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ABSTRACT 

A new version of Co&ran’s theorem for rectangular matrices is established. Being 
oriented toward partial isometries, the new version parallels corresponding results 
concerned with arbitrary tripotent matrices and covers results concerned with Hermi- 
tian tripotent matrices. A discussion of a related new matrix partial ordering is also 
given. 

1. INTRODUCTION 

Let x be a p X 1 random vector distributed normally with expectation 
E(x) = 0 and with dispersion matrix D(x) = I,. Let A,, . . . ,A, be symmetric 
matrices with ranks rr,..., r,, respectively, let qi = x’Aix, i = 1,. . . , k, and 
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suppose that Xqi = x’x. Then Theorem II of Cochran (1934) asserts that a 
necessary and sufficient condition for qi,. . . , qk to be independently dis- 
tributed as chi-square variables is that Cri = p. 

This result attracted considerable attention in the literature and was 
generalized in several ways: (1) by allowing that E(x) = p and D(x) = V, 
where l,r, is any p X 1 vector and V is any p X p nonnegative definite matrix, 
(2) by considering general second-degree polynomials x’A,x+2a{x + ai in- 
stead of quadratic forms x’Aix, and (3) by considering linear combinations of 
independent chi-squares instead of pure chi-square variables. There are also 
numerous generalizations of Cochran’s theorem from the algebraic stand- 
point, in which the matrices A r, . . . , A, are allowed to be arbitrary complex 
matrices. We refer the reader to Scarowsky (1973) Khatri (1977, 1980), and 
Anderson and Styan (1982) for exhaustive discussions and bibliography 
concerning this problem. 

Certain conditions involved in various versions of Cochran’s theorem are 
expressible in terms of matrix partial orderings; see, e.g., Hartwig (1981) 
Baksalary and Hauke (1984, 1987), Hartwig and Styan (1986). The star 

partial ordering K : L, the minus partial ordering K 3 L, and the space 

preordering (or, in another terminology, quasiordering) K s: L in the set of 
p x q complex matrices are defined as 

K;L e K*K = K*L and KK* = IX*, (1.1) 

K<L a K-K=K-L and KK’=LK’ 

for some K- , K- eK{l}, (1.2) 

K:L +, g(K) c.@(L) and .9(K*) CL@@*), (1.3) 

respectively, where K* is the conjugate transpose of K, K{ l} in (1.2) denotes 
the set of (l)-inverses of K (i.e., the set of all q X p matrices K- satisfying 
KK- K = K), and a( a) in (1.3) denotes the range of a matrix, The definition 
of the star ordering as in (1.1) was given by Drazin (1978). The definition of 
the minus ordering as in (1.2) is Hartwig and Styan’s (1986, p. 146) version of 
the definition originally introduced by Hartwig (1980). It was shown by 
Hartwig that 

K<L CJ r(L - K) = r(L) - r(K), (1.4) 

where r( .) stands for the rank of a matrix. Hence, according to Marsaglia and 
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Styan (1974, p. 288) and Cline and Funderlic (1979, p. 195), 

KZL a LL-K=KL-L=KL=K=K 

for some L-,L=,L’ E L{ l}. (1.5) 

An interesting property of the relations defined in (l.l), (1.2), and (1.3) is 
that 

Among algebraic versions of Cochran’s theorem are those dealing with 
rectangular matrices; cf. Theorems 13 and 14 of Marsagha and Styan (1974) 
and Theorem 1.2 of Anderson and Styan (1982). In this paper, a new such 
version is established. Involving conditions A,AlA, = Ai, i = 1,. . . , k, and 
AA*A = A, where A = CA,, it may be viewed as oriented toward partial 
isometries. Consequently, it parallels corresponding results concerned with 
arbitrary tripotent matrices and covers results concerned with Hermitian 
tripotent matrices. It appears that combining certain two conditions that 
occur in the new version of Cochran’s theorem leads to a new partial 
ordering. Some of its properties are discussed in the final section of the paper. 

2. MAIN RESULT 

In addition to the notation introduced in Section 1, tr( .) wilI denote the 
trace of a square matrix. 

THEOREM 1. Let A i,...,A, be pXq matrices, and let A=CAi. Con- 
sider the following statements: 

(a) A,A:A, = Ai, i = l,..., k, 
(b) A,AT=O and AfAi=O, i, j=l,..., k, i+ j, 
(c) AA*A = A, 

(d) r(A) = WA i ), 
(ea) A,A:A = Ai and AATAi = Ai, i = 1,. . . , k, 
(el) AiA* = AiAT and ATA = ATA,, i = 1,. .., k, 
(ez) AiA* = AA: and A:A = A*Ai, i = 1,. .., k, 
(es) AiA*Ai = AiAfAi, i = 1,. .., k, 
(e4) B(Ai) c .%?(A) and .%?(A:) L %‘(A*), i = l,..., k, 
(fi) tr(A,A*) >, tr(A,Af), i = l,..., k, 
(fs) tr(AA*) >, Ctr(AiAt), 
(fs) r(Ai) > tr(A,At), i = l,..., k. 



160 

Then 

JERZY K. BAKSALARY AND JAN HAUKE 

(4, (eo) = (b) CJ (4 - (4, (e,> 

-(d),(e,) -(e3>,(e4), (2.1) 

(a),@)-@),(~)~ (2.2) 

and 

(2.3) 

where each (x) in (2.3) stands for either (a) or (c). Moreover, 

(a>,(b) * Cc), (4, (Y), (2.4) 

where (y) stands for any of the conditions (fr),(fa),(fs). 

Conditions (a), (lo), (c), (e,,), (e,), and (ea) are modifications of the 
corresponding conditions for arbitrary square matrices appearing in Theorem 
3.1 of Anderson and Styan (1982), while (fr), (f,), and (fa) are analogous 
modifications of the conditions appearing in their Theorem 3.2. Condition 
(ea) was considered by Rao, Mitra, and Bhimasankaram (1972) in the context 
of determining a matrix by its subclasses of (lkinverses, while (e4) is well 
known to be a necessary condition for both the star and the minus partial 
orderings; cf. (1.5). It seems that neither (es) nor (e4) has hitherto been 
discussed in the context of Cochran’s theorem. 

Note that the conditions (b) and (es) express *-orthogonality and *-corn- 
mutativity, respectively; cf. Hestenes (1961, Sections 3 and 4). Note also that 
some of the conditions in Theorem 1 admit geometrical interpretations: (b) 
means the orthogonality of 9?(Ai) to .%‘(A j) and .%‘(A:) to W(A; ) for 
i, j = 1 ,..., k, i # j; (d) is equivalent to the direct-sum decomposition 

B(A) = %‘(A,) (3 . . . @%'(A,) (2.5) 

[cf. Styan and Takemura (1983, Lemma S)]; and (fr) and (f,) are inter- 
pretable in terms of the inner products of the matrices involved. 

The part (b) =+ (d) of (2.1) was originally established by Marsaglia and 
Styan (1974, Theorem 14). In the same theorem, they proved that if (d) 
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holds, then the first conditions in (b) and (es) are equivalent, which is 
partially related to the statement (b) ti (d),(e,) included in (2.1). 

Under the additional assumption that the matrices A,, . . . ,A, are all 
Hermitian, conditions (a) and (c) assert that A, and A, respectively, are 
tripotent. The remaining conditions modify then accordingly, and the result 
(2.4) becomes identical with Theorem 3.2 of Anderson and Styan (1982), 
which covers Theorem 3 of Luther (1965) and Theorem 2.2 of Tan (1975). 
Under the same additional assumption, the part (b) Q (d),(e,) of (2.1) was 
established by Luther (1965, Theorem 1) and Taussky (1966, Theorem 2); see 
also Theorem 15 of Marsaglia and Styan (1974) for the corresponding result 
concerned with arbitrary square matrices. Moreover, the part (b),(c) 3 
(a),(d),(e,) may be attributed to Khatri (1977, Lemma 10); see also the 
discussion of this implication by Anderson and Styan (1982, p. 15) in the case 
where the matrices involved are not necessarily Hermitian. 

The version of Cochran’s theorem for arbitrary tripotent matrices, given 
by Anderson and Styan (1982, Theorem 3.1), becomes comparable with 
Theorem 1 above when both these results are related to Hermitian matrices. 
Anderson and Styan proved, in particular, that 

(a),(b) CJ (c),(d)&), (2.6) 

where (z) stands for any of the conditions (eO), (e,), or (es). It is seen that 
(2.3) covers (2.6), indicating in addition the possibility of interchanging (a) 
with (c). 

We conclude this section by pointing out that certain implications in (2.1) 
cannot be reversed. The matrices 

A2=(‘: -;) 

show that (b) does not imply (et,); the matrices 

(2.7) 

show that (d),(e,) do not imply (b); and the matrices 
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show that (e,),(e,) do not imply (d). The example (2.7) also shows that (c) 
neither can be replaced by (a) in the triplet (c), (d), (es) nor can be deleted 
from the quadruplet (a),(c),(e,),(e,) in (2.3). It would be interesting to know 
whether (a) can be deleted from the latter. 

3. PROOF OF THE MAIN RESULT 

Theorem 13 of Marsaglia and Styan (1974) asserts that (d) holds if and 
only if, for some (l>inverse A- of A, 

A,A-A, = Ai, i=l I...> k, (3-I) 

and 

A,A-AI = 0, i, j=l ,..., k,i# j, (3.2) 

which implies that 

AA-A, = A, and A&A = Ai, i=l >*.*, k. (3.3) 

[Actually, the fact that (d) implies (3.3) may be seen directly from the 
geometrical versions of these two conditions given in (2.5) and statement (e4) 
of Theorem 1, respectively.] Consequently, postmultiplying the former equal- 
ity in (ee) by A-A, and premultiplying the latter equality there by Ai A- 
yields A,AyAi = 0 and A,ATA, = 0, and hence (b) follows on account of 
W(A,A:) = %‘(A,) and .%‘(A:A,) = %‘(A:). The part (b) = (ei) is clear. Ac- 
cording to (l.l), condition (ei) actually states that every Ai is below A with 
respect to the star ordering. In view of Theorem 2 of Hartwig and Styan 
(1986), this is equivalent to the minus-ordering condition 

Ai 2 A, i=l,...,k, (3.4) 

accompanied by (es). Then Theorem 1 of Hartwig (1981), stating in particu- 
lar that (3.4) is equivalent to (d), completes the proof that (ei) e (d),(e,). 
Postmultiplying now (3.2) by A* and utilizing (es) along with (3.3) yields 

6 = A,A-AiA* = A,A-AA? = A,A;. 
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The latter equality in (b) follows similarly, thus establishing the part (d),(es) 
j (b). Finally, (3.1) and the first equality in (es) imply that 

AiA*Ai = AiA-AiA*Ai = A,A-AATA, = A,A;Ai, 

which is (ea). In view of the known implication (d) +. (e4) [cf. (LS)], the 
proof of (2.1) is complete. 

To establish (2.2) observe that (a) and (b) clearly entail (c). Further, 
premultiplying (c) written in the form CA jA*A = CA j by AT and utilizing 
(b) yields ATAiA*A = ATA,. A pp ying 1 (b) again leads to ATA,A:A, = ATA,, 
and hence (a) follows by the left-hand cancellation rule; cf. Marsaglia and 
Styan (1974, Theorem 2). 

For the proof of (2.3) first notice that if (a) holds, then premultiplying and 
postmultiplying, respectively, the two equalities in (eo) by AT leads to (ei). 
Since the star ordering implies the corresponding minus ordering [cf. (l.S)], it 
follows that (a),(e,) * (3.4). If (c) holds, then A* is a (Itinverse of A. 
Postmultiplying the former condition in (ea) by A: and applying the left-hand 
cancellation rule gives AiA*Ai = Ai. Moreover, it is clear that (ee) entails 
(e4). In view of (I.S), this shows that also (c),(e,) * (3.4), and hence the 
relation 

(z>Jea) j(d) (3.5) 

follows by Theorem 1 of Hartwig (1981). Further, the implication 

cd)) (e. > * (a> (3.6) 

is easily obtainable by postmultiplying the former equality in (e,,) by A-A, 
and utilizing (3.1) and (3.3). Combining now (es) and (3.1), the latter with 
A- replaced by A*, shows that 

(c)y(d),(es) *(a)’ (3.7) 

From (c) with (e4) and (a) with (e3) we get 

AA*Ai = A,A*A = AiA*Ai = Ai. 

Consequently, it follows that (a), (c), (e,), and (e4) entail 

(A,A:A - A,)(A,ATA - A,)* = 0, 



164 JERZY K. BAKSALARY AND JAN HAUKE 

which is clearly equivalent to the former equality in (ee). The latter equality 
is obtainable similarly, and therefore 

(4,(c>,(e3>,(e4> - (eo). (3.8) 

Combining (2.1) and (2.2) with (3.5), (3.6), (3.7), and (3.8) concludes the 
proof of (2.3). 

If (3.1) holds with A- replaced by A*, then AiA* is clearly idempotent. 
Hence r(Aj) = tr(AiA*), and thus (c),(d),(f,) e (c),(d),(fa). Using in addi- 
tion (3.3) with A* in place of A- shows that, under (c) and (d), 

(fI> e tr(AjA*AiA*) 2 tr(A,A*AAr), i=I,...,k, (3.9) 

and 

(f2) - xtr(A,A*A,A*) > xtr(AiA*AAr). (3.10) 

But a result given by Graybill (1969, p. 235) asserts that for any square 
matrix B we have tr(B*B) > tr(B2), with equality if and only if B = B*; see 
also Lemma 3.2 in Anderson and Styan (1982). Consequently, the relations 
(3.9) and (3.10) show that, under (c) and (d), any of the conditions 
(f i), (f2), (f s) is equivalent to (e2). In view of (2.3), this completes the proof. 

4. A NEW PARTIAL ORDERING FOR MATRICES 

As already pointed out, certain conditions involved in Theorem 1 admit 
interpretations in terms of matrix partial orderings. In view of (1.1) the 

equalities in (ei) may be reworded as Aj < A, i = 1,. . . , k, whereas in view of 

Theorem 1 of Hartwig (1981), condition (d) is equivalent to Aj 2 A, i = 
1 , . . . , k. We now prove that also conditions (e,), (e4) define a matrix partial 
ordering and show how it is related to the minus ordering. 

DEFINITION. Let K and L be p X q complex matrices. We define that 

K<LifKGLandKL*K=KK*K. 
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THEOREM 2. The relation s is a partial ordering of the set of complex 
p X 9 matrices. Moreover, 

K<L e K+ ;L+, (4.1) 

where the plus superscript denotes the Moore-Penrose inverse of a matrix. 

Proof. It is obvious that the relation =S is reflexive. Further, Rao, Mitra, 

and Bhimasankaram (1972, Lemma 2) proved that 

KL*K = KK*K and LK*L = LL*L * K = L. 

[Notice that the proof of antisymmetry becomes trivial when we additionally 

utilize S?(K) = W(L).] The space preordering K s: L has been added to the 

equality KL*K = KK*K to make the relation considered transitive. If KS L 
S 

and L 5 M, then it is clear that K + M and, since K = LCL for some ma- 
trix c, 

KM*K = LCLM*LCL = LCLL*LCL = KL*K = KK*K. 

Finally, K*LK* = K*KK* is equivalent to K+LK+ = K+, i.e., 

K+(L+)+K+=K+. (4.2) 

In view of (1.5) combining (4.2) with K+ s: L+ establishes (4.1). W 

Rewriting KL*K = KK*K in the form K*(L - K)K* = 0, and the equa- 
tions on the right-hand side of (1.1) in the forms (L - K)K* = 0 and 
K*(L - K) = 0, yields 

K:L j KsL ==, K:L (4.3) 

and shows the extent to which the new condition is weaker than (1.1). On the 

other hand, consider the matrices 

and L = (4.4) 

and notice that if 1,s = 2, = 1, I,, = 0, then K 5 L but r(L - K) > r(L) - r(K), 

and that if 1,s = 0, Z,, = - 1, I, = 1, then K < L but KL*K # KK*K. Hence 
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it follows that neither of the implications KS L * K d L and K d L 3 
K =ZC L is valid in general, and therefore the chains (1.6) and (4.3) cannot be 
dovetailed. 

From (1.1) and (1.4) it is easily seen that K < L ti L - K 2 L and 

K 2 L CJ L - K 2 L. It appears that such a property is not valid for K s L. 
A counterexample may be obtained from (4.4) by taking I,, = 1, = 1, Ia, = 0. 
In this context, it seems noteworthy to recall the observation by Hartwig and 

Styan (1986, p. 154) that even if the relations K 2 L, K s L, and L - K s L 

hold simultaneously, then not necessarily K 2 L. 
In view of the above, a natural question is what extra conditions must be 

added to K 6 L in order to get K G L. On account of (4.1) and the 

equivalence K < L CJ K+ < L+, this may be answered directly by utilizing 
Theorem 2 of Hartwig and Styan (1986) and the theorem of Baksalary (1986). 
Notice that some of the conditions so obtained, viz. (1) KL+ = (KL+ )* and 
L+K =(L+K)*, (2) K+L=(K+L)* and LK+=(LK+)*, (3) (L-K)+= 
L+-K+, (4) (L-[y/(y-l)]K)+=L+-yK+ for some nonzero y’itl, (5) 

L+KL+=K+, and (6) LK+L=K, assure that both K 2 L and K&L are 

strengthened to the star ordering K 2 L. 
It is known [cf. Theorem 3 of Drazin (1978), Lemma 2 of Hartwig and 

Spindelbock (1983), and Theorem 2.1 of Baksalary, Pukelsheim, and Styan 
(1989)] that if L is a partial isometry, a contrfction, an orthogonal projector, 

or an idempotent, then every K satisfying K < L inherits the same property, 
i.e., 

L+=L* and K:L =c. K+=K*, (4.5) 

IlLlIe< and K;L * IIKllz<l, (4.6) 

L=LL* and K;L * K=KK*, (4.7) 

L=Ls and K;L 3 K=K2, (4.8) 

where ]I. II2 in (4.6) denotes the spectral norm of a matrix. Extending the 
result (3.14) of Hartwig and Styan (1986), Baksalary and Hauke (1987) 
pointed out that (4.8) may be strengthened to the form 

L=L2 and KZL * K=K2, 

and showed that the minus ordering does not suffice in (4.5), (4.6), and (4.7). 
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It appears that K s L cannot be used to replace K 2 L in either of the 
statements (4.5) (4.7), and (4.8), a common counterexample being the 
matrices 

K=+(; A), L=((: ;). 

However, K s L can be used to replace K 2 L in (4.6). Actually, we may 
establish an even stronger result, given in Theorem 3 below. Moreover, 
although the idempotency is not inherited under the &-ordering in the set of 
all complex matrices, it is inherited in the subset of Hermitian matrices. More 
precisely, 

K*=K$L=LL* 3 KK*=K;L, (4.9) 

which is an analogue to the result (3.14) of Hartwig and Styan (1988) 
referring to the minus partial ordering. The implication (4.9) follows by 
noting (i) that if L = LL* (i.e., L is an orthogonal projector) and K = K*, 

then K s: L is equivalent to LK = K, and hence KL*K = KK*K reduces to 
K2 = K3 and further to K = K ‘, and (ii) that in the set of orthogonal 
projectors, the star ordering is equivalent to the space preordering; cf., e.g., 
Hartwig and Styan (1987, Theorem 5.8). 

THEOREM 3. Zf a p x q complex matrix L is a contraction, then every 
p x q matrix K satisj$ing KL*K = KK*K is also a contraction. 

Proof. Let K = UDV* be a singular-value decomposition of K, with 
unitary matrices U and V of orders p and q, respectively, and with p X q 
matrix D such that dij=O for all i#j, dll>O,...,d,>O,d,+l,,+l= 
0 >***> d,, = 0, where r = r(K) and s = min(p, q). Then the condition KL*K 
= KK*K is equivalent to 

DV*L*UD = DD=D, (4.10) 

where DT is the transpose of D. Since the spectral norm is the matrix norm 
corresponding to (or, in another terminology, compatible with) the Euclidean 
vector norm, it is multiplicative; cf., e.g., Ben-Israel and Greville (1974, pp. 
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34-35). Moreover, it is unitarily invariant, and therefore a consequence of 
(4.10) and the assumption that JjLIJz < 1 is 

IlKll; = IIW; =s IIW~IlV*L*W, = IIW;IIU~ G IlKll:~ 

and hence IIKllz < 1, as desired. n 
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