsequential transducers, the initial prefix only requires one com-
parison (constant time) in addition to the time to decide bisimilarity equivalence.

The presence of internal states in a non-normalised subsequential transducer
is the main reason why the coalgebraic notions of morphism and bisimilarity are
not appropriate in such structures. Rather than transforming the subsequential
transducer, one could perhaps try to look for alternative equivalence notions along
the lines of weak bisimilarity. Unfortunately, weak bisimilarity in coalgebras is not
very well understood, although some results may be found in [14,18]. As another
possible direction for future work, we mention applying the regular expressions
for polynomial coalgebras of [3] to normalised and step-by-step structures. These
regular expressions provide a formal language for reasoning about and specifying
coalgebras for polynomial functors, which include both normalised and step-by-step
subsequential structures. As the main application of [3], we would get a symbolic
synthesis method which constructs from a regular expression (of the relevant type)
a normalised or step-by-step subsequential transducer. Moreover, the normalisation

H.H. Hansen / Electronic Notes in Theoretical Computer Science 203 (2008) 109–129128

procedure of [3] could perhaps be refined to deal with associativity of the join such
that transducer equivalence can be determined symbolically by comparing normal
forms of regular expressions.

References

[1] Adámek, J., H. Herrlich and G. Strecker, “Abstract and Concrete Categories: The Joy of Cats,” J.
Wiley and Sons, 1990, online version: http://katmat.math.uni-bremen.de/acc.

[2] Béal, M.-P. and O. Carton, Determinization of transducers over finite and infinite words., Theoretical
Computer Science 289 (2002), pp. 225–251.

[3] Bonsangue, M. M., J. J. M. M. Rutten and A. M. Silva, Regular expressions for polynomial coalgebras,
Technical Report SEN-E0703, Centrum voor Wiskunde en Informatica (CWI) (2007).

[4] Bruyère, V. and C. Reutenauer, A proof of Choffrut’s theorem on subsequential functions, Theoretical
Computer Science 215 (1999), pp. 329–335.

[5] Choffrut, C., A generalisation of Ginsburg and Rose’s characterization of g-s-m mappings, in:
Proceedings ICALP 1979, LNCS 71 (1979), pp. 88–103.

[6] Choffrut, C., Minimizing subsequential transducers: A survey, Theoretical Computer Science 292
(2003), pp. 131–143.

[7] Eilenberg, S., “Automata, Languages and Machines (Vol. A),” Academic Press, 1974.

[8] Hansen, H., D. Costa and J. Rutten, Synthesis of Mealy machines using derivatives, in: Proceedings
of the 8th Workshop on Coalgebraic Methods in Computer Science (CMCS 2006), Vienna, Austria,
ENTCS 164(1) (2006), pp. 27–45.

[9] Mohri, M., Finite-state-transducers in language and speech processing, Computational Linguistics 23
(1997), pp. 269–311.

[10] Pattinson, D., Coalgebraic modal logic: Soundness, completeness and decidability of local consequence,
Theoretical Computer Science 309 (2003), pp. 177–193.

[11] Raney, G., Sequential functions, Journal of the ACM 5 (1958), pp. 177–180.

[12] Reutenauer, C., Subsequential functions: Characterizations, minimization, examples., in: IMYCS,
LNCS 464, 1990, pp. 62–79.

[13] Rutten, J., Automata and coinduction (an exercise in coalgebra), in: D. Sangiorgi and R. de Simone,
editors, Proceedings CONCUR’98, LNCS 1466 (1998), pp. 194–218.

[14] Rutten, J., A note on coinduction and weak bisimilarity for while programs, Technical Report SEN-
R9826, Centrum voor Wiskunde en Informatica (CWI) (1998).

[15] Rutten, J., Universal coalgebra: a theory of systems, Theoretical Computer Science 249 (2000), pp. 3–
80.

[16] Schröder, L. and D. Pattinson, Pspace bounds for rank-1 modal logics, in: Proceedings 21st Annual
IEEE Symposium on Logic in Computer Science (LICS 2006), 2006, pp. 231–242, extended version to
appear in ACM Transactions on Computational Logics.

[17] Schützenberger, M., Sur un variante des fonctions sequentielles, Theoretical Computer Science 4
(1977), pp. 47–57.

[18] Sokolova, A., E. de Vink and H. Woracek, Weak bisimulation for action-type coalgebras, in: Proceedings
of Category Theory and Computer Science (CTCS’04), 2005, pp. 211–228.

[19] Venema, Y., Automata and fixed point logic: a coalgebraic perspective, Information and Computation
204 (2006), pp. 637–678.

H.H. Hansen / Electronic Notes in Theoretical Computer Science 203 (2008) 109–129 129

http://katmat.math.uni-bremen.de/acc

	Introduction
	Preliminaries
	Sets, words, functions.
	Coalgebra and Automata

	Subsequential Transducers
	Basic definitions
	Normalised Subsequential Transducers

	Coalgebraic Modelling
	Normalisation is Coalgebraisation
	Coalgebras for Sequential Transducers
	Coalgebras for Differentials

	Summary and Discussion
	References

