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Abstract

Finite metric spaces, and in particular tree metrics play an important role in various disciplines such as evo-
lutionary biology and statistics. A natural family of problems concerning metrics is deciding, given a matrixM,
whether or not it is a distance metric of a certain predetermined type. Here we consider the following relaxed
version of such decision problems: For any given matrixM and parameterε, we are interested in determining,
by probingM, whetherM has a particular metric propertyP , or whether it isε-far from having the property.
In ε-far we mean that at least anε-fraction of the entries ofM must be modified so that it obtains the property.
The algorithm may query the matrix on entriesM[i, j ] of its choice, and is allowed a constant probability of
error.

We describe algorithms for testing Euclidean metrics, tree metrics and ultrametrics. Furthermore, we present
an algorithm that tests whether a matrixM is anapproximate ultrametric. In all cases the query complexity and
running time are polynomial in 1/ε and independent of the size of the matrix. Finally, our algorithms can be
used to solve relaxed versions of the corresponding search problems in time that is sub-linear in the size of the
matrix.
© 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Finite metric spaces, and in particular tree metrics play an important role in various disciplines such as
evolutionary biology and statistics (see for example [3,9,11,21]). A tree metric is defined by a weighted
tree that spans a set of points, where the distance between two points equals the sum of the weights on
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the edges along the path between these points. Ultrametrics are a special case of tree metrics, which are
of particular interest. In Ultrametric trees all points correspond to leaves of the tree, and the tree can be
rooted so that the distance from the root to every leaf is the same. Tree metrics, also known asadditive
metrics, are especially appealing since they can be used to model hierarchical structures. For example,
in the context of evolutionary biology, a tree metric can be defined on species, where the weights of the
tree edges are determined by the time elapsed since the species separated.

A natural family of problems concerning metrics is deciding, given a matrixM, whether or not it is a
distance metric of a certain predetermined type. Specifically, we may be interested in knowing whether
the matrix is a tree metric, an ultrametric, or possibly a Euclidean metric of some bounded dimension
d (i.e., whether there exists an embedding of the points in thed-dimensional Euclidean space, whose
pairwise distances correspond to the entries of the matrix).

In this paper, we study relaxed versions of these decision problems, from within the framework of
property testing. Namely, instead of determining whetherM has a certain metric propertyP or not, we
would like to determine whether it has propertyP or should be modified significantlyin order to obtain
P . More precisely, given query access to ann × n matrix M, and a distance parameterε, the goal is to
determine with high probability whetherM has the propertyP or whether more than anε-fraction of
its entries should be modified so that it obtains the property. In the latter case we say thatM is ε-far
from having the property. Given this relaxation, we seek algorithms that are much more efficient than
those required for exactly deciding the property. In particular, we are interested in algorithms that have
complexity that is sub-linear in the size of the matrix, or even independent of this size, and polynomial
in 1/ε.

1.1. Our results

All our algorithms work by taking a uniformly selected sampleS from [n] = {1, . . . , n}, whose
size is polynomial in 1/ε (and independentof n). Then the algorithms queryM on entriesM[i, j ]
for pairs of pointsi, j ∈ S. In what follows we state the size of the sampleS. The query complexity
and running time of the algorithms is at most quadratic in the sample size. The sample sizes stated
below slightly improve (by logarithmic factors) on those presented in the extended abstract of this
work [18].
• We show that it is possible to test whether a matrix is an ultrametric using a sample of size O(1/ε3).
• The size of the sample sufficient for testing whether a matrix is a general tree metric is O(1/ε3)

as well. To be precise, in this case we slightly modify the definition of a tree metric by allowing
different points to be mapped to the same vertices in the tree. Thus, strictly speaking, the property is
not of distance matrices but rather of pseudo-distance matrices (that is,M[i, j ] may be 0 fori /= j ).
We show that if one does not allow this modification, then testing becomes significantly harder. In
particular, we prove that the number of queries required in this case is�(

√
n) (for a constantε).

• In the case ofd-dimensional Euclidean metrics, we also consider the pseudo-distance version, where
several points may be mapped to the same position in thed-dimensional space. The sample size
sufficient for testing this property is O(d/ε), and a lower bound of�(

√
n) holds for the strict distance

version.
• We also consider the problem of testing whether a matrix is anapproximate ultrametric. For a giv-

en approximation parameterδ, we say that a matrixM is a δ-approximateultrametric (or simply
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a δ-ultrametric) if there exists an ultrametric matrixM ′ such that for everyi, j ∈ [n], |M[i, j ] −
M ′[i, j ]| � δ. For any given approximation parameterδ and for every distance parameterε, we re-
quire that the testing algorithm acceptM if it is a δ-ultrametric, and rejectM with high probability
if it is ε-far from from being ac · δ-ultrametric, wherec is a fixed constant. The sample used is of
size O(1/ε3).
Our testing algorithms can also be used to design procedures that solve relaxed versions of the related

search problems of all properties presented above, in time linear inn and polynomial in 1/ε. In particular,
in the case of tree metrics (ultrametrics), with high probability we can construct a tree (respectively, an
ultrametric tree) that agrees withM on all but anε-fraction of its entries. In the case ofd-dimensional
Euclidean metrics we find an embedding of alln points ind-dimensional Euclidean space. With high
probability the embedding is such that the distances between pairs of embedded points are consistent
with M on all but anε-fraction of its entries. Note that these procedures are actuallysub-linearin the
size of the matrix, and in particular observe only a small fraction of the matrix.

1.2. Techniques

All our results have a common thread. As noted previously, our algorithms all take a uniform sample
of points from[n]. Specifically, the algorithms select two sub-samples, where each serves a different
role. The first sub-sample is used to induce certain constraints on almost all entries in the matrix. These
constraints arealwayssatisfied in case the matrix has the property. The heart of our proofs is in showing
that in case the matrix is far from having the property, then necessarily there are many entries in the
matrix that violate the constraints induced by the first sub-sample. The second sub-sample is then used
to providewitnessesto these violations.

In order to prove that the first sub-sample induces such constraints, we view it as being selected in
phases. Each phase either adds more constraints, or contains itself a witness to the fact that the matrix
does not have the tested property.

It is interesting to note that a similar proof structure has been useful in very different contexts of prop-
erty testing (e.g., graph properties [13] and clustering [2]). Work towards finding a unifying framework
has been done recently by Czumaj and Sohler [7]. In fact, applying our definitions and lemmas to Czumaj
and Sohler’s framework, it is possible to reduce the sample size for ultrametrics and for tree-metrics by
a factor of 1/ε.

1.3. Context and related work

Property testing was first defined and applied in the context of algebraic properties of functions
[20], and was extended to combinatorial objects, and in particular to graphs, in [13]. It has since been
studied quite extensively and applied in many contexts. For surveys, see [12,19]. A work most relat-
ed to ours is the recent work of Krauthgamer and Sasson [16] who study testing problems of data
dimensionality.

The research on metric spaces is clearly too rich and broad to cover within the limits of this introduc-
tion. Here we only mention the most closely related results.

Finding a tree that corresponds or approximately corresponds to a given distance matrix, is usually
referred to as theNumerical Taxonomy Problem. This problem was first explicitly stated in [5]. Waterman
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et al. [23] showed that if a given matrixM is a tree metric, then there is a unique tree that corresponds
with M, and it can be constructed in time O(n2). Culberson and Rudnicki [6] describe an algorithm that
has a running time of O(kn logk n) when the degree of the tree is bounded byk. The problem of con-
structing an ultrametric tree for a given matrix (if such a tree exists) is clearly a special case of the above,
and there are simpler procedures, though not more efficient in general, for constructing such a tree (e.g.
[15]). Deciding whetherM is a tree metric or ultrametric can clearly be done by trying to construct the
tree. To the best of our knowledge, no faster decision algorithm is known. Ford-dimensional Euclidean
metrics, a decision can be performed in time polynomial in the size of the matrix, by checking that a
related matrix is a positive semidefinite matrix of rank at mostd.

When the matrixM is not a tree metric (or an ultrametric), then we may consider the problem
of finding a tree metric (ultrametric)M ′ such that‖M − M ′‖p is minimized for a givenLp norm.
It was shown by Day [8] that this problem is NP-hard for theL1 and L2 norms, for both general
tree metrics and ultrametrics. When theL∞ norm is considered, then the problem can be solved in
time O(n2) for ultrametrics [10,17]. However, in the case of general tree metrics the problem is also
NP-hard for theL∞ norm [1]. Furthermore, Agarwala et al. [1] show that the problem remains NP-
hard even when we are given a matrixM for which there exists a tree metricM ′ such that‖M −
M ′‖∞ � δ, and we are required to find a tree metricM ′′ such that‖M − M ′′‖∞ � 9

8δ. On the bright
side, Agarwala et al. also show that is possible to find in time O(n2) a tree metricM ′′ such that‖M −
M ′′‖∞ � 3δ.

Recall that for both exact search problems (for ultrametrics and general tree metrics), and for approx-
imate ultrametrics (where the approximation is with respect to theL∞ norm), we solve relaxed versions
of these problems in time linear inn (and polynomial in 1/ε). We believe that our results can be extended
to deal with the approximation of general trees as well.

1.4. Organization

In Section 2 we provide the preliminaries for this work. In Section 3 we discuss ultrametrics, in
Section 4, approximate ultrametrics, and in Section 5, general tree metrics. Testing Euclidean metrics is
considered in Section 6. Finally, in Section 7 we prove our lower bounds.

2. Preliminaries

In all that follows we consider matrices whose entries are rational numbers.

Definition 2.1 (Distance to having a property). Let P be aproperty of matrices, letM be ann × n

matrix, and let 0� ε � 1. The matrixM is ε-far from having propertyP , if the minimum fraction of
Ms entries (among alln2 entries) that should be modified so thatM obtains propertyP is greater than
ε. Otherwise,M is ε-close to having propertyP .

Definition 2.2 (Testing properties of matrices). A testing algorithm for a matrix propertyP is given a
distance parameterε and may queryM on entriesM[i, j ] of its choice. IfM has propertyP then the
algorithm shouldaccept, and ifM is ε-far from having propertyP , then the algorithm shouldreject with
probability at least 2/3.
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The above definition requires that the algorithm have a one-sided error probability. In general, prop-
erty testing algorithms may be allowed a two-sided error. However, since all our algorithms have a one
sided error, we shall use this more restricted definition.

The matrix properties we consider are all properties of distance or pseudo-distance matrices.

Definition 2.3 (Distance and pseudo-distance matrices). We say that ann × n matrix M is a pseudo-
distance matrix if the following conditions hold:
1. Non-negativity: for everyi, j ∈ [n], M[i, j ] � 0, whereM[i, i] = 0 for everyi.
2. Symmetry: for everyi, j ∈ [n], M[i, j ] = M[j, i].
3. Triangle inequality: for everyi, j, k ∈ [n], M[i, j ] � M[i, k] + M[k, j ].

If Item 1 is strengthened to require thatM[i, j ] > 0 for everyi /= j , thenM is adistance matrix.
With a slight abuse of terminology, we shall sometimes refer toM as being a metric or pseudo-

metric.1 As noted in Section 1, and proved subsequently in Section 7, in the case of general tree metrics
and in the case of Euclidean metrics, the additional requirement thatM[i, j ] be strictly positive fori /= j ,
makes the task of testing significantly harder. In particular, in these cases, without this requirement there
exists a testing algorithm having complexity poly(1/ε) (that is, independent ofn), while adding the
requirement implies a lower bound of�(

√
n) (for a constantε). This difficulty does not arise in the case

of ultrametrics where we obtain an algorithm with poly(1/ε) query and time complexity for the strict
version of the property.

In what follows we assume for simplicity thatM obeys the conditions of non-negativity and symmetry
in the above definition of pseudo-distance and distance matrices. We next argue that this assumption can
be made without loss of generality.

Proposition 1. LetA be a testing algorithm for a propertyP of pseudo-distance(or distance) matrices,
whose correctness relies onM obeying conditions(1) and(2) in Definition2.3. Then there exists a testing
algorithmA′ for the propertyP whose correctness does not rely on these assumptions. Furthermore, if
QA(ε) andTA(ε) are the query complexity and running time ofA, respectively, then the query complexity
and running time ofA′ areO(QA(ε/2) + 1/ε)) andO(TA(ε/2) + 1/ε)), respectively.

Proof. First we assume that the failure probability of algorithmA is at most 1/6 instead of a 1/3 (since
this can easily be achieved by running the algorithm several times and rejecting if the algorithm rejects
at least once). Next, for any fixed matrixM, we define a matrixM ′ that differs fromM only on indices
i, j that do not satisfy either condition (1) or condition (2) in Definition 2.3. Furthermore,M ′ satisfies
condition (1) and (2) for alli, j . More preciselyM ′ is defined as follows:
• For everyi ∈ [n], setM ′[i, i] = 0.
• For every pairi /= j such thatM[i, j ] < 0, we setM ′[i, j ] to some arbitrary non-negative value.
• For every pairi, j such thatM[i, j ] /= M[j, i], we setM ′[i, j ] = M ′[j, i] = M[i, j ].

We can now define algorithmA′:
(a) AlgorithmA′ will first select a uniform sample of 6/ε pairs of indicesi, j ∈ [n], and check whether:

(1) M[i, j ] � 0, whereM[i, j ] = 0 if i = j . (2)M[i, j ] = M[j, i]. If any of the pairs selected does
not satisfy either (1) or (2) thenA′ rejects.

1 Formally, a (pseudo) metric is a pair(X, d), whereX is a set andd : X × X → ��0 is a (pseudo) distance function.
Hence, ifM is a (pseudo) distance matrix, then([n], dM), wheredM(i, j) = M[i, j ], is a (pseudo) metric.
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(b) Now A′ appliesA on M ′ with the distance parameter set toε/2, and answers asA does. Note that
every entry inM ′ can be computed in constant time given access toM.

It is clear that the the query complexity and running time ofA are as claimed. It remains to prove the
correctness ofA′.

If M has propertyP , and thus in particular is a pseudo-distance matrix (or distance matrix), thenA′
will clearly not reject in Step (a). Furthermore, in this caseM ′ = M, and in particularM ′ has property
P and obeys conditions (1) and (2) in Definition 2.3. ThereforeA will acceptM ′, and soA′ will accept
M in Step (b).

Assume now thatM is ε-far from having propertyP . If the total number of pairsi, j ∈ [n] that do
not satisfy either condition (1) or (2) in Definition 2.3 is greater thanε

2n2, then AlgorithmA′ will select
such a pair in Step (a), with probability at least

1 −
(
1 − ε

2

)6/ε

> 1 − e−3 > 5/6

and reject. Thus, assume that the number of pairs of indices inM that do not satisfy either condition
(1) or (2) is at mostε2n2. SinceM andM ′ differ on at mostε2n2 entries, ifM is ε-far from having
propertyP then M ′ is ε

2-far from having propertyP . Therefore algorithmA should rejectM ′ with
probability at least 5/6. But this directly implies thatA′ rejectsM with probability at least 5/6 in
Step (b). �

3. Testing ultrametrics

In this section we present an algorithm that tests whether a given matrixM is an ultrametric, as
defined formally below. Some of the ideas introduced in this section serve as a basis for our results in
the following two sections. Here we assume thatM is actually strictly positive everywhere except on its
diagonal. This assumption can be made without loss of generality by a slight variant of Proposition 1.2

We start with a few definitions.
Let T be a tree with positive weights on the edges. We view the weight of each edge as its length. The

distance between two nodesi andj in T is defined as usual as the sum of the weights on the path from
i to j . This distance will be denoted byT (i, j). For every nodei, T (i, i) is defined to be 0.

Definition 3.1 (Ultrametric trees). We say that a treeT with positive weights on the edges is anultra-
metric tree if the following holds:
1. T is rooted and the distance betweeneveryleaf and the root is the same fixed value.
2. All internal nodes inT have at least 2 children.

Definition 3.2 (Ultrametrics). We say that ann × n matrix M is anultrametric if there exists an ultra-
metric treeT for which the following holds:

2 If one is actually interested in testing the pseudo-distance variant of ultrametrics (where several points are allowed to be
mapped to the same node), then this assumption is not made, and a slight variant of our algorithm will work.
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1. There exists a 1-to-1 mappingφ from [n] onto the leaves ofT .
2. For any two leavesi, j in the tree,T (φ(i), φ(j)) = M[i, j ].

With a slight abuse of notation, we shall writeT (i, j) instead ofT (φ(i), φ(j)).
The following fact (cf. [3, Chapter 3]) is sometimes used as an alternative definition for ultrametrics,

and it will assist us in our proofs.

Fact 1 (The three points condition). A metric is an ultrametric if and only if for everyi, j, k,

M[i, j ] � max{M[i, k], M[j, k]} .

As an immediate corollary we get:

Corollary 2. LetM be an ultrametric. For everyi, j, k, if M[i, k] /= M[j, k] then

M[i, j ] = max{M[i, k], M[j, k]} .

Since our algorithm will try to construct a tree on a subset of points in[n], the following definition
will be useful.

Definition 3.3 (Consistent trees). Let M be a matrix,U ⊆ [n] a subset, andTU an ultrametric tree whose
leaves are associated with points inU . We say thatTU is consistent with M onU if for every i, j ∈ U ,
TU(i, j) = M[i, j ]. WhenU = [n] we simply say thatT is consistent withM.

3.1. Constructing ultrametric trees

If M is a tree metric, and in particular an ultrametric, then there exists a unique (ultrametric) tree
T that is consistent withM [23]. Furthermore, such a tree can be found efficiently (see for example
[15]).

Here we describe an iterative procedure for constructing an ultrametric tree that is consistent withM

on a given subset of[n] (assuming that such a tree exists). The presentation of this procedure will aid us
in describing and analyzing our testing algorithm. For the sake of the presentation we assume that the
given subset is{1, . . . , s}.

Procedure 1 (Ultrametric tree construction procedure).
Input: ann × n matrixM; a subset{1, . . . , s} of indices.
1. InitializeU = {1, 2} and letTU consist of a rootr, and two leaves, 1 and 2, that are at equal

distanceM[1,2]
2 from r.

2. Forj = 3, . . . , s :
(a)TU∪{j} ← Add-Point(j, TU , M).

(b) U ← U ∪ {j}.
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Procedure 2 (Add-Point procedure).
Input: ann × n matrix M; an indexj, and an ultrametric treeTU that is consistent withM on
U = {1, . . . , j − 1}.
1. Letk, 1 � k < j be any point for whichM[j, k] is minimized.
2. If M[j, k] > 2 · TU(r, k), wherer is the root ofTU , then create a new root, add an edge of

length M[j,k]
2 between the new root and the new leafj , and connect the old root ofTU to the

new root by an edge of lengthM[j,k]−TU (r,k)
2 . Let the new root now be calledr.

3. Otherwise, either (i) there exists a nodep in TU on the path fromk to the rootr such
thatTU(k, p) = M[j,k]

2 , or (ii) there exists an edge(u, v) on the path fromk to r such that

TU(k, u) <
M[j,k]

2 < TU(k, v). In case (ii), replace the edge(u, v) with two edges(u, p) and

(p, v), wherep is a new node in the tree, so that the distance fromk to p equalsM[j,k]
2 . In

either case add an edge fromp to a new leafj having lengthM[j,k]
2 .

We refer to the nodep defined in Step 3 of the procedure Add-Point as thedeparture pointof j from
TU . If j causes the creation of a new root (Step 2), then its departure point is defined to be the previous
root. For an illustration of the above construction see Fig. 1.

Lemma 3.1. If M is an ultrametric, then TU as constructed in the Ultrametric Tree Construction
Procedure, is consistent withM onU.

Proof. We prove the lemma by induction onj . The base case,j = 2, is straightforward. LetU =
{1, ..., j − 1} and assume by the induction hypothesis thatTU is consistent withM onU for j − 1 � 2.
We show that after the addition ofj to the tree,TU∪{j} is consistent withM onU ∪ {j}.

Note that all distances inTU∪{j} between pairs of points that are different thanj , are exactly as
in TU . Let k ∈ U be a point closest toj as defined in the first step of the procedure Add-Point. By
construction,TU∪{j}(k, j) = M[k, j ]. For anyi ∈ U such thati /= k, we consider the following three
cases:
1. M[k, i] > M[k, j ] : In this case, sinceM is an ultrametric, we have thatM[j, i] = M[k, i]. Let p′

be the least common ancestor ofk andi, so thatTU∪{j}(i, p′) = M[k,i]
2 . By construction of the tree,

Fig. 1. Construction of an ultrametric tree that is consistent with the accompanying matrix (which is symmetric and 0 on the
diagonal). In the first stage1 and2 are placed at equal distance 4 (half the distance between them) from the root. When3 is
added, it is at distance greater than 8 from1 and2, and so a new root is created. When4 is added, the closest point is3, and the
point of departure of4 is at distance 1 from3 on the path between3 and the root. Finally,5 is closest to3 as well, and its point
of departure is at distance 3 from node3.
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TU∪{j}(j, i)=TU∪{j}(j, p) + TU∪{j}(p, p′) + TU∪{j}(p′, i)

= M[k, j ]
2

+
(

M[k, i]
2

− M[k, j ]
2

)
+ M[k, i]

2
=M[k, i]
=M[j, i] (1)

2. M[k, i] < M[k, j ] : In this case it must hold thatM[j, i] = M[k, j ], and a similar calculation to
the one in the previous item shows thatTU∪{j}(j, i) = M[k, j ], and soTU∪{j}(j, i) = M[j, i] as
required.

3. M[k, i] = M[k, j ]: Here we only know thatM[j, i] � M[k, j ], but sincek was chosen to be closest
to j in TU , it must be thatM[j, i] = M[k, j ]. Here the construction ensures thatTU∪{j}(j, i) =
TU∪{j}(j, k) and soTU∪{j}(j, i) = M[j, i]. �

3.2. Testing ultrametrics

As noted above, for any ultrametricM and subsetU ⊆ [n], there is a unique treeTU that is consistent
with M on U . While the pairwise distances between points in[n] \ U and points inU do not uniquely
determine the position in the tree of every point in[n] \ U , a small sample of points can be used to
construct a “skeleton” tree that induces certain constraints on all other points. In caseM is an ultrametric
then these constraints are always obeyed. We shall prove that ifM is ε-far from being an ultrametric then
with high probability over the choice of the sample, there are many points (or pairs of points) that do not
obey the constraints induced by the skeleton tree. To this end we first need to introduce a few definitions.

For a subsetU ⊂ [n], let TU be an ultrametric tree whose leaves are associated with the points inU .
We refer toTU as askeleton. We start by considering how a skeleton that is consistent withM on U

restricts the distances of a pointj ∈ U to the points inU .

Definition 3.4 (Consistent points). Let TU be an ultrametric tree that is consistent withM on U . We
say that a pointj /∈ U is consistent with TU , if after addingj to TU by applying the procedure Add-
Point(j, TU , M), the resulting treeTU∪{j} is consistent withM onU ∪ {j}. Otherwise,j is inconsistent
with TU . The set of points in[n] \ U that are consistent withTU is denoted by�U .

For an illustration, see Fig. 2.
If M is an ultrametric, then�U = [n] \ U for everyU . Hence, a pointj /∈ U that is inconsistent with

TU provides evidence thatM is not an ultrametric. SinceTU is uniquely defined givenU , we can refer
to points as being consistent or inconsistent withU (instead ofTU ).

We now show that the skeleton also restricts the distances between some of the pairs of points that do
not belong toU . We first introduce the notion of the partition induced byU .

Definition 3.5 (The skeleton partition). Let U ⊂ [n] be such that there exists an ultrametric treeTU with
leaf-setU that is consistent withM on U . For each pointj ∈ �U , consider all its distances to points
in U (according toM). Then two points belong to the sameclass in thepartition PU of �U , if all their
pair-wise distances to points inU are the same.
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Fig. 2. An illustration of consistent and inconsistent points. LetU = {1,2,3}, and consider the matrix on the far left of the
figure. The first tree from the left is the skeleton treeTU . It is consistent with the matrix onU . If we now add point4 using
procedure Add-Point, then we get the middle tree. This tree is consistent with the matrix, and so4 is said to be consistent with
TU . On the other hand, if we add point5 to TU , then the resulting tree is inconsistent withM, sinceM[2, 5] = 8, while the
distance between2 and5 in the tree, is 10. Hence,5 is inconsistent withTU .

Fig. 3. An illustration of the partition induced by a skeleton. For example, the points inC1 are all at distance 6 from1, at
distance 8 from2, and at distance 10 from points3, 4 and5. The skeleton distance between everyi ∈ C1 andj ∈ C2 is 8.

For an illustration of the partitionPU , see Fig. 3.
Observe that for any classC of the partitionPU , all points inC have the same point of departure

from TU . Furthermore, with the exception of the points whose point of departure is the root ofTU , if i

andj have the same point of departure fromTU , then they are in the same class. Also observe that ifM

is an ultrametric, then each classC corresponds to a subtree in the ultrametric treeT that is consistent
with M.

Definition 3.6 (The skeleton distanceDU ). Let TU be an ultrametric tree that is consistent withM on
U . Consider (as a mental experiment) adding all points in[n] \ U to TU by applying the procedure Add-
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Fig. 4. An illustration of the distanceDU(·, ·). Suppose thatn = 9, and letU = {1,2,3,4,5}. Assume that the tree,TU , on the
left side of the figure, is consistent with the matrixM onU . Suppose that we apply the procedure Add-Point to the 4 remaining
points 6, 7, 8, 9 in parallel, and obtain the tree on the right side of the figure. Then the distanceDU is as defined by this tree.
For example,DU [6, 7] = 6, DU [6, 8] = 8, andDU [8, 9] = 10.

Point(j, TU , M) to all pointsj /∈ U in parallel, and let the resulting tree bêTU .3 Then, letDU(·, ·) be
the distance induced bŷTU (which is, by definition, an extension of the distance induced byTU on the
pairs of points inU ).

For an illustration of the skeleton distanceDU(·, ·), see Fig. 4.
It is easy to verify that ifM is an ultrametric then for every pair of pointsi, j that belong to differ-

ent classes ofPU , DU(i, j) = M[i, j ] (since addingi and j to TU sequentially, and in parallel re-
sults in the same tree). Similarly, for every pair of pointsi, j that belong to the same class,M[i, j ] �
DU(i, j).

Therefore, if one of the above is violated for a pair of pointsi, j ∈ �U , then we have evidence thatM

is not an ultrametric. This observation motivates the following definition.

Definition 3.7 (Violating pairs). Let TU be an ultrametric tree that is consistent withM onU . A pair of
pointsi, j ∈ �U are said to be aviolating pair with respect toTU , if either (1) i andj are in different
classes inPU andM[i, j ] /= DU(i, j), or (2) i andj belong to the same class inPU andM[i, j ] >

DU(i, j).

For an illustration of violating pairs, see Fig. 5.
As noted above, ifM is an ultrametric, then there are no inconsistent points and no violating pairs

with respect toTU , for any subsetU . We shall show that ifM is ε-far from being an ultrametric, then
with high probability over the choice of a sufficiently large sampleU , either there are many inconsistent
points or many violating pairs with respect toTU .

3 To be a little more precise, letB be the maximum value inM, and consider first adding toU a fictitious pointx whose
distance from all points is greater thanB. If we now consider adding all points in[n] \ U to TU∪{x} then there is never a need
to create a new root, and the addition process is well defined. We can now remove the pointx from the tree, and let the resulting
tree beT̂U . Also note that by our assumption thatM[i, j ] > 0 for everyi /= j , a pointj cannot be added in the same place in
the tree as an existing point inU .
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Fig. 5. An illustration of violating and non-violating pairs. LetU = {1,2,3,4,5}, and assume that the tree in the figure,TU ,
is consistent with the matrixM on U . Let C1, . . . , C4 be the classes induced by the partitionPU . Consider the points
i ∈ C1, j ∈ C2, and k ∈ C4, and suppose thatM[i, j ] = 9 and M[i, k] = 10. Then i and j are a violating pair (since
DU(i, j) = 8 /= M[i, j ]), but i andk are not violating (sinceDU(i, k) = 10 = M[i, k]).

We are now ready to present our testing algorithm.

Algorithm 1 (Testing algorithm for ultrametrics).
1. Uniformly and independently selects = �(1/ε3) points from[n]. Denote the set of points

selected byU .
2. Construct a skeleton treeTU as described in the Ultrametric Tree Construction Procedure.
3. If there exists a pair of pointsi, j ∈ U such thatTU(i, j) /= M[i, j ], thenreject.
4. Uniformly and independently selectm = �(1/ε) pairs of points in[n].
5. If any one of the 2m points selected in Step 4 is inconsistent withTU thenreject.
6. Partition the 2m points selected in Step 4 into classes according to the partitionPU induced

by the skeleton. If any one of them pairs is a violating pair thenreject.
7. If no step caused rejection thenaccept.

Theorem 3. Algorithm 1 is a testing algorithm for ultrametrics.

Note that whenever the algorithm rejects then it providesevidencethatM is not an ultrametric. As a
corollary of Theorem 3 we get:

Corollary 4. Let the“natural” testing algorithm be the algorithm that simply selects a uniform sample
of s + 2m = �(1/ε3) points from[n] (wheres and m are defined as in Algorithm1), and accepts if
and only if there is an ultrametric tree consistent withM on the sample. Then the natural algorithm is a
testing algorithm for ultrametrics.

Proof. If M is an ultrametric then clearly the natural algorithm always accepts. IfM is ε-far from
being an ultrametric then we need to show that it is rejected with probability at least 2/3. Assume in
contradiction that it is accepted with probability greater than a 1/3. Consider each sampleS of s + 2m

points that causes the natural algorithm to accept. By definition of the algorithm, the sub-matrix ofM

induced byS is an ultrametric. But this implies that Algorithm 1 would accept when provided with the
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same sample (the firsts points constitutingU , and the other 2m points constituting them pairs selected
in Step 4 of Algorithm 1). This in turn implies that Algorithm 1 would acceptM with probability greater
than a 1/3, in contradiction to Theorem 3.�

3.3. Proof of Theorem 3

As discussed previously, ifM is an ultrametric then it is always accepted by Algorithm 1. We thus
assume from now thatM is ε-far from being an ultrametric, and strive to show that it is rejected with
probability at least 2/3. Before embarking on the proof of this part of Theorem 3, we try and gain
intuition by considering the following special case. In order to describe it we introduce the following
definition.

Definition 3.8 (Separated points). Let U ⊂ [n] be such that there exists an ultrametric treeTU that is
consistent withM on U . A pair of pointsi, j ∈ �U are said to beseparated with respect toU if they
belong to different classes of the partitionPU . Otherwise, they arenon-separated.

Suppose that the initial sampleU ⊂ [n] is such that the number of non-separated pairs of points in
�U is at mostε3n2. We claim that in this case ifM is ε-far from being an ultrametric, then either there
are more thanε3n inconsistent points, or there are more thanε

3n2 violating pairs with respect toTU . This
would cause the algorithm to reject with high probability either in Step 5 or Step 6 of the algorithm.

To see why the claim is true, assume by contradiction that there are at mostε
3n inconsistent points,

and at mostε3n2 violating pairs with respect toTU . We define a matrixM ′ such thatM ′[i, j ] = DU(i, j)

for every i, j ∈ [n]. Thus,M ′ is an ultrametric by definition, as it is defined by the ultrametric tree
T̂U . However, it is not hard to verify thatM ′ andM differ on at mostεn2 entries, contradicting our
assumption thatM is ε-far from being an ultrametric. Specifically,M andM ′ differ on at most:
• ε

3n2 entries due to violating pairs;
• ε

3n2 entries due to pairs of points in which at least one of the points is inconsistent withTU ;
• ε

3n2 entries due to non-separated pairs where both points are consistent. Note that pairsi, j of this type
satisfyM[i, j ] � DU(i, j) = M ′[i, j ], so it is possible thatM[i, j ] is strictly smaller thanM ′[i, j ].
Roughly speaking, this scenario suggests that we gain fromseparating points into different classes.

This motivates the following definition.

Definition 3.9 (Separators). We say that a pointk is a separator for a pair of pointsi, j , if M[i, k] /=
M[j, k].

Thus, a pair of pointsi, j ∈ �U are separated with respect toU (as defined in Definition 3.8), if and
only if they have a separatork in U . Notice that ifM is an ultrametric then a pointk can separate only
pairs of pointsi, j that belong to the same class ask. For an illustration, see Fig. 6.

Definition 3.10 (Effective separators). We say that pointk is anα-effective separator with respect toU ,
if the number of pairs of points in�U that are not separated with respect toU but are separated with
respect toU ∪ {k}, is at least(αn)2.
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Fig. 6. An illustration for the notion of separators. Letk be a point that belongs to a different class from pointsi andj , as
illustrated in the left tree. IfM is an ultrametric theni andj must have the same distance tok, and so it cannot separate them.
On the other hand, ifk belongs to the same class asi andj , then it may separate them, as illustrated on the right.

By the above definition, the addition toU of a pointk ∈ �U that is anα-effective separator with
respect toU , has the following effect. For at least(αn)2 pairs of points in�U , either both points in the
pair are in�U∪{k} and are now separated with respect toU ∪ {k}, or at least one of the points in the pair
is not in�U∪{k} (that is, it is inconsistent withTU∪{k}). In either case, the number of non-separated pairs
of points (where both points are consistent), decreases by at least(αn)2.

We shall view the sampleU as being selected inphases. As we prove more formally subsequently,
as long as there is a sufficient number ofα-effective separators with respect to the sample selected so
far, then with high probability a new separator is selected in the next phase, and separates many pairs
of points. However, what if there are only a few effective separators with respect to the sample selected
so far, but there are still many non-separated pairs? In this case we can prove the following lemma
concerning the distances between points that belong to thesame class(non-separated pairs).

Lemma 3.2. Let C ⊆ [n] \ U be a class inPU such that there are at mostβn points inC that are
α-effective separators with respect toU. Then there exists an ultrametric treeTC with leaf-setC such
that for at most(2β + 3α)n · |C| of the pairsi, j ∈ C, we haveTC(i, j) /= M[i, j ]. Furthermore, the
treeTC is star shaped.

In order to prove Lemma 3.2 we shall need the following technical claim.

Claim 3.3. Letq � n be an integer, Q a q × q real valued matrix and0 � φ, θ � 1. Suppose that for
at leastq − φn of the rowsi in Q, there exists a valueri such that for at leastq − θn of the entries
Q[i, j ] we haveQ[i, j ] = ri, and that an analogous claim holds for the columns ofQ. Then there exists
a single value, denotedt, such that for all but at most(2φ + 3θ)n · q of the entriesQ[i, j ], we have
Q[i, j ] = t.

Proof. For eachi ∈ {1, . . . , q}, let ri (ci) denote the most common value in theith row (column) in
Q (where ties are broken arbitrarily). We say that a row (column) isθ -pure if all but at mostθn of
the entries in the row (column), have valueri (ci). By the premise of the lemma, all but at mostφn

of the rows (columns) areθ -pure. We say that entryQ[i, j ] is row-representative, if row i is θ -pure
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andQ[i, j ] = ri . Define acolumn-representativeentry analogously. Then the number of entries that
arenot row-representative is at mostφn · q + q · θn = (φ + θ) · q · n. Similarly, the number of entries
that are not column-representative is at most(φ + θ) · q · n. Hence, the number of entries that are both
row-representative and column-representative is at leastq2 − 2(φ + θ) · q · n.

Now, consider any rowi that has at leastq − 2(φ + θ) · n entries that are both row-representative and
column-representative. Such a row must exist since this is the average number per row. Then the total
number of entries inQ that do not have valueri is at most

2(φ + θ) · n · q + q · θn = (2φ + 3θ)n · q .

The first term is due to all entries in columnsj such thatQ[i, j ] is either not row-representative or
not column-representative, and the second term is due to entries that are not column-representative for
columnsj such thatQ[i, j ] is both row-representative and column-representative.�

Proof of Lemma 3.2. Consider the sub-matrixMC of M that is induced by the classC, and leti ∈ C

be a point that is not anα-effective separator with respect toU . By definition, this means that in the
ith row of MC , the number of pairs of entries that contain a different value is at most(αn)2. We claim
that this implies that there exists a valueri such that for at leastq − αn of the entriesMC[i, j ] in the
ith row we haveMC[i, j ] = ri (and that an analogous statement holds for the columns ofMC). The
claim trivially holds forq � αn, thus letq > αn. Assume, contrary to the claim, that for every value
in the ith row there are less thanq − αn entries with that value. Then for each 1� j � q, there are
more thanq − (q − αn) = αn entriesMC[i, 
] such thatMC[i, j ] /= MC[i, 
]. Hence the total number
of such pairs of different entries in rowi is greater thanq · αn which is greater than(αn)2, contradicting
our initial assumption on theith row.

Since there are at mostβn points inC that areα-effective separators, we can apply Claim 3.3 with
Q = MC , φ = β, andθ = α. Thus, there exists a valuet , such that for all but at most(2β + 3α)n · |C|
of the entries inMC we haveMC[i, j ] = t . Note that since we assume thatM[i, j ] > 0 for everyi /= j

then t > 0. Define the sub-treeTC to be a star-shaped tree, whose leaves are the points inC, and the
distance of each leaf from the root ofTC is t/2. The lemma follows. �

Proof of Theorem 3. As noted previously, the correctness of the algorithm for an ultrametric matrixM

directly follows from the algorithm. We thus focus on the second part of the theorem, and assume that
M is ε-far from being an ultrametric.

Let α = ε
12, andβ = ε

8. We view the sampleU selected in Step (1) of the algorithm, as being selected
in p = 6/α2 phases, where in each phase an independent sample ofs′ = 2

β
points is selected. If in any

phase the sample contains a point that is inconsistent with the previously selected points, then clearly the
algorithm will reject in Step 3 (as it will not be able to construct an ultrametric treeTU that is consistent
with M). Otherwise, we consider the effect of selectingα-effective separators.

At the start of the first phase (where no sample has yet been selected), the total number of pairs that are
non-separated and in which both points are consistent, isn(n − 1). In each phase where anα-effective
separator is selected, the number of non-separated pairs of points decreases by at least(αn)2. It follows
that the number of phases in which anα-effective separator is selected is bounded by 1/α2. Consider
anyfixedphase for which the number ofα-effective separators is at leastβn. The probability that none
of these separators is selected is at most
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(1 − β)s
′
< e−βs′ = e−2 �

1

4
.

Since the number ofα-effective separators is monotonically non-increasing, if at the start of some
phase there are less thanβn points that areα-effective separators, then this remains true for all following
phases. On the other hand, as shown above, as long as there are at leastβn α-effective separators, then
one is selected with probability at least 3/4. Let us say that a phase ishelpful if either anα-effective
separator is selected in the phase, or there are less thanβn α-effective separators at the end of the phase.
Recall that there arep = 6/α phases. Since the probability that each phase is helpful is at least 3/4,
by applying a Chernoff bound, the probability that there are less than 1/α helpful phases is at most
exp(−2((3/4 − 1/6)2p) < 1/6. �

Hence, with probability at least 5/6, afterp = 6/α2 phases, either there is no treeTU that is consistent
with M onU , or there are at mostβn α-effective separators with respect toU .

Claim. Let U ⊂ [n] be such that there exists an ultrametric treeTU that is consistent withM on U ,
and the number ofα-effective separators with respect toU is at mostβn. If M is ε-far from being an
ultrametric, then there are either more thanε

4n inconsistent points with respect toU , or more thanε
4n2

violating pairs with respect toU .

The above claim implies that there is a probability of at most 1/6 that the algorithm does not reject
in Step 5 and also does not reject in Step 6. The probability is taken over the choice of them = 8

ε
pairs

of points selected in Step 4 of the algorithm. The second part of the theorem follows by adding to this
the probability of at most 1/6 that the number ofα-effective separators with respect toU , is greater than
βn.

Thus, to conclude the proof of the theorem we prove the claim. Assume, contrary to the claim, that
there areat mostε4n inconsistent points, andat mostε4n2 violating pairs. We next show that we can then
define an ultrametricM ′ that disagrees withM on at mostεn2 entries, thus contradicting the assumption
thatM is ε-far from being an ultrametric. We defineM ′ as follows:
1. For every i, j ∈ U : M ′[i, j ] = DU(i, j) (= M[i, j ]). Similarly, for every i ∈ U and j ∈ �U :

M ′[i, j ] = DU(i, j) (= M[i, j ]).
2. For everyi, j ∈ �U :

(a) If i andj are separated thenM ′[i, j ] = DU(i, j). Hence, among these pairs,M ′ andM only
differ on the violating pairs that belong to different classes.

(b) If i and j are non-separated thenM ′[i, j ] = min{DU(i, j), TC(i, j)}, whereC is the class
they both belong to andTC is the tree guaranteed by Lemma 3.2. (Taking the minimum
among the two values is essential in order thatM ′ be an ultrametric.) HereM ′ may differ
from M on: (i) violating pairs that belong to a common class for whichM[i, j ] = TC[i, j ]
> DU(i, j), and (ii) the at most(2β + 3α)n|C| � ε

2n|C| pairs of pointsi, j ∈ C such that
M[i, j ] /= TC(i, j).

3. If either i ∈ �U or j ∈ �U : thenM ′[i, j ] = DU(i, j), which may differ fromM[i, j ]. Since there
are at mostε4n inconsistent points (i.e. points in[n] \ �U ), among the pairs considered in this item
there are at mostε4n2 pairs on whichM ′ andM differ.
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The total number of entries (pairs) on whichM ′ andM differ is hence at most

ε

4
n2 +

∑
C∈PU

ε

2
n|C| + ε

4
n2 � εn2

where the first term is due to the violating pairs, the second term is due to those pairsi, j that belong
to the same classC but for whichM[i, j ] /= TC(i, j), and the third term is due to the pairs containing
inconsistent points. �

3.4. Constructing almost consistent ultrametric trees

Suppose thatM is an ultrametric. Then our analysis can be used to imply that with high probability
we can construct in time O(n · poly(1/ε)) an ultrametric treeT ′ that disagrees withM on at most an
ε-fraction of its entries. Details follow.

By definition, if M is an ultrametric, then for every subsetU ⊆ [n], all points in[n] \ U are con-
sistent withTU , and all pairs of points are non-violating. Note that given a setU , we can partition
all points in [n] \ U into the classes of the partitionPU in time O(n · |U |). As argued in the proof
of Theorem 3, with high probability over the choice ofU , there are at mostβn α-effective separators
with respect toU . This holds for|U | = �(1/ε3) and forα andβ as in the proof of the theorem. By
Lemma 3.2, this implies that for every classC there exists a star shaped (sub-)treeTC such that for
at most(2β + 3α)n · |C| of the pairsi, j ∈ C, we haveTC(i, j) /= M[i, j ]. By sampling from each
class we can find, with high probability, the height of the star-shaped treeTC and construct it. Fol-
lowing the argument in the proof of Theorem 3, it can be shown that the resulting tree disagrees with
M on at mostεn2 entries.

4. Testing approximate ultrametrics

In this section, we extend the results from Section 3 to testingapproximateultrametrics. Namely, here
we relax the condition of acceptance to matricesM that may not be exactly ultrametrics, but that are
close in theL∞ normto an ultrametric.

Definition 4.1 (δ-Ultrametrics). A matrix M is aδ-ultrametric if there exists an ultrametricM ′ such that
‖M − M ′‖∞ � δ.

Below we describe a testing algorithm that for any given matrixM and parametersδ and ε, ac-
ceptsM if it is a δ-ultrametric, and rejectsM with probability at least 2/3 if it is ε-far from any
cδ-ultrametric, for some fixed constantc. The structure of the algorithm and its analysis are simi-
lar to those of the exact case (δ = 0). The algorithm tries to find evidence toM not being aδ-ultra-
metric. As in the exact case, showing that everyδ-ultrametric passes the test will be relatively easy
(though not as straightforward). Showing that a matrixM that isε-far from anycδ-ultrametric is re-
jected with high probability, will follow the same lines as in the exact case, but will be somewhat
more involved.
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We start by adapting the definitions from the exact case.

Definition 4.2 (δ-Consistent). An ultrametric treeTU is δ-consistent with a matrixM onU , if for every
i, j ∈ U , |TU(i, j) − M[i, j ]| � δ. In caseU = [n], we simply say thatT is δ-consistent withM.

Farach et al. [10] give a polynomial-time algorithm for constructing a treeT that isδ-consistent with
a givenδ-ultrametricM.

Definition 4.3 (η-Consistent point). Let TU be an ultrametric tree that isδ-consistent with ann × n

matrix M on U ⊆ [n]. We say that pointj /∈ U is η-consistentwith TU if the following holds. LetT
be the tree resulting from addingj to TU by applying the procedure Add-Point(j, TU , M) (described in
Section 3.1). Then we ask that for everyk ∈ U , |T (j, k) − M[j, k]| � η. Let �

η
U denote the set of all

points in[n] \ U that areη-consistent withTU .

Definition 4.4 (λ-Separators). Let M be ann × n matrix andi, j ∈ [n]. A point k ∈ [n] is called a
λ-separator for i andj if |M[i, k] − M[j, k]| > λ.
If i andj have aλ-separator in the setU , then they areλ-separated by U .

Definition 4.5 (Effective separators). We say that a pointk ∈ [n] \ U is an (α, λ)-effective separator
with respect toU ⊂ [n], if the number of pairs of points in[n] \ U that areλ-separated byU ∪ {k}, and
arenot λ-separated byU , is at least(αn)2.

Definition 4.6 (Violating pairs). Let M be ann × n matrix andi, j ∈ [n] \ U . We say thati andj are a
violating pair with respect toU ⊂ [n], if either:
1. There exists a 2δ-separatork ∈ U for i andj such that|M[i, j ] − max{M[i, k], M[j, k]}| > 2δ;
2. For somek ∈ U (that is not necessarily a 2δ-separator),M[i, j ] > max{M[i, k], M[j, k]} + 2δ.

Algorithm 2 (Testing algorithm for approximate ultrametrics).
1. Uniformly and independently selects = �(1/ε3) points in [n]. Denote the set of points

selected byU.

2. Construct a skeleton treeTU that isδ-consistent withM onU using the algorithm in [10]. If
this is not possible –reject.

3. Uniformly and independently selectm = �(1/ε2) pairs of points in[n].
4. If any one of the 2m points selected in Step 3 is not 3δ-consistent withTU, thenreject.
5. If any one of them pairs selected in Step 3 is a violating pair, thenreject.
6. If no step caused rejection thenaccept.

Theorem 5. Algorithm2 accepts every matrixM that is aδ-ultrametric, and rejects with probability
at least2/3 anyM that isε-far from being acδ-ultrametric for some fixed constantc.

The constantc that our analysis implies, is 84. However, we believe that a tighter analysis is possible.
Similarly to what was shown for exact ultrametrics, Theorem 5 implies the following corollary.
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Corollary 6. Let the “natural” testing algorithm be the algorithm that simply selects a uniform sample
of �(1/ε3) points from[n] and accepts if and only if it is possible to construct a tree that isδ-consistent
with M on the sample. Then this algorithm accepts every matrixM that is aδ-ultrametric, and rejects
with probability at least2/3 anyM that isε-far from being acδ-ultrametric for some fixed constantc.

We shall prove Theorem 5 via a sequence of lemmas. The first two lemmas are used to prove the first
part of the theorem, and the remaining lemmas to prove the second part of the theorem.

4.1. Proof of Part 1 of Theorem 5

The following lemma shows that ifM is aδ-ultrametric, then Algorithm 2 will not reject it in Step 4.

Lemma 4.1. LetM be aδ-ultrametric, and letTU be an ultrametric tree that isδ-consistent withM on
U ⊆ [n]. Then every pointj /∈ U is 3δ-consistent withTU .

Proof. SinceM is a δ-ultrametric, there exists an ultrametricM ′, such that‖M − M ′‖∞ � δ. Let T

be the tree resulting from addingj to TU by applying the procedure Add-Point(j, TU , M). We have to
show that for every pointi ∈ U , it holds that|T (j, i) − M[j, i]| � 3δ.

Let k be the point inU for which M[k, j ] is minimized, so thatT (k, j) = M[k, j ]. Note that for
everyi ∈ U , T (j, i) � T (k, i). We thus need to consider three cases concerning the relations between
the pairwise distances ofi, j , andk in M ′. The three cases are illustrated in Fig. 7. For each of these
cases there are three sub-cases depending on the pairwise distances according toT .
1. M ′[j, i] = M ′[k, i] � M ′[k, j ]:

Since‖M − M ′‖∞ � δ,

M[j, i] � M ′[j, i] + δ = M ′[k, i] + δ � M[k, i] + 2δ.

In a similar way it is possible to show thatM[j, i] � M[k, i] − 2δ.
(a) T (j, i) = T (k, i) � T (k, j):

Recall thatT is δ-consistent withM. Thus,

T (j, i) = T (k, i) � M[k, i] + δ � M[j, i] + 3δ.

Fig. 7. An illustration of the three cases concerning the relations between the pairwise distances ofi, j , andk in the ultrametric
matrixM ′. For example, in the first case, the distance betweeni andj is the same as the distance betweeni andk, and is greater
or equal to the distance betweenj andk.
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In a similar way it is possible to show thatT (j, i) � M[j, i] − 3δ.
(b) T (j, i) = T (k, j) � T (k, i):

Sincek is the nearest point toj in U , we haveM[k, j ] � M[j, i] . Thus,

T (j, i) = T (k, j) = M[k, j ] � M[j, i].
On the other hand,

T (j, i) � T (k, i) � M[k, i] − δ � M[j, i] − 3δ.

(c) T (k, i) = T (k, j) � T (j, i):
Sincek is the nearest point toj in U , we must haveT (k, i) = T (k, j) = T (j, i), which is
already covered by the previous sub-cases. We can hence ignore this sub-case in the next two
cases as well.

2. M ′[j, i] = M ′[k, j ] � M ′[k, i]:
Similarly to what was shown in the previous item, in this case it is possible to boundM[j, i] as
follows,

M[k, j ] − 2δ � M[j, i] � M[k, j ] + 2δ.

(a) T (j, i) = T (k, i) � T (k, j):

T (j, i) = T (k, i) � M[k, i] + δ � M ′[k, i] + 2δ � M ′[j, i] + 2δ � M[j, i] + 3δ.

On the other hand,

T (j, i) � T (k, j) = M[k, j ] � M[j, i] − 2δ.

(b) T (j, i) = T (k, j) � T (k, i):
We haveT (j, i) = T (k, j) = M[k, j ]. Thus, on one hand

T (j, i) = M[k, j ] � M[j, i]
and on the other hand

T (i, j) = M[k, j ] � M[j, i] − 2δ.

3. M ′[k, i] = M ′[k, j ] � M ′[j, i]:
Here we can boundM[j, i] as follows,

M[k, j ] � M[j, i] � M ′[j, i] + δ � M ′[k, j ] + δ � M[k, j ] + 2δ.

We also need the following inequality,

M[k, i] � M ′[k, i] + δ = M ′[k, j ] + δ � M[k, j ] + 2δ.

(a) T (j, i) = T (k, i) � T (k, j):

T (j, i) = T (k, i) � M[k, i] + δ � M[k, j ] + 3δ � M[j, i] + 3δ,

T (j, i) � T (k, j) = M[k, j ] � M[j, i] − 3δ.

(b) T (j, i) = T (k, j) � T (k, i): Identical to case 2b. �
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The following lemma shows that ifM is aδ-ultrametric, then Algorithm 2 will not reject it in Step 5.
Combining this with the previous lemma, we get that algorithm always acceptsδ-ultrametric matrices.

Lemma 4.2. Let M be aδ-ultrametric. Then for every pair of pointsi, j ∈ [n], and for every point
k ∈ [n], if k is a2δ-separator fori andj then|M[i, j ] − max{M[i, k], M[j, k]}| � 2δ, and otherwise,
M[i, j ] � max{M[i, k], M[j, k]} + 2δ.

Proof. SinceM is aδ-ultrametric, there exists an ultrametricM ′ such that‖M − M ′‖∞ � δ. Therefore,
for everyk ∈ [n], |M ′[i, k] − M[i, k]| � δ, and|M ′[j, k] − M[j, k]| � δ.

In particular, this is true of any 2δ-separating pointk (of i andj ). For such a pointk, |M[i, k] −
M[j, k]| > 2δ, and soM ′[i, k] /= M ′[j, k]. By Corollary 2,M ′[i, j ] = max{M ′[i, k], M ′[j, k]}, imply-
ing that

max{M[i, k], M[j, k]} − 2δ � M[i, j ] � max{M[i, k], M[j, k]} + 2δ .

In casek is not a 2δ-separator, then by the Three-Point Condition (Fact 1),

M ′[i, j ] � max{M ′[i, k], M ′[j, k]}
and so

M[i, j ] � M ′[i, j ] + δ � max{M[i, k], M[j, k]} + 2δ . �

4.2. Proof of Part 2 of Theorem 5

We now continue with the more involved part of Theorem 5, that is, of proving that anyM that is
ε-far from being an O(δ)-ultrametric is rejected with probability at least 2/3. More precisely, we prove
a sequence of claims from which the contrapositive statement will follow.

The first lemma deals with pairs of points that are consistent withTU , are not violating, and are “well
separated” byU . Such pairs are analogous to consistent, non-violating pairs of points that belong to
different classes in the exact case. Here the distanceDU is defined as in the exact case given the treeTU

(Definition 3.6).

Lemma 4.3. Let M be ann × n matrix, let TU be an ultrametric tree that isδ-consistent withM on
U ⊆ [n], and leti, j ∈ �3δ

U . If there exists a pointk ∈ U that is a6δ-separator fori andj, andi andj

are not violating with respect toU, then|DU(i, j) − M[i, j ]| � 5δ.

Proof. Sincei andj are both 3δ-consistent withTU , we have that

|M[i, k] − DU(i, k)| � 3δ and |M[j, k] − DU(j, k)| � 3δ .

Sincek is a 6δ-separator fori and j , |M[i, k] − M[j, k]| > 6δ, and soDU(i, k) /= DU(j, k). By
Corollary 2 we have that

DU(i, j) = max{DU(i, k), DU(j, k)} .

But sincei andj are not violating (andk is a 2δ-separator for the pair),

|M[i, j ] − max{M[i, k], M[j, k]}| � 2δ .
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Therefore,

DU(i, j) = max{DU(i, k), DU(j, k)} � max{M[i, k] + 3δ, M[j, k] + 3δ} � M[i, j ] + 5δ

and similarly max{DU(i, k), DU(j, k)} � M[i, j ] − 5δ. �

The following lemma is analogous to Lemma 3.2 that dealt with distances between points that belong
to the same class.

Lemma 4.4. Let S ⊆ [n] \ U be such that there are at mostβn points inS that are (α, λ)-effective
separators with respect toU. Then there exists an ultrametric (star shaped) treeTS with leaf-setS, such
that for at most(2β + 6α)n · |S| of the pairsi, j ∈ S, we have|TS(i, j) − M[i, j ]| > 3

2λ.

In order to prove the lemma we shall first prove the following claim.

Claim 4.5. Letq � n be an integer, Q aq × q real valued matrix,0 � φ, θ < 1/2, andµ � 0. Suppose
that for at leastq − φn of the rowsi in Q, there exists a valueri such that for at leastq − θn of the
entriesQ[i, j ] we have|Q[i, j ] − ri | � µ, and that an analogous claim holds for the columns ofQ.

Then there exists a single valuet, such that for all but at most(2φ + 3θ)n · q of the entriesQ[i, j ], we
have|Q[i, j ] − t | � 3µ.

Proof. The proof of Claim 4.5 follows the same lines as the proof of Claim 3.3. Here we say that
a row i is denseif there exists a valueri such that for at leastq − θn of the entriesQ[i, j ] we have
|Q[i, j ] − ri | � µ. We similarly define dense columns. We say that an entryQ[i, j ] is row-representa-
tive if its row is dense and|Q[i, j ] − ri | � µ. We similarly definedcolumn-representativeentries. Then,
similarly to the proof of Claim 3.3, we obtain that all but at most 2(φ + θ)n · q of the entries inQ are
both row-representative and column-representative.

We then look at a rowi that contains at leastq − 2(φ + θ)n entries that are both row-representative
and column-representative. For each such entryQ[i, j ], we have that|Q[i, j ] − ri | � µ. We also know
that for all but at mostθn of the entriesQ[k, j ] in thej th column, it holds that|Q[i, j ] − Q[k, j ]| � 2µ.
Hence, for all but at most

2(φ + θ)n · q + q · θn = (2φ + 3θ)n · q

of the entriesQ[k, j ] we have|Q[k, j ] − ri | � 3µ. �

Proof of Lemma 4.4. Let MS denote the sub-matrix ofM induced byS. Consider anyi ∈ S that is
not an(α, λ)-effective separator. We claim that there exists a valueri such that in the row (and sim-
ilarly the column) that corresponds toi there are at most 2αn entriesMS[i, j ] such that|MS[i, j ] −
ri | > λ/2.

To see why this is true, let us order the entries in theith row according to increasing values. Assume
for simplicity that all entries are distinct (the argument can be easily modified to work with non-distinct
values). Consider the first entryMS[i, j ] in this order such that there are exactlyαn entries that are
smaller thanMS[i, j ]. Then there must be at mostαn entries that are larger by more thanλ fromMS[i, j ]
(otherwise, there would be more than(αn)2 pairsj, 
 such that|M[i, j ] − M[i, 
]| > λ, andi would
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be an(α, λ)-effective separator). But this implies that forri = MS[i, j ] + λ/2, there are at most 2αn

entriesMS[i, 
] such that|MS[i, 
] − ri | > λ/2.
The corollary follows by applying Claim 4.5 withQ = MS , φ = β, θ = 2α, andµ = λ/2. �

At this point we slightly depart from the structure of the analysis in the exact case. We shall need the
following definition.

Definition 4.7 (Incorrect points w.r.t.DU ). Let U ⊆ [n] be such that there exists an ultrametric treeTU

that isδ-consistent withM onU (and so, in particular,DU is well defined). Leti ∈ U , and define:

B
λ1,λ2
i

def= {j ∈ U : there is noλ1-separator forj andi in U , andM[i, j ] < DU(i, j) − λ2}. (2)

If
∣∣∣Bλ1,λ2

i

∣∣∣ > αn, then pointi is (α, λ1, λ2)-incorrect with respect toDU .

Roughly speaking, a pointi is incorrect with respect toDU if there are many pointsj (that are
not separated fromi with respect toU ) such thatM[i, j ] differs significantly fromDU(i, j), and in
particular, is smaller. We note that whenM[i, j ] is significantly larger, theni andj are a violating pair.

We now show that if the number of inconsistent points, violating pairs and incorrect points is small,
thenM is ε-close to an approximate ultrametric for the appropriate constants.

Lemma 4.6. Let U be such that there exists an ultrametric treeTU that isδ-consistent withM on U.

Furthermore, there are at mostε4n points that are not3δ-consistent withTU, and at mostε4n2 pairs of
violating points with respect toTU . If the number of( ε

4, λ1, λ2)-incorrect points in[n]\U is at mostε4n,

whereλ1 � 6δ, thenM is ε-close to being amax{λ1, λ2}-ultrametric.

Proof. We show that on all but at mostεn2 pairs of pointsi, j , we have|M[i, j ] − DU(i, j)| �
max{λ1, λ2}. SinceDU is determined by an ultrametric tree, the lemma follows.

Let A denote the set of( ε
4, λ1, λ2)-incorrect points in[n] \ U , and for each point
 ∈ A, let B
 =

B
λ1,λ2

 . Let us go over all pairsi, j :

1. For every pairi, j ∈ U :

|M[i, j ] − DU(i, j)| = |M[i, j ] − TU(i, j)| � δ.

Similarly, for everyi ∈ U , j ∈ �3δ
U :

|M[i, j ] − DU(i, j)| = |M[i, j ] − TU(i, j)| � 3δ.

2. For every pair of pointsi, j ∈ �3δ
U that are not violating andj ∈ Bi :

(a) If i andj areλ1-separated byU : then by Lemma 4.3,|M[i, j ] − DU(i, j)| � 5δ (sinceλ1 �
6δ).

(b) Otherwise:

DU(i, j) − λ2 � M[i, j ] � DU(i, j) + 5δ.

The first inequality follows from the definition ofBi . For the second inequality, note that there
exists a pointk such thatDU(i, j) = max{DU(i, k), DU(j, k)}, sincei, j ∈ U . Therefore, since
i andj are not violating andi, j ∈ �3δ

U , we get
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M[i, j ]�max{M[i, k], M[j, k]} + 2δ

�max{D[i, k] + 3δ, D[j, k] + 3δ} + 2δ

=DU(i, j) + 5δ .

3. For all other pairs, the difference betweenM andDU might be larger, but we can bound their number
as follows:
(a) The number of pairsi, j such thati ∈ �3δ

U is at mostε4n2.
(b) The number of violating pairs with respect toU is at mostε4n2.
(c) The number of pairsi /∈ A andj ∈ Bi is at mostε4n2 (since for eachi ∈ A, |Bi | � ε

4n).
(d) The number of pairsi, j such thati ∈ A, is at mostε4n2. �

Our algorithm only checks for inconsistent points and violating pairs of points. Therefore, we can not
apply the above lemma as it is, but have to bound the number of incorrect points. In order to do so, we
introduce the notion ofuseful points. As we shall see, the two types of points are related, and we are able
to bound the number of incorrect points by bounding the number of useful points.

Definition 4.8 (Useful points). We say that a pointi /∈ U is (α, λ)-useful with respect toU , if one of the
following conditions holds:
1. There are at least(αn)2 pairs of points that are violating with respect toU ∪ {i}.
2. Let

Ci
def= {j : ∀k ∈ U, M[j, i] < M[j, k] }

be the set of points that are closer toi than to any point inU . Then there are at least(αn)2 pairs of
pointsj, 
 ∈ Ci , such thatM[j, 
] � max{M[j, i], M[
, i]} − λ, while for everyk ∈ U , M[j, 
] <

max{M[j, k], M[
, k]} − λ.

Intuitively, a useful point is such that its addition toU either causes many violations, or actually brings
DU closer toM on many pairs of points (and so makes fewer points incorrect with respect toDU ).

Lemma 4.7. There exist constantsc1, . . . , c7 and d1, . . . , d4 such thatc6, c7 � 1
4 and d3 � 6δ, for

which the following holds. LetU be such that there exists an ultrametric treeTU that isδ-consistent with
M and furthermore:
• The number of(c1ε, d1δ)-effective separators with respect toU is at mostc2εn;
• The number of points that are not3δ-consistent with respect toU is at mostc3εn.

If the number of(c4ε, d2δ)-useful points with respect toU is less thanc5εn, then the number of
(c6ε, d3δ, d4δ)-incorrect points with respectDU is at mostc7εn.

Proof. Assume, contrary to the claim, that the number of(c6ε, d3δ, d4δ)-incorrect points with respect
to DU is greater thanc7εn. We show that the number of(c4ε, d2δ)-useful points with respect toU is at
leastc5εn, in contradiction to the premise of the lemma. For ease of the presentation, we sometimes drop
the parameters, and simply refer to incorrect and useful points. Along the way we introduce constraints
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on the relations between the different constantsc1, . . . , c7 andd1, . . . , d4. At the end of the proof we
verify that all these constraints can be satisfied simultaneously.

Let A denote the set of incorrect points that are 3δ-consistent withTU . The number of such points is
at least(c7 − c3)εn � c5εn. For each pointi ∈ A, we show that eitheri is useful, or there exist at least
c5εn other useful points (that are close toi).

We start by making several observations concerning eachi ∈ A. Consider the setBi = B
d3δ,d4δ
i as

defined in Eq. (2). For eachj ∈ Bi , consider the pointk ∈ U that is closest toj , so thatDU(j, k) =
M[j, k]. Sincei is 3δ-consistent withTU , we also have that|DU(i, k) − M[i, k]| � 3δ. By definition of
DU , DU(i, j) = max{DU(i, k), DU(j, k)} and so

|DU(i, j) − max{M[j, k], M[i, k]}| � 3δ .

Now, by definition ofBi , we have that|M[i, k] − M[j, k]| � d3δ and so

|DU(i, j) − M[j, k]| � (d3 + 3)δ .

Since (again by definition ofBi), M[i, j ] < DU(i, j) − d4δ, we obtain that for everyj ∈ Bi andk ∈ U ,

M[i, j ] < M[j, k] − (d4 − d3 − 3)δ . (3)

Furthermore, since for everyj ∈ Bi , there is nod3δ-separator fori andj in U , then for every pairj, 
 ∈
Bi there is no 2d3δ-separator inU . Let us apply Lemma 4.4 using the fact that the number of(c1ε, d1δ)-
effective separators is at mostc2εn. If we setd1 = 2d3, we obtain that there exists a star-shaped treeTBi

,
such that for all but at most(6c1ε + 2c2ε) · n · |Bi | of the pairs of pointsj, 
 ∈ Bi ,

|M[j, 
] − 2h(TBi
)| � 3d3δ,

whereh(TBi
) is the height ofTBi

. We say that such pairs arerepresentativewith respect toBi . Since
|Bi | � c6εn, if (6c1 + 2c2) < c6/32, then the number of non-representative pairs is at most1

32|Bi |2. Let

B̂i
def= {j ∈ Bi : M[i, j ] < 2h(TBi

) − 3d3δ − 2δ} .

Roughly speaking,̂Bi is the subset of points inBi that are significantly closer toi than to each other. We
consider two cases.
1. |B̂i | � 1

2|Bi |: Then for every representative pairj, 
 ∈ B̂i ,

M[j, 
]�2h(TBi
) − 3d3δ > max{M[j, i], M[
, i]} + 2δ.

That is,j and
 are a violating pair with respect toU ∪ {i}. The number of such pairs is at least

|B̂i |2 − 1

32
|Bi |2 �

1

4
|Bi |2 − 1

32
|Bi |2 >

1

5
|Bi |2 �

1

5
(c6εn)2 � (c4εn)2,

where the last inequality is correct ifc2
4 � c2

6/5. Thus, the pointi is useful (of the first type).

2. |B̂i | < 1
2|Bi |: Let B̃i

def= Bi \ B̂i , so that|B̃i | > 1
2|Bi |.

In this case, for every representative pairj, 
 ∈ B̃i ,

M[j, 
]�2h(TBi
) + 3d3δ � min{M[j, i], M[
, i]} + (6d3 + 2)δ.
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By Eq. (3), for every such pair, and for everyk ∈ U ,

M[j, 
] � min{M[j, k], M[
, k]} + (7d3 + 5 − d4)δ. (4)

Let

B̃
j
i

def= {
 ∈ B̃i : j and
 are a representative pair}.
We say that a pointj ∈ B̃i is agood partnerwith respect toB̃i , if |B̃j

i | > 3
4|B̃i |. By a simple counting

argument (using the fact that the number of non-representative pairs is at most1
32|Bi |2), we get that

the number of good partners iñBi is at least12|B̃i | � 1
4|Bi | � c5εn.

We now show that every good partnerj ∈ B̃i is useful (of the second type).
Consider any point
 ∈ B̃

j
i . By Eq. (4), for everyk ∈ U ,

M[j, 
] < M[
, k] + (7d3 + 5 − d4)δ .

Hence, ifd4 > 7d3 + 5, then for everyk ∈ U , M[j, 
] < M[
, k]. Therefore, all points
 ∈ B̃
j
i are

closer toj than to any point inU .
Furthermore, ifd4 > (7d3 + 5 + d2), then for everyk ∈ U , and every representative pair
, 
′ ∈
B̃

j
i ,

M[
, 
′] < max{M[
, k], M[
′, k]} − d2δ .

On the other hand, for every such pair (by definition of representative pairs),

M[
, 
′] � max{M[
, j ], M[
′, j ]} − 6d3δ

and so ford3 � d2/6, we have

M[
, 
′] � max{M[
, j ], M[
′, j ]} − d2δ .

The number of representative pairs inB̃
j
i is at least

|B̃j
i |2 − 1

32
|Bi |2 >

(
3

4

)2

|B̃i |2 − 1

32
|Bi |2 >

9

16
· 1

4
|Bi |2 − 1

32
|Bi |2 >

1

10
(c6εn)2 � (c4εn)2,

if c2
4 � c2

6/10. Therefore,j is a useful point (of the second type).
In order to finish the proof, we go over all constraints introduced above, and check that there exists a

consistent setting of the constants. We have the following constraints:
• c5 � c7 − c3, (2c2 + 6c1) < c6/32, c5 � c6/4, c2

4 � c2
6/10.

• d1 = 2d3, d4 > (7d3 + 5 + d2), d2 � 6d3.
We set:

• c6, c7 = 2−2, c5, c4, c3 = 2−4, c2 = 2−7, c1 = 2−10.
• d3 = 6, d1 = 12, d2 = 36, d4 = 84. �

Proof of Theorem 5. The proof of the theorem follows similar lines to those of the proof of Theorem 3.
If M is aδ-ultrametric, then by Lemma 4.1 and Lemma 4.2 it always passes the test. We thus turn to the
second part of the theorem.
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As in the proof of Theorem 3, we viewU as being selected in phases. Here too there arep =
�(1/ε2) phases, and in each phase,s′ = �(1/ε) points are selected. In what follows, all constants
are as in Lemma 4.7. Similarly to what was argued in the proof of Theorem 3, as long as the
number of(c1ε, d1δ)-effective separators is at leastc2εn, or the number of(c4ε, d2δ)-useful points
is at leastc5εn, either an effective separator or a useful point will be selected in the next phase
with sufficiently high constant probability. If a useful point that creates at least(c4εn)2 violations
is selected (that is, of the first type of useful points), then we are done, as Algorithm 2 will reject
with high probability in Step 5 of the algorithm. Otherwise, by the definitions of effective separa-
tors and of useful points, after at most 1/(c1ε)

2 + 1/(c4ε)
2 = �(1/ε2) phases in which either an

effective separator or a useful point (of the second type) is selected, the number of effective sep-
arators must be less thanc2εn, and the number of useful points (of the second type) must be less
than c5εn.

If there is no treeTU that isδ-consistent withM onU , then Algorithm 2 will reject in Step 2. If such
a tree is found in Step 2 but the number of points that are not 3δ-consistent withTU is at leastc3εn, then
with high probability the algorithm will reject in Step 4. Otherwise, we can apply Lemma 4.7 and obtain
that the number of(c6ε, d3δ, d4δ)-incorrect points with respectDU is at mostc7εn. Hence, ifM is ε-far
from being ad4δ-ultrametric, then there must be�((εn)2) violating pairs, or else (sincec6, c7 � 1

4 and
d3 � 6δ), we could apply Lemma 4.6 and obtain a contradiction.�

4.3. Constructing almost consistent approximate ultrametric trees

Suppose thatM is a δ-ultrametric. Then our analysis can be used to imply that with high proba-
bility we can construct in time O(n · poly(1/ε)) a (c · δ)-ultrametric treeT ′ that disagrees withM on
at most anε-fraction of its entries. The details are very similar to those presented for ultrametrics in
Section 3.4.

5. Testing tree metrics

In this section, we describe how to modify the testing algorithm for ultrametrics so that it can be
applied to (general) tree metrics. We start with a definition of tree metrics.

Definition 5.1 (Tree metrics). We say that ann × n matrix M is a tree metric (or anadditive metric), if
there exists a treeT with positive weights on the edges, for which the following holds:
1. There exists a mappingφ from [n] into the nodes ofT .
2. All internal nodes in the tree, to which noi ∈ [n] is mapped, have degree greater than 2.
3. For everyi, j ∈ [n], T (φ(i), φ(j)) = M[i, j ].

For an illustration, see Fig. 8.
In the above definition we allowφ to be many-to-one, so thatM may actually be a pseudo-metric.

However, with a slight abuse of terminology we refer toM as being a tree metric. In Section 7 we show
that testing the stricter property, in which the embeddingφ must be one-to-one, requires�(

√
n) queries

(for a constantε).
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Fig. 8. A tree that is consistent with the accompanying matrix (which is symmetric and 0 on the diagonal). Note that point4 is
mapped to an internal node in the tree.

We now show:

Theorem 7. There exists an algorithm for testing whether a matrixM is a tree metric.
The algorithm takes a sample of size�(1/ε3), and has query complexity and running time that are at

most quadratic in the sample size.

Constructing a tree metric. Similarly to the case of ultrametrics, there are efficient procedures for con-
structing a treeT that is consistent with a tree metricM. Furthermore, one of the known procedures [23]
is iterative. For our purposes, the important aspect of this procedure is that when adding a pointj to a
treeT , there is a unique choice for the point of departure ofj from T , and the distance ofj to this point
is also uniquely determined.

Consistent tree and point. The definition of a consistent tree (Definition 3.3) and of consistent points
(Definition 3.4), are adapted to this case in a straightforward manner, and�U denotes the set of points
consistent with a treeTU .

The skeleton partition. Let U ⊂ [n] be such that there exists a treeTU that is consistent withM on U .
Here we partition the points in�U according to their points of departure from the skeletonTU . Namely,
two points in�U belong to the same class in the partitionPU if and only if they have the same point of
departure fromTU . Note that as opposed to the ultrametric case, two points in the same class may have
different distances to points inU according toM. As in the ultrametric case, ifM is in fact an additive
metric, then classes correspond to subtrees with respect toTU .

The skeleton distance. We define the skeleton distanceDU similarly to the way it was defined for ul-
trametrics (Definition 3.6). In particular, for each pointi ∈ �U , let dU(i) be the distance betweeni and
its point of departure fromTU . For all inconsistent points we may select an arbitrary point of departure
and an arbitrary distance to this point. For completeness, for eachi ∈ U , i itself is defined as its point of
departure fromTU , anddU(i) = 0. Then for everyi, j ∈ [n], define:

DU(i, j) = dU(i) + dU(j) + TU(pi, pj )

wherepi andpj are the points of departure ofi andj respectively, andTU(pi, pj ) is their distance in
the treeTU . (Note that we slightly abuse notation, sincepi andpj may not exist as nodes in the treeTU ).
For an illustration, see Fig. 9.

Hence, here too ifM is a tree metric, then for every pair of pointsi, j ∈ �U that belong to different
classes inPU , M[i, j ] = DU(i, j), and for every pairi, j that belong to the same class,M[i, j ] �
DU(i, j).
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Fig. 9. An illustration explaining the distanceDU(·, ·). Here dU (i) = 2, dU (j) = 4, anddU (k) = 3. The distances be-
tween the three points of departure are:TU (pi, pj ) = TU (pi, pk) = 2 + 3 = 5, andTU (pj , pk) = 0. HenceDU(i, j) = 11,
DU(i, k) = 10 andDU(j, k) = 7.

Violating pairs. Violating pairs are defined the same as in the ultrametric case (Definition 3.7).

The testing algorithm.Testing general tree metrics is essentially the same as testing ultrametrics. Here
too the algorithm selects a uniform sampleU of �(1/ε3) points, and tries to construct a treeTU that is
consistent withM on U . It then selects an additional sample of�(1/ε) pairs of points, and checks for
inconsistent points and violating pairs. The required modifications in the analysis are provided below,
and we start with the definition of separators.

Separators.Separated and non-separated pairs of points are defined as in the ultrametric case (Definition
3.8). The definition ofseparatorsis modified as follows.

Definition 5.2 (Separators). Let U be such that there exists a treeTU that is consistent withM on U .
We say that a pointk ∈ �U is aseparator with respect toU for a non-separated pair of pointsi, j ∈ �U ,
if either one of the following holds:
1. Bothi andj are consistent with�U∪{k} and they are separated with respect toU ∪ {k}.
2. Eitheri or j is inconsistent with�U∪{k}.

The definition of effective separators (Definition 3.10), remains as is (given the above definition of
separators).

The main difference in the analysis of the algorithm is in the proof of a variant of Lemma 3.2 presented
below.

Lemma 5.1. Let C ⊆ [n] \ U be a class inPU, and letpC be the common point of departure of the
points inC from TU . If there are at mostβn points inC that areα-effective separators with respect to
U, then there exists a subtreeTC such that:
1. The root ofTC is the pointpC .
2. For at most(3β + 4α)n · |C| of the pairsi, j ∈ C, we haveTC(i, j) /= M[i, j ].
3. For eachi ∈ C, we haveTC(i, pC) = dU(i).
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Fig. 10. An illustration explaining the auxiliary matrixQ.

Proof. For each pair of pointsi, j ∈ C, we say thati andj arecompatible(with respect toU ) if j

is consistent withTU∪{i} (which is equivalent toi being consistent withTU∪{j}). Otherwise, they are
incompatible. LetQ be a|C| × |C| matrix that is defined as follows. For every compatible pairi, j ∈ C,

Q[i, j ] def= DU(i, j) − M[i, j ]
2

= dU(i) + dU(j) − M[i, j ]
2

. (5)

For any incompatible pair,Q[i, j ] = 0. What doesQ[i, j ] mean? Ifi, j ∈ C are compatible, then
Q[i, j ] is simply the distance betweenpC and the point of departure ofj fromTU∪{i}. For an illustration,
see Fig. 10.

Properties ofQ. Observe that ifi andj are compatible, then

0 � Q[i, j ] � min{dU(i), dU (j)} .

It follows from the definition of separators that ifi ∈ C is not a separator (with respect toU ) for
pointsj, 
 ∈ C, then bothj and
 are compatible withi, andQ[i, j ] = Q[i, 
].

Hence, if i is not anα-effective separator with respect toU , then the number of pairs of entries
Q[i, j ] /= Q[i, 
] is at most(αn)2. Similarly to what we showed in the proof of Lemma 3.2, it follows
that all but at mostαn of the entries in theith row (column) inQ have the same valueri .

We can now appeal to Claim 3.3 and obtain that all but at most(2β + 3α) · n · |C| of the entries inQ
have the same valuet . For eachi ∈ C, letdi = dU(i) − t . By Eq. (5), for every compatible pairi, j ∈ C:

M[i, j ] = dU(i) + dU(j) − 2Q[i, j ].
Thus, ifi, j are compatible andQ[i, j ] = t , thenM[i, j ] = di + dj . Therefore, for all but at most(2β +
3α) · n · |C| of the compatible pairsi, j ∈ C, we haveM[i, j ] = di + dj .

DefiningTC . Intuitively, we would now like to simply setTC(i, j) = di + dj . In this case the subtreeTC

will be a star, such that the center of the star is connected by an edge of lengtht to the pointpC . Each
point i ∈ C is a leaf connected by an edge of lengthdi to the center of the star.

However, the difficulty with this definition is that some of thedis may be negative.
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Fig. 11. The treeTC and its relation to the skeletonTU .

To address this issue, we do the following. For an illustration, see Fig. 11.
1. For each pairi, j ∈ C such thatdi � 0 anddj � 0: setTC(i, j) = di + dj .
2. If eitherdi < 0 ordj < 0: setTC(i, j) = dU(i) + dU(j).
The subtreeTC corresponds to a tree that consists of two stars with an edge of lengtht connecting the
centers of these stars. Everyi for whichdi � 0 is a leaf of the first star and is connected to the center of
this star with an edge of lengthdi . (If di = 0 theni resides at the center of the star.) Everyi for which
di < 0 is a leaf of the second star, and is connected to the center of this star by an edge of lengthdU(i).
The center of the second star is the pointpC .

Bounding the differences betweenM andTC . We now count the pairs on whichM andTC differ:
1. Compatible pairsi, j for which di � 0 anddj � 0: In this case, for compatible pairsi, j for which

Q[i, j ] = t , we haveTC(i, j) = di + dj = M[i, j ]. As discussed above, the number of compatible
pairsi, j such thatQ[i, j ] /= t is at most(2β + 3α) · n · |C|. Thus, in this case, for all but at most
(2β + 3α) · n · |C| of the compatible pairsi, j ∈ C, TC(i, j) = M[i, j ].

2. Compatible pairsi, j for which di < 0: Recall that for each compatible pairi, j ∈ C, Q[i, j ] �
min{dU(i), dU (j)}. Thus, if di = dU(i) − t < 0, thendU(i) < t , and soQ[i, j ] < t . In particular
Q[i, j ] /= t , and so we already counted these pairs in Item 1.

3. Incompatible pairsi, j : We show that the number of incompatible pairs is at most(β + α) · n · |C|.
By definition of separators, for everyi, j, 
 ∈ C, if either j or 
 is incompatible withi, theni is a
separator forj, 
. Hence, for eachi that is not anα-effective separator, the number of pointsj ∈ C

that are not compatible withi is at mostαn. To see why this is true observe first that if|C| � αn then
the claim holds trivially. If|C| > αn and there are more thanαn pointsj ∈ C that are not compatible
with i, theni would separate more thanαn · |C − 1| � (αn)2 pairs of points (in contradiction toi not
being anα-effective separator). Assuming that the number ofα-effective separators is at mostβn, we
get that the total number of incompatible pairs is at mostβn · |C| + αn · |C|, as claimed.
Hence the total number of pairs on whichM andTC differ is at most(3β + 4α) · n · |C|. �

Correctness of the algorithm. The remainder of the proof of correctness of the algorithm proceeds
essentially as the proof of Theorem 3 (where here we setα = ε

16 andβ = ε
12). Here too, with probability

at least 5/6 over the choice ofU , either there is no treeTU that is consistent withM on U , or such a
tree exists but the number ofα-effective separators with respect toU is at mostβn. We can show that
in the latter case, ifM is ε-far from being a tree metric, then there are either more thanε

4n points that
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are inconsistent withU , or more thanε4n2 violating pairs (thus causing the algorithm to reject with high
probability).

Assuming in contradiction that there are at mostε
4n points that are inconsistent withU , and at most

ε
4n2 violating pairs, we can show that there exists a tree metricM ′ that disagrees withM on at mostεn2

entries. The matrixM ′ is defined the same as in the proof of Theorem 3 with the appropriate modified
definition ofDU . Here though, for non-separated pairs of pointsi, j , we do not need to take the minimum
betweenDU(i, j) and TC(i, j), sinceTC was already defined so thatTC(i, j) � DU(i, j) for every
i, j ∈ C.

Note that here too the “natural” algorithm that takes a sample of�(1/ε3) points and checks whether it
is possible to construct a tree that is consistent with these points, is a testing algorithm for tree metrics. In
addition, very similarly to what was shown in Section 3.4, given access to a tree metricM, it is possible
to construct a treeT that is consistent withM on all but at most anε-fraction of these entries. This can
be done with high probability and in time linear inn and polynomial in 1/ε.

6. Testing Euclidean metrics

For any two pointsx, y ∈ �d , we denote by dist(x, y) the Euclidean distance betweenx andy. That

is, if x = (x1, . . . , xd) andy = (y1, . . . , yd), then dist(x, y)
def=

√∑d
i=1(xi − yi)2.

An embeddingof a setU ⊆ [n] in d-dimensional Euclidean space is a mappingφ : U → �d . The
dimensionof an embeddingφ, denoted dim(φ), is the dimension of the subspace spanned by the set of
points{φ(i)}i∈U .

Definition 6.1 (Euclidean metrics). Let M be ann × n matrix. If there is an embeddingφ : [n] →
�d such that dist(φ(i), φ(j)) = M[i, j ] for every i, j ∈ [n], then we say thatM is a d-dimensional
Euclidean metric.

In the above definition we allowφ to be many-to-one, so thatM may actually be a pseudo-metric.
However, with a slight abuse of terminology, we refer toM as being a Euclidean metric. In this section
we describe an algorithm for testing whether a matrixM is ad-dimensional Euclidean metric as defined
above, for any given integerd. In Section 7 we show that testing the stricter property, in which the
embeddingφ must be one-to-one, requires�(

√
n) queries (for constantε).

The basic underlying idea of the algorithm has appeared in various forms in our other algorithms as
well. The idea is that a small sample from[n] induces certain constraints that must be satisfied in case
the tested matrix has the desired property.

Definition 6.2 (Consistent embedding). For a given matrixM and a subsetU ⊆ [n], we say that an
embeddingφ : U → �d is consistent with M on U , if dist(φ(i), φ(j)) = M[i, j ] for every i, j ∈ U .
WhenU = [n] we simply say that the embedding is consistent withM.
If U ⊆ [n] is such that there exists an embeddingφ : U → �d that isconsistent with M onU , then we
say thatU is d-embedable with respect toM.

Our testing algorithm is based on the following fact (c.f. [4, Ch. IV]).
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Fact 2 (Unique embeddings). LetM be ann × n matrix and letU ⊂ [n] be ad-embedable subset with
respect toM. For any setS ⊆ [n], if there exists an embeddingφ′ : U ∪ S → �d such that:
1. φ′ is an extension ofφ. That is,φ′(i) = φ(i) for everyi ∈ U ;
2. φ′ is consistent withM onU ∪ S;
3. dim(φ′) = dim(φ);
then the embeddingφ′ is unique. Furthermore, for everyj ∈ S, φ′(j) can be computed using onlyφ and
the valuesM[i, j ] for everyi ∈ U .

The above fact implies that ifM is ad-dimensional Euclidean metric, andφ : U → �d has dimension
d (that is, the points{φ(i)}i∈U are in general position), then there exists a unique embeddingφ′ : [n] →
�d that is an extension ofφ and is consistent withM.

Given a matrixM and a subsetU that isd-embedable with respect toM, there is a straightforward
iterative procedure for constructing an embeddingφ : U → �d that is consistent withM on U . The
first pointi1 ∈ U is mapped to(0, . . . , 0), the second pointi2 is mapped to(M[i1, i2], 0, . . . , 0), and in
general, each new point is mapped to the lowest dimensional subspace possible. This procedure can be
applied to any matrixM and subsetU , but will of course fail if the selectedU is notd-embedable with
respect toM.

In the above description we have ignored the issue of precision. As we shall see later (in Corollary
9), it will suffice to just solve the corresponding decision problem (i.e.: Does there exist such an em-
bedding) which can be done in polynomial time. However, it will be instructive to think of the above
(infinite-precision) procedure for sake of the presentation.

We next introduce two useful definitions. In both definitions,M is ann × n matrix.

Definition 6.3. [Consistent and strongly consistent points] LetU ⊂ [n] and letφ : U → �d be an
embedding ofU that is consistent withM, and is derived by the iterative procedure mentioned
above. We say that a pointj /∈ U is consistent with U if there exists an extensionφ′ : U ∪ {j} →
�d of φ that is consistent withM. We say thatj is strongly consistent with U if dim(φ′) =
dim(φ).

We denote the set of points in[n]\U that are consistent withU by �U , and those that are strongly
consistent by�U .

If M is a d-dimensional Euclidean metric, then all points are consistent withU , for every subset
U . Thus, if the procedure for extendingφ to some pointj fails, we have evidence thatM is not ad-
dimensional Euclidean metric. Note that ifj is strongly consistent withU then it is necessarily consistent
with U . The implication in the other direction only holds when the dimension ofφ is d, and in this case
�U = �U .

Definition 6.4 (Violating pairs). Let U ⊂ [n] bed-embedable with respect toM, and letφ : U → �d be
the embedding obtained by applying the iterative procedure mentioned above. For each pointj ∈ �U ,
let φ′(j) be as determined by the unique extension ofφ to S = U ∪ {j}. We say that a pair of points
i, j ∈ �U are aviolating pair with respect toU if dist(φ′(i), φ′(j)) /= M[i, j ].

By Fact 2, ifM is ad-dimensional Euclidean metric, then there are no violating pairs with respect to
any subsetU . Observe that the definition of violating pairs is applicable only to points that are strongly
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consistent withU . If a point j is consistent withU but not strongly consistent, then the extensionφ′ is
not unique. Once again, if dim(φ) = d, thenφ′ is uniquely defined for all consistent points, and so in
this case the above definition is applicable to all pairs of points in�U .

Lemma 6.1. LetU ⊂ [n] be a subset for which there exists an embeddingφ : U → �d that is consistent
with M on U. If M is ε-far from being ad-dimensional Euclidean metric, then there are either more
than ε

2n points that are not strongly consistent with respect toU or more thanε
2n2 violating pairs(of

strongly consistent points).

Remark: Recall that if dim(φ) = d then we may exchangenot strongly consistentin the above lemma,
with not consistent.

Proof. Assume contrary to the claim that there are at mostε
2n points that are not strongly consistent

with respect toU , and at mostε2n2 violating pairs. We next show that there exists ad-dimensional
Euclidean metricM ′ that differs fromM on at mostεn2 entries. But this contradicts our assumption
onM.

For each pairi, j ∈ [n], we setM ′[i, j ] = dist(φ′(i), φ′(j)), whereφ′ : [n] → �d is defined as
follows:
• For eachi ∈ U , let φ′(i) = φ(i).
• For eachi ∈ �U , let φ′(i) be as determined by the unique extension ofφ to S = U ∪ {j}.
• For each pointi ∈ [n] \ (U ∪ �U), we setφ′(i) arbitrary.
Thus,M ′ andM differ on at mostε2n2 violating pairs of points (both in�U ), and on at mostε2n2 pairs
of pointsi, j such that eitheri or j are not strongly consistent withU . �

Suppose that the algorithm was provided with a subsetU for which φ : U → �d is consistent with
M and has dimensiond. By Lemma 6.1 and the remark following it, the algorithm could test whetherM

is ad-dimensional Euclidean metric, orε-far from being such a metric, as follows: The algorithm would
uniformly sample 4/ε pairs of points and check that all points selected are consistent withU , and that
all pairs of points are non-violating.

Clearly, if M is ad-dimensional Euclidean metric, then the algorithm always accepts. On the other
hand, by Lemma 6.1, ifM is ε-far from being ad-dimensional Euclidean metric, then the probabili-
ty that the sample contains no inconsistent point and no violating pair is at most(1 − ε

2)4/ε < e−2 <

1/3.
Since the algorithm is not provided with such a subsetU , it tries to construct it in and most

6d iterations. The algorithm starts withU = {1} and φ(1) = (0, . . . , 0), and in each iteration it
selects a new sample of points. If the sample contains a point that is consistent withU but is not
strongly consistent, it adds the point toU and extendsφ to be defined on it (so that the dimen-
sion of φ increases). Afterd such iterations in which the dimension ofφ increases, the algorithm
has a subsetU and an embeddingφ : U → �d with dimensiond as desired, and it can proceed
as described above. (If at any iteration an inconsistent point is selected then the algorithm can cle-
arly reject). If at some iteration all points selected are strongly consistent so that the dimension of
φ does not increase, then the algorithm simply checks that all pairs are non-violating with respect
to U .
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Algorithm 3 (Testing algorithm ford-dimensional Euclidean metrics).
1. LetU = {1}, andφ(1) = (0, . . . , 0) ∈ �d . (Thus,φ initially has dimension 0).
2. Fori = 1 to 6d, do:

(a) Uniformly and independently selects = �(1/ε) pairs of points.
(b) If any of the points selected is not consistent withU , thenreject.
(c) Otherwise (all points are consistent), if there exists a pointj in the sample that is not

strongly consistent withU : then addj to U and extendφ to be defined onU ∪ {j}.
(d) Otherwise (all points are strongly consistent): if any of the pairs of points is violating

with respect toU , thenreject.
3. If no step caused rejection, thenaccept.

Note that when the algorithm rejects it providesevidencethat M is not ad-dimensional Euclidean
metric (in the form of a subset of points for which there is nod-dimensional embedding that is consistent
with M).

Theorem 8. Algorithm 3 is a testing algorithm for Euclidean metrics.

Proof. If M is a d-dimensional Euclidean metric then it is clearly accepted by the algorithm. Thus,
assume thatM is ε-far from being ad-dimensional Euclidean metric. Consider any fixed iteration of the
algorithm. By Lemma 6.1, there must either be more thanε

2n points in[n] that are not strongly consistent
with U , or there must be more thanε2n2 violating pairs of strongly consistent points. Similarly to what
was shown for ultrametrics and tree metrics, and using the fact that there can be at mostd iterations
in which non-strongly consistent points are added toU , we can obtain a bound of at least 2/3 on the
probability that the algorithm rejects.�

As a direct corollary to Theorem 8 we get.

Corollary 9. Let the“natural” testing algorithm be the algorithm that simply selects a uniform sample
of �(d/ε) points from[n] and accepts if and only if the sample selected isd-embedable with respect to
M. Then the natural algorithm is a testing algorithm ford-dimensional Euclidean metrics.

Deciding whether the sampleS is d-embedable with respect toM can be done in polynomial time as
follows. For our convenience, we renumber the points inS so thatS = {1, . . . , m}. We are thus asking
whether there existd-dimensional vectorsv1, . . . , vm such that dist(vi, vj ) = M[i, j ] for everyi, j ∈ S.
Since we may assume without loss of generality, thatv1 is the all-0 vector, the problem can be rephrased
as deciding whether there existm − 1 vectors, such that the inner product betweenvi andvj equals
Q[i, j ], where

Q[i, j ] def= 1

2
(M2[i, 1] + M2[j, 1] − M2[i, j ]).

Thus our problem reduces to deciding whether the matrixQ is positive semi-definite and has rank at
mostd. The first task can be performed by computing the characteristic polynomial of the matrix, and
approximating its roots to check whether they are all positive. The second task is done by Gaussian
elimination.
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7. Lower bounds

We say that ann × n matrix M is a proper d-dimensional Euclidean metric, if there exists an em-
beddingφ : [n] → �d that is consistent withM and is one-to-one. We defineproper tree metrics in an
analogous manner. In this section we show the following lower bound.

Theorem 10. Any algorithm for testing properd-dimensional Euclidean metrics requires�(
√

n) que-
ries. Similarly, any algorithm for testing proper tree metrics requires�(

√
n) queries. These bounds hold

for testing algorithms that are allowed two-sided error probability.

7.1. The lower bound idea

Before we give the formal argument for our lower bounds, we describe the basic idea which is com-
mon to both bounds. Consider a matrixM that is defined as follows. Fori = 1, . . . , n

2 andj = 1, . . . , n
2,

let:

M[2i − 1, 2j − 1] = M[2i − 1, 2j ] = M[2i, 2j − 1] = M[2i, 2j ] = |j − i| .

Thus, in the Euclidean case, the embeddingφ : [n] → � that maps each pair of points{2i − 1, 2i} to
the integeri ∈ � is consistent withM. For an illustration, see Fig. 12. Similarly, in the tree metric case,
the set[n] can be mapped consistently withM to the treeT which is a path ofn2 nodes{1, . . . , n

2}, where
nodei is connected to nodei + 1 by an edge of weight 1, and points 2i − 1, 2i ∈ [n] are both mapped
to nodei. In other words,M is a 1-dimensional Euclidean metric and also a tree metric that corresponds
to a path.

Clearly,M is not a proper Euclidean metric. We next show thatM is actually�(1)-far from being
a properd-dimensional Euclidean metric, for anyd. It can similarly be shown thatM is �(1)-far from
being a proper tree metric.

Consider any 3 disjoint pairs of points,{2i − 1, 2i}, {2j − 1, 2j}, and{2k − 1, 2k}. Assume without
loss of generality thati < j < k. Then for anyx ∈ {2i − 1, 2i}, y ∈ {2j − 1, 2j} andz ∈ {2k − 1, 2k},

M[x, z] = M[x, y] + M[y, z].
Consider any one-to-one embeddingφ that maps the 6 points{2i − 1, 2i, 2j − 1, 2j, 2k − 1, 2k} to

�d (for anyd). Then it is easy to verify, that necessarily for somea, b ∈ {i, j, k}, a /= b, and for some
x ∈ {2a − 1, 2a} andy ∈ {2b − 1, 2b},

dist(φ(x), φ(y)) /= M[x, y]. (6)

Now consider an auxiliary undirected graphGφ over the vertex set{1, . . . , n
2}, such that there is an

edge between verticesa andb if an only if the inequality in Eq. 6 holds for somex ∈ {2a − 1, 2a} and
y ∈ {2b − 1, 2b}. Then we know that inGφ , for every three vertices, at least two are connected by an

Fig. 12. An embedding consistent with the matrixM. A pair of points is mapped to each integer on the line in the range
{1, . . . , n

2}.
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edge. That is, there is no independent set of size 3. Thus, by Turán’s Theorem [22], the number of edges
in Gφ is �(n2). By definition ofGφ this means that the distance that is induced byφ between pairs of
points in[n] disagrees withM on �(n2) entries. Since this holds for any one-to-one embeddingφ, we
get thatM is �(1)-far from being a proper Euclidean metric.

Finally, we give a lower bound on the number of queries required by the “natural” testing algorithm.
While this does not imply a lower bound for every testing algorithm, it provides intuition to the difficulty
of the problem. The natural algorithm takes a uniform sample of points from[n] and tries to construct a
one-to-one embedding of the points in�d . If it succeeds, then it accepts, and otherwise it rejects. Note
that as long as the algorithm does not select both 2i − 1 and 2i for some 1� i � n

2, then it is possible
to embed the sample in�. By the well-knownBirthday Paradox, if the number of points selected is
sufficiently smaller than

√
n, then with high probability no such pair 2i − 1 and 2i is selected. A similar

argument holds for the natural testing algorithm for proper tree metrics.

7.2. Generalizing the lower bound for Euclidean metrics

In order to generalize the lower bounds to any testing algorithm, we do the following. We describe
two families of matrices, such that in one family all matrices are proper Euclidean metrics, while in the
other family all matrices are�(1)-far from being proper Euclidean matrices. However, it is not possible
to distinguish with sufficient success probability between a matrix selected uniformly in the first family,
and a matrix selected uniformly in the second family, using less thanc

√
n queries, for some constant

c < 1. Since our lower bound argument is very similar to other known lower bound proofs (cf. [14,2]),
we only provide a sketch.

The two families of matrices are determined by actual embeddings of[n] into �d . The first family
consists of all one-to-one mappings from[n] to two parallel lines, each containingn/2 equally spaced
positions. We may also think of the second family as a mapping to two parallel lines with equally spaced
positions. Here though the range of each mapping in the family consists of only half the positions: For
each position, either two points are mapped to this position, or two points are mapped to the “parallel
position” (where the two cases have equal probability). For an illustration, see Fig. 13.

Fig. 13. Illustrations for the lower bound constructions for Euclidean metrics. On the top is an illustration for the first family
of matrices (which are all proper Euclidean metrics), and on the bottom is an illustration for the second family, where every
matrix is far from being a proper Euclidean metric.
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By definition, all matrices in the first family are proper 2-dimensional Euclidean metrics. Note that
for any matrix in the second family, for one of the lines, there are at leastn/4 pairs of points mapped
to it. Thus, we can prove, as we did previously, that every matrix in the second family is�(1)-far from
being a Euclidean metric. (The fact that the positions to which the pairs are mapped to, are not equally
spaced, is immaterial to the proof.)

Now consider two “query answering” processes that can interact with a testing algorithm while con-
structing a random matrixM. The first process answers the algorithm’s queries while constructing a
uniformly selected matrix in the first family, and the second process does so by constructing a uniformly
matrix in the second family. This is done in the following manner. In either case the process maintains
a partial mapping of those pointsi that appeared in queries performed by the algorithm (that is, queries
concerning entriesM[i, j ]). Given a new queryM[i, j ], if i is not yet positioned (mapped), then both
processes select a position, and mapi to this position (a similar selection is done forj if it is not yet
positioned). The processes then answer the query consistently with the mapping they have. The two
processes thus differ only in the way they select a position for a new pointi.
1. The first process uniformly selects a vacant position on one of the two parallel lines, and places the

point in that position. It is easy to verify that this is equivalent to selecting a position in the following
manner: The process first selects a pair of parallel positions according to the distribution induced by
selecting a uniform vacant position. Namely, suppose that there aren1 parallel pairs of positions that
are both vacant, andn2 in which one position is vacant and one is occupied. Then with probability

2n1
2n1+n2

a pair of the first type is selected, and with probabilityn2
2n1+n2

a pair of the second type is
selected. (Among each type the selection is uniform.) If both parallel positions selected are vacant,
then the process selects one of the two with equal probability. If only one is vacant, then it places the
point in that position.

2. The second process selects a pair of parallel positions according to the same distribution. If both
positions are vacant, it too selects one of the two with equal probability. However, if one is occupied,
then it positions the new point in the same position.
Hence, as long as no pair of parallel positions is selected twice, the distribution on the position of

the new point (or points) is the same for both processes (and hence the distribution on the answer to the
queryM[i, j ] is the same). It is easy to verify that for a sufficiently small constantc < 1, if less than
c
√

n queries are performed, then the probability that a parallel pair of positions is selected twice is very
small. The lower bound follows (where the details are similar to those in [14]).

7.3. Generalizing the lower bounds for tree metrics

The lower bound argument for proper tree metrics follows the same lines as the lower bound for
Euclidean metrics, and uses a similar choice of families of matrices. We briefly describe the changes
that should be made in this case:

Here, the first family consists of matrices that are determined by a “comb-tree” (see Fig. 14), where
the points in[n] are mapped both to the “base” and to the “tip” of each “comb tooth”. In the second
family, the trees have “missing teeth” and pairs of points are mapped either to the base of a missing
tooth or to the tip of an existing tooth. The choice between the base and the tip is done with equal
probability.

The only slight technicality that arises here and did not arise in the Euclidean case, is that here some
matrices from the second family are not very far from being proper tree metrics. To see this consider an
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Fig. 14. Illustrations for the lower bound constructions for general tree metrics. On the top is an illustration for the first family
of matrices (which are all proper tree metrics), and on the bottom is an illustration for the second family, where almost every
matrix is far from being a proper tree metric.

extreme case of a comb in the second family, where all pairs of points are mapped to the tip of the comb.
In this caseM is �(1/n)-close to being a proper tree metric. Indeed, it is possible to change the distance
between every pair of pointsi, j that were mapped to the same tip, so that nowM[i, j ] = δ > 0, for
some smallδ (instead ofM[i, j ] = 0 as it was), while maintaining the distance between points that were
not mapped to the same tip. The resulting matrix in a proper tree metric. For an illustration, see Fig. 15.

However, the probability that a uniformly selected matrix in the second family will be close to a
proper tree metric is negligible. Specifically, the probability that less than a 1/3 of the pairs are mapped
to the base of the comb is exponentially small inn. Thus assume that there are more than a 1/3 of the
pairs mapped to the base of the comb. Then the same proof referred to in Section 7.1 that shows that a

Fig. 15. An illustration for the case in which a matrix from the second family (corresponding to the top figure) is close to being
a tree metric (corresponding to the bottom figure).
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path ofn/2 pairs of points is far from being a tree metric, can be used to show that if at least a 1/3 of
the pairs are mapped to the base of the comb then the resulting matrix is far from a tree metric.

Now we can define two processes as before, with the following difference. Every time that one of the
processes in the Euclidean case was supposed to place a point at a position on the top line, we place it at
the corresponding position at the tip of the comb. Every time the process had to map a point to a position
at the bottom line, we place it at the base of the comb. The rest of the argument is as in the Euclidean
case. Namely, as long as the same “tooth” of the comb is not selected twice, the distribution on the new
point (or points) is the same in both processes.
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