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The Construction of Large Sets of Idempotent Quasigroups 

Luc TEIRLINCK AND C. C. LINDNER * 

The maximum number of idempotent quasigroups of order n which pairwise agree on the main 
diagonal only is n - 2. Such a collection is called a large set of idempotent quasigroups of order 
n. The main result in this paper is the construction of a large set of idempotent quasigroups of order 
n for every n ;;. 3 except n = 6, for which no such collection exists, and n = 14 and 62. Addition­
ally, the known spectrum for large sets of Mendelsohn quasigroups is improved. 

1. INTRODUCTION 

Let (Q, 0) be a quasi group of order n and define an n2 x 3 array A by (x, y, z) is a row 
of A if and only if x 0 y = z. Then A is an orthogonal array. That is, if we run our fingers 
down any two columns of A we get each ordered pair belonging to Q x Q exactly once. 
Conversely, if A is any n2 x 3 orthogonal array (defined on a set Q) and we define a binary 
operation '0' on Q by x 0 y = z if and only if (x, y, z) is a row of A, then (Q, 0) is a 
quasigroup. Hence we can think of a quasigroup of order n as an n2 x 3 orthogonal array 
and conversely. If oc E S3 (the symmetric group on {I, 2, 3}) and A is an n2 x 3 orthogonal 
array we will denote by Aoc the orthogonal array obtained by permuting the columns of A 
according to oc. Two orthogonal arrays are equal if and only if they define the same 
quasigroup. In other words, if we disregard the level at which the rows occur, the two 
orthogonal arrays contain exactly the same rows. Two orthogonal arrays A and B are said 
to be conjugate provided there is at least one oc E S3 such that A oc = B. Two quasigroups 
are said to be conjugate provided their corresponding orthogonal arrays are conjugate. The 
conjugate invariant subgroup H of an orthogonal array A is defined by 

H = {oc E S31Aoc = A}. 

The quasigroup (Q, 0) is said to be idempotent provided it satisfies the identity x 2 = x; i.e., 
a 0 a = a for all a E Q. The corresponding orthogonal array A has the property that 
(a, a, a) E A for every a E Q. Hence the n(n - 1) non-idempotent rows of A consist of 3 
distinct elements. Trivially, any n(n - 1) x 3 partial orthogonal array (based on a set of 
size n) in which all of the rows consist of 3 distinct elements can be enlarged to an 
idempotent orthogonal array by adding n rows of the form (a, a, a). If H is a subgroup of 
S3, the idempotent spectrum of H is set of all n such there is an idempotent quasigroup of 
order n with conjugate invariant subgroup containing H. The information presented in 
Table 1 is extremely well-known. See [3] for details. 

In view of the preceding remarks, the following problem arises quite naturally. 

THE GENERAL PROBLEM Denote by T(n) the set ofn(n - l)(n - 2) ordered triples of 
elements from the set {I, 2, 3, ... , n} with the property that the 3 coordinates of each 
ordered triple are distinct. Let H be a subgroup of S3' For which n belonging to the idempotent 
spectrum of H is it possible to partition T(n) into n - 2 n(n - 1) x 3 partial orthogonal 
arrays AI, A2 , ••• ,An - 2 such that each of AI, A2 , ••• An - 2 is invariant under conjugation 
by H? 
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Subgroup of SJ 

(I) 

«(12» 

«(13» 

«(23» 

«(123» 
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Table I 

Idempotent spectrum 

all n except 2 

alloddn~1 

all odd n ~ I 

alloddn~1 

all n == 0 or I (mod 3) 
except n = 6 

all n == I or 3(mod 6) 

Characterization 

quasigroup satisfying 
x2 = x 

quasigroup satisfying 
Xl = X, xy = yx 

quasigroup satisfying 
x 2 = X, (yx)x = y 

quasigroup satisfying 
Xl = X, x(xy) = y 

quasigroup satisfying 
x 2 = X, x(yx) = y 

Mendelsohn quasigroup 
equivalent to a 

Mendelsohn triple system 
quasigroup satisfying 
x 2 = x, (yx)x = y, 

xy = yx Steiner 
quasigroup equivalent to 
a Steiner triple system 

With good reason, the collection AI, A2 , ••• , An _ 2 is called a large set of pairwise 
disjoint n(n - 1) x 3 partial orthogonal arrays invariant under conjugation by H. If 
we add the n idempotent rows to each Ai' the resulting orthogonal arrays have only 
these idempotent rows in common. These orthogonal arrays will be called a large set 
of idempotent orthogonal arrays invariant under conjugation by H. The corresponding 
quasigroups are called a large set of idempotent quasigroups invariant under conjugation 
by H. A tremendous amount of work has been done on the problem of constructing 
large sets of idempotent quasigroups invariant under conjugation by H = SJ (= Steiner 
quasigroups). In particular, it is now known that a large set of Steiner quasigroups 
of order n exists for every n in the spectrum (= all n == 1 or 3(mod 6» except for 7 and 
possibly six other cases [5]. To date, the only other attack on the large set problem that 
the authors are aware of is for H = <(123» [2] (= Mendelsohn quasigroup), where large 
sets of Mendelsohn quasigroups of order n are constructed for an infinite number of n in 
the spectrum (= all n == 0 or 1 (mod 3), except n = 6). However, this problem remains far 
from settled. 

The main purpose of this paper is to give a complete solution of the large set problem 
for H = <I). In particular, we construct a large set of idempotent quasigroups of order n 
for every n ~ 3, except n = 6, for which no such collection exists, and possibly n = 14 and 
62. Additionally, we improve the known spectrum for large sets of Mendelsohn quasi­
groups. 

Like a lot of solutions to design problems in combinatorics, we give a construction that 
works for all but a handful of cases, followed by an assortment of constructions for the 
remaining cases. 

2. THE MAIN CONSTRUCTION 

In what follows, we will denote the (partial) orthogonal array A by (Q, R), where Q is 
the set on which A is based, and R is the set of rows of A. The number I Q I is, of course, 
called the order of (Q, R). A transversal of the orthogonal array (Q, R) of order n is any 
collection of n rows (Xl> Yl' z), (X2' Y2, Z2), ... , (X., Yn, zn) such that {x)' x2, ... , xn} = 
{Y), Y2' ... , Yn} = {z), Z2, ... ,zn} = Q. The orthogonal array (Q, R) is said to be 
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regular provided that R contains exactly one idempotent row and each of 

{

T - {(x,x,y)lallxEQ}, 

T~ : {(x, y, x) I all x E Q}, and 

T3 = {(y, x, x)lali x E Q} is a transversal. 

Let A (l X = 0, and let (A u X, R) be a (partial) orthogonal array. If( y" Yz, Y3) is any 
ordered triple, define R(y" Y2, Y3) to be the collection ofrows obtained from R as follows: 
for each row (x" Xz, X3) E R, replace Xi with (Xi' Yi) if and only if Xi E X, and place the 
resulting row in R(y" Yz, Y3). 

THE nv + 2 CONSTRUCTION. Let (Q, R,) be a regular orthogonal array of order 
v, ({ 00" oo2} u X, Rz) an indempotent orthogonal array of order n + 2, (X, R3 ) an 
orthogonal array of order n, and finally ({ oo} u X, R4 ) an orthogonal array of order n + 1 
such that (a, a, (0) E R4 for all a E {oo} u X. Denote by R5 the set of nZ + n rows obtained 
from R4 by deleting all rows of the form (a, a, (0), and replacing each row of the form 
(00, a, b) by (00" a, b) and each row of the form (a, 00, b) by (a, 00 2 , b). Then 
({ 00" ooz} u X, R5) is a partial orthogonal array of order n + 2. Now set S = {oo" ooz} U 
(X x Q) and define a collection R of rows of S as follows: 
(1) (x, x, x) E R for every XES; 
(2) for the unique idempotent row (i, i, i) belonging to R" place the non-independent rows 

of Rz(i, i, i) in R; 
(3) for each row of the form (a, a, b) E R" a # b, place the rows of R5(a, a, b) in R; 
(4) for each row of the form (b, a, a) E R" a # b, place the rows of (R5(123»(b, a, a) in 

R (R5(123) is the (123) conjugate of R5); 
(5) for each row of the form (a, b, a) E R" a # b, place the rows of (R5(213»(a, b, a) in 

R (R5(213) is the (213) conjugate of R 5); and finally, 
(6) for each row (a, b, c) E R" where a, b, and c are distinct, place the rows of R3(a, b, c) 

in R. 
It is straight forward to see that (S, R) is an idempotent orthogonal array of order 

nv + 2. 

LEMMA 2.1. If there exists a regular orthogonal array of order v and a large set of 
idempotent orthogonal arrays of order n + 2, then there exists n idempotent orthogonal 
arrays of order nv + 2 having only the idempotent rows in common. 

PROOF. Let ({ 00" ooz} U X, RD, ({ 00" ooz} U X, Rn, ... , ({ 00" oo2} U X, RD be 
a large set of idempotent orthogonal arrays of order n + 2. Further, let IX be a cycle of 
length n on X and define 

{ 
R:: = {(x, Y, ZIX;) I all (x, y, z) E R3 }, and 

R5 = {(x, y, ZIX ) I all (x, y, z) E Rd. 

Then the n orthogonal arrays (X, R~'), (X, R~2), ... , (X, Rn are pairwise disjoint, and so 
are the partial orthogonal arrays 

({oo" oo2} U X, R~'), ({oo" oo2} U X, R~2), ... ({oo" oo2} U X, Rn. 

Now, denote by (S, Ri) the idempotent orthogonal array constructed by the nv + 2 
construction using (Q, RJ, ({oo" ooz} U X, RD, (X, Rn, and ({oo" oo2} U X, R~'). 
It is straight forward to see that the n idempotent orthogonal arrays (S, R'), 
(S, R2), ... (S, Rn) have only their idempotent rows in common. 
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LEMMA 2.2. If there exists v pairwise disjoint regular orthogonal arrays of order v and a 
large set of idempotent orthogonal arrays of order n + 2, then there exists a large set of 
idempotent orthogonal arrays of order nv + 2. 

PROOF. Let (Q, T1) and (Q, T2 ) be a pair of disjoint regular orthogonal arrays of order 
v. Since Tl n T2 = 0, if (i, i, i) is the unique idempotent row of Tl and (j,j,j) is the 
unique idempotent row of T2 , we must have i ¥= j. It follows that each of the n idempotent 
orthogonal arrays constructed using (Q, T1) in Lemma 2.1 intersects each of the n idem­
potent orthogonal arrays constructed using (Q, T2 ) in precisely the idempotent rows. The 
statement of the Lemma follows. 

We now establish the existence of v pairwise disjoint regular orthogonal arrays of order 
v for all but a handful of cases. 

LEMMA 2.3. There exists an idempotent orthogonal array of order v having either 3 or 6 
distinct conjugates that are pairwise orthogonal for every v ~ 5 except possibly for 
v E Z = {6, 10, 12, 14, 15, 18,20,21,22,24,26,28,30,33,34,38,39,42,44,46,48, 52, 
54,60}. 

PROOF. To begin with, Frank Bennett [1] has constructed such orthogonal arrays for 
every order v ~ 61. Now there are idempotent orthogonal arrays of orders 5 and 7 having 
3 distinct conjugates, which are pairwise orthogonal [1], and an idempotent orthogonal 
array of order v having 6 distinct conjugates, which are pairwise orthogonal for every 
v = pa ~ 8 (p a prime) [4]. The numbers v ~ 60 and v ¢ Z that are not powers of a prime 
are obtained using routine (and obvious) PBD constructions. (See [1] for example.) 

LEMMA 2.4. If v ~ 5 and v ¢ Z, there exists a pair of idempotent orthogonal arrays 
(Q, R) and (Q, T) such that both (Q, R) and (Q, R(23)) are orthogonal to (Q, T). 

PROOF. Let (Q, R) be an idempotent orthogonal array having either 3 or 6 distinct 
conjugates that are pairwise orthogonal. If (Q, R) has 6 distinct conjugates, then (Q, R(23)) 
and (Q, R) are both orthogonal to (Q, R(12)). If (Q, R) has 3 distinct conjugates, one of 
two things is true: either (23) belongs to the conjugate invariant subgroup H of (Q, R) or 
not. If (23) E H, then (12) ¢ H, and so (Q, R) = (Q, R(23)) is orthogonal to (Q, R(12)). 
If (23) ¢ H, choose any rx ¢ H such that (Q, R), (Q, R(23)), and (Q, Rrx) are distinct. 
Combining the above cases completes the proof. 

LEMMA 2.5. If v ~ 5 and v ¢ Z, there exists v disjoint regular orthogonal arrays of 
order v. 

PROOF. Let (Q, S) and (Q, T) be a pair of idempotent orthogonal arrays such that both 
(Q, S) and (Q, S(23)) are orthogonal to (Q, T). Define v collections of rows R1, R2 , ••• , R" 
as follows: (a, b, c) E R; if and only if for some x E Q, (x, a, b) E S and (x, c, i) E T. It is 
a straight forward matter to see that each of (Q, R 1), (Q, R2 ), ••• ,(Q, Rv) is an orthogonal 
array of order v. The only difficulty in showing that each is regular is in showing that 
{(b, a, a) I all a E Q} is a transversal. So suppose in (Q, R;) that (b, a, a) and (b, c, c) E R;. 
Then for some x E Q, (x, b, a) E S and (x, a, i) E Tand for some y E Q, (y, b, c) E Sand 
(y, c, i) E T. Hence (x, b, a), (y, b, c) E S and (x, a, i), (y, c, i) E T. But then (x, a, b) 
and (y, c, b) E S(23) and (x, a, i) and (y, c, i) E T, which cannot happen since (Q, S(23)) 
and (Q, T) are orthogonal. Hence, each (Q, R;) is regular, which completes the proof. 



Sets of idempotent quasigroups 87 

LEMMA 2.6. There exists a large set of idempotent orthogonal arrays of order v for every 
v ~ 3 and v if. {6, 14,22,30,46,54, 62}. 

PROOF. To begin with, it is well-known that there are n - 1 pairwise orthogonal 
quasi groups of order n for every n = p' ~ 3 (p a prime). Such a collection is, of course, 
equivalent to n - 2 pairwise orthogonal idempotent quasigroups of order n, which is, 
among other things, a large set of idempotent quasigroups of order n. Hence, there is 
a large set of idempotent orthogonal arrays of order v for v E N = {3, 4, 5, 8, 17}. It 
is a trivial matter to see that if 7 ::;; v ::;; 62 and v if. {14, 22, 30, 46, 54, 62}, then v can 
be written in at least one way in the form v = 2 + n' U, where n + 2 E Nand U if. Z. 
If v ~ 63, then v - 2 ~ 61 if. Z, and so we can always take n = 1 and write v = 2 + 
1 • (v - 2). In any case, Lemma 2.2 guarantees a large set of idempotent orthogonal arrays 
of order nv + 2. 

3. THE REMAINING CASES 

It is a trivial matter to construct a pair of idempotent orthogonal arrays of order 6 that 
intersect in the 6 idempotent rows only. However, a brute force computer search shows that 
no such pair can be extended to a large set. Hence, there does not exist a large set of 
idempotent orthogonal arrays of order 6. Of the remaining cases, the authors can handle 
22, 30,46, and 54 only. After much valiant effort, the authors relunctantly leave the cases 
v = 14 and 62 unsettled. 

The cases 22, 30, 46, and 54 are handled with a trivial modification of the constructions 
used in [2] to construct large sets of Mendelsohn quasigroups (= Mendelsohn arrays). 

THE 3v CONSTRUCTION. Let Q be a set of size v i= 6, (Q, T) any idempotent orthogonal 
array, and 0( any cycle of length v on Q. Let S = Q x {I, 2, 3}. In [2], 2v Mendelsohn 
arrays (S, R 1), (S, R2 ), ••• , (S, R2v ) of order 3v are constructed that pairwise inter­
sect in their idempotent rows and such that if (a, b, c) is a non-idempotent row of any R;, 
then 

{

{(x, 1), (y, 2), (zO(1+;, 3)} where 

{a, b, c} i= (x, y~ z) E ~ and i. = ~'~' ... , v - 2, or 

{(x,}), (y,}), (z,})},) - 1,2, or 3. 

If (Q, L 1), (Q, L2), ••• , (Q, Lv _ 2 ) is any large set of Mendelsohn arrays of order v, 
construct v - 2 idempotent orthogonal arrays (S, R2v + I ), (S, R2v + 2 ), ••• , (S, R3v - Z ) as 
follows: 
(1) (x, x, x) E R 2v +;, for every XES; 
(2) for each i = 1, 2, 3, «x, i), (y, i), (z, i» E R 2v +; if and only if(x, y, z) E L;, and x, y, z 

are distinct; and 
(3) if (x, y, z) E T, the six rows «x, 1), (y,2), (ZO(I+;, 3», «y, 2), (ZO(I+\ 3), (x, 1», 

«zO(I+;,3), (x,I), (y,2», «y,2), (x,I), (zO(I+;,3», «x,I), (zO(I+;,3), (y,2», 
«ZO(I+;, 3), (y, 2), (x, 1» belong to R2v +;' 

Then (S, R2v +;) and (S, Rzv +j ) intersect in their idempotent rows only and, of course, 
(S, R 1), (S, R2 ), ••• ,(S, R3v - 2 ) is a large set of idempotent arrays. 

LEMMA 3.1. There exists a large set ofidempotent orthogonal arrays of order v for v = 30 
and 54. 
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PROOF. Write 30 = 3· 10 and 54 = 3· 18. 

THE 3v + 1 CONSTRUCTION. Let Q be a set of size v, (Q, T) any orthogonal array 
having an orthogonal mate, and a any cycle of length v on Q. Set S = {oo} u (Q x 
{I, 2, 3}). In [2], 2v Mendelsohn arrays (S, R I ), (S, R 2 ), ••• , (S, R 2v ) of order 3v + 1 are 
constructed that pairwise intersect in their idempotent rows, and such that if (a, b, c) is a 
non-idempotent row of any Ri , then 

and 

{

{oo, (y, i), (z, in or 
{a, b, c} "# 

{(x,}), (y,}), (z,})},j = 1,2,3; 

{ 

{oo , (x, 1), (x, 2), (za i
, 3)}, where 

{a, b, c} ¢ 
(x, y , z) E T and i = I, 2, .. . , v-I. 

Now let ({ ex)} u Q, L I), ({ ex)} u Q, Lz}, ... , ({ oo} u Q, Lv_I) be a large set of Mendelsohn 
arrays of order v + I, and construct v - I idempotent orthogonal arrays (S, R2v + I), ... , 
(S, R 3v - I) as in the 3v construction. Then the 3v - I idempotent orthogonal arrays 
(S, R I ), (S, R 2 ), ••• , (S, R 3v -I) are a large set of idempotent orthogonal arrays of order 
3v + I. 

LEMMA 3.2. There exists a large set of idempotent orthogonal arrays of order v for v = 22 
and 46. 

PROOF. Write 22 = 3 . 7 + I and 46 = 3 . IS + 1. 

Combining Lemmas 2.6, 3.1, and 3.2 gives the following result, which is the main result 
in this paper. 

THEOREM 3.3. There exists a large set of idempotent orthogonal arrays of order v for every 
v ~ 3 except v = 6 (for which no such collection exists) and possibly v = 14 and 62. 

4. REMARKS 

The nv + 2 construction can be used to construct large sets of Mendelsohn arrays as 
follows: let v == I or 5 (mod 6), Q = {D, I, 2, . .. , v - I}, and for each a E Q define a 
collection of rows Ra of Q by (x, y, z) E Ra if and only if x + y + z == a (mod v). Then 
(Q, Ro), (Q, R I ), • •• , (Q, Rv_ l ) is a collection of pairwise disjoint totally symmetric 
regular orthogonal arrays. Now in the nv + 2 construction, take ({ 00 I, oo2 } u X , R2 ) to 
be a Mendelsohn array, and replace (6) by: Since (Q, R I ) is totally symmetric, «123» 
acting as a permutation group on RI (among other things) partitions the rows of RI with 
3 distinct coordinates into orbits that look like {(a, b, c), (b, c, a), (c, a, b)}. For each such 
orbit, choose a row, say (a, b, c), and place the rows of R3(a, b, c) u «R3(a, b, c»(123) u 
(R3(a, b , c»(l32) in R . The result is a Mendelsohn array. 

The following theorem is immediate. 

THEOREM4.1. lfv == I or5(mod6)andalargesetofMendelsohnarraysofordern + 2 
exists, then there exists a large set of Mendelsohn arrays of order nv + 2. 

So, for example, since 16 = 2 + 2·7, 7 == I (mod 6), and there is a large set of 2 
Mendelsohn arrays of order 4, Theorem 4.1 produces a large set of Mendelsohn arrays of 
order 16 (an order that was previously in doubt). 
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The constructions in [2] produced large sets of Mendelsohn arrays of order 3 ~ v ~ 100 
for every admissible v except possibly v = 16, 18, 22, 24, 40, 42, 46, 48, 52, 54, 58, 60, 64, 
66, 70, 72, 76, 78, 85, 94, and 96. A straight-forward check shows that the constructions in 
[2] coupled with Theorem 4.1 reduce the exceptions ~ 100 to v = 18, 22, 54, 66, 78, and 94. 
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