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Abstract

An additionalZg symmetry hidden in the fermion and Higgs sectors of the Standard Model has been found recently [Phys.
Lett. B 583 (2004) 379]. A lattice regularization of the Standard Model was constructed that possesses this symmetry. In [Yad.
Fiz. (2005)] we have reported our results on the numerical simulation of the electroweak sector of the model. In this Letter we
report our results on the numerical simulation of the f8UJ(3) ® SU(2) ® U (1)) model. The phase diagram of the model has
been investigated using static quark and lepton potentials. Various types of monopoles have been constructed. Their densities
appear to be sensitive to the phase transition lines. Differences between the realizations of the Standard Model which do or do

not possess the mentiongg symmetry, are discussed.
0 2005 Elsevier B.VOpen access under CC BY license

1. Introduction

Until recently it was thought that all the symme-
tries of the Standard Model (SM), which must be used
when dealing with its discretization, are known. How-
ever, in[1] it was shown that there exists an additional
Zs = Zo® Z3 symmetry in the fermion and Higgs sec-
tors of the SM. Itis connected to the cent&gsandZ»
of the SU(3) and U(2) subgroups. The gauge sec-

E-mail address: blg.bakker@few.vu.n(B.L.G. Bakker).
1 The emergence afg symmetry in the SM and its supersym-
metric extension was independently considered in a different con-
text in[3].
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tor of the SM (in its discretized form) was redefined

in such a way that it has the same naive continuum
limit as the original one, while keeping the mentioned

symmetry. The resulting model differs from the con-

ventional SM via its symmetry properties. Therefore

we expect, that nonperturbatively these two models
may represent different physics.

Investigation of the electroweak sector of the SM
with the additionalZg symmetry shows, that there
are indeed certain differences between this discretiza-
tion and the conventional orjg]. Namely, it has been
found that the phase transition lines corresponding to
theU (1) andSU (2) degrees of freedom join in a triple
point, forming a common line. In contrast to this, in
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the conventional model the phase transition line corre- Table 1
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sponding tBU (2) degrees of freedom has an endpoint ;i
and the transition becomes continuous in a certain re- ,—2i¢
gion of coupling constanfg]. In this Letter we report -, ,5¢
our results on the full SM (includin§U (3) degrees of ro- %0
freedom) and claim that the same phenomenon takes 4o

place here. Now th&U(3), SU(2) andU (1) degrees Zeie
of freedom are connected via their centers. This, in our

left-handed leptons
right-handed leptons

left-handed quarks
right-handed!, s, andb quarks

right-handedt, ¢, andr quarks
the Higgs scalar field

opinion, is the reason why the phase transition lines

corresponding to the phase transitions in puré€l) where we denote the fermion part of the actionSpy
andSU(2) models again join together forming a com- the pure gauge part is denoted By, and the scalar

mon line. It turns out thaBU (3) fields experience this  part of the action bysy.

common phase transition as well. In any lattice realization ofSy and Sy both these
This Letter is organized as follows. In the next sec- terms depend upon link variablésconsidered in the

tion we summarize the formulation of the SM interms representations corresponding to quarks, leptons, and

of link variables and demonstrate the emergence of anthe Higgs scalar field, respectively. Therefdieap-
additionalZg symmetry in its fermion and Higgs sec- pears in the combinations shownliable 1 Our obser-

tors. In Sectior8 we detail the model with expliciZg vation is thatall the listed combinations are invariant

symmetry on the lattice, while in Sectighwe recall under the following transformations:

the definition of the maximal center projection. The —izN
next section contains the definitions of the quantities U—Ue ’
we measure on the lattice; it is followed by Sectbn 6 — 6 + 7N,
where we show our numerical results. We end witha - _, [e@Ti/AN
summary.

®)

whereN is an arbitrary integer link variable. It repre-

sents a three-dimensional hypersurface on the dual lat-

2. Zs symmetry in the Standard M odé tice. BothSy andS; (in any realization) are invariant
under the simultaneous transformati@by This sym-

In this section we remind the reader of what we call
the additionalZg symmetry. The SM contains the fol-
lowing variables:

1. The gauge field/ = (I, U, 0), where

FreV®, UeWQ, ‘cu@, (@  loops:

realized as link variables on the lattice. w3 (C) =Tr l_[ Tlink,
2. A scalar doublet linkeC
o @) =Tr [ Uik,
Y, a=12 (2 linkeC
3. Anticommuting spinor variables, representing oy ) = 1‘[ eXp<£9|ink>~
leptons and quarks: linkeC 3
Ve Vu Vg u ¢ t Here C is an arbitrary closed contour on the lattice
e u tw.) d s b 3) (with self-intersections allowed). These Wilson loops

metry reveals the correspondence between the centers
of the U (2) andSU (3) subgroups of the gauge group.
After integrating out fermion and scalar degrees
of freedom any physical variable should depend upon
gauge-invariant quantities only. Those are the Wilson

_ are trivially invariant under the transformati¢®) with
The action has the form the field N representing alosed three-dimensional

hypersurface on the dual lattice. Therefore, the non-

§=S8g+Su+ Sy, (4) trivial part of the symmetry5) corresponds to a closed
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two-dimensional surface on the dual lattice that is the  The potential for the scalar field is considered in its
boundary of the hypersurface representedvoyrhen simplest form2] in the London limit, i.e., in the limit

in terms of the gauge-invariant quantitieghe trans- of infinite bare Higgs mass. After fixing the unitary
formation(5) acquires the form: gauge we obtain:
1 _ 11 ,—i6yy
oy (C) — exp(—iénL(C, Z’)) oy 1)(€), Sy=y Z[l — Re(nye ) )] (8)
Xy
wsu2) () = exp(irL (C, X))oy (©), The following variables are (naively) considered as
2 creating a photonZ boson, andW boson, respec-
w3 (3) (C) — exp| lgﬂL(C, ) w3 (3) (C) (6) tive|y:

Here X is an arbitrary closed surface (on the dual lat- Apy = Al = [Arg lel + exy] mod 2z,

tice) andL (C, X)) is the integer linking number of this 1yl
9 —_— I’L — —_—

surface and the closed contatirFrom(6) it follows, Zoy=2y = [Arg U}U‘ 9”] mod 2z,

that the symmetry is o type. Wy = W = U2 9)

Here,u represents the directiony). After fixing the
unitary gauge the electromagneti¢l) symmetry re-

3. Themodel under investigation .
mains:

I_t is_opvious that _the pure gauge-field par_t of the Uy — g;arygy,
action in its conventional continuum formulation (or,
say, in lattice Wilson formulation) is not invariant un- % = fxy toy/2—ax/2, (10)
der (6). However, the lattice realization of the pure whereg, = diag(e’®/2, e=i%:/2). The fieldsA, Z, and
gauge field term of the action can be constructed in W transform as follows:
such a way that it also preserves the mentioned sym-
metry. For the reasons listed ] we consider it in ~ Axy = Axy + oy —ax,

the following form: Zy —> Zy
—ioy
Se=48 Z £2<1— %Tr U, cos@,,) Wy = Waye (11)
plaquette We consider our model in quenched approxima-
+(1—cos?,) tion, i.e., we neglect the effect of virtual fermion loops.
-1 Therefore, the particular form o is not of interest
+6[1— 5 ReTrl, Tru, exp(i@,,/?))} for us at this stage.
- In order to extract physical information from the
+3l1- 1 Re TrI, exp(—2i6 /3)} VA3 fielt_js i_n a partic_ularly simple way we use the
L 3 b b so-called indirect maximal center projection (see, for
ro1 example[5,6]).
+3/1- 3 ReTrr, exp(4i9p/3)]}, @)

where the sum runs over the elementary plaquettes , +namaximal center projection
of the lattice. Each term of the action E{) corre- '
sponds to a parallel transporter along the boundary The maximal center projection makes the link ma-

of plaquettep. Thg correspon_dlng plaquette variables trix I" as close as possible to the elements of the center
constructed of lattice gauge fields are Z3 of U(3):

Up =wsu2)(dp), Z3 = {diag(e@Ti/IN (@TiON ,@ri/IN))

I, = ap),
p =03 (9p) where N € {1,0, —1}. The procedure works as fol-
0, =Argwy1)(dp). lows.
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First, make the functional These fields correspond to the last three terms of
Eq. (7). Their construction comes from the representa-
Q1= (Il + T2l + [ I33)) (12) tion of I as a product of ex2ri /3)N) andV , where
links V is theSU(3)/Z3 variable

maximal with respect to the gauge transformations
- . . Arg(V. Ar Ar 3

Iy — g;rl“xygy, thus fixing the maximal Abelian (Arg(Vay) + Arg(Vz2) + AT (V39))/

gauge. As a consequence every link matrix becomes €1-— 7/3,7/3].

almost diagonal. ThusI” = exp((27i/3)N)V. We expect, that7) sup-
Secondly, to make this matrix as close as possible pressedpiagandC . . i = 1,2, 3, while the fieldsv,

to the center 08U (3), make the phases of the diagonal /3, andu; (being considered independently of each

elements Of th|S matrix maX|ma”y C|Ose to eaCh Other. Other) are expected to be disordered. This assumption

This is done by minimizing the functional is justified by the numerical simulations.
02 = Z{[l — cos(Arg(I'y) — Arg(122))]
links 5. Quantities to be measured
+ [1— cogArg(I'11) — Arg(I33)) ]
+ [1 - cos(Arg(I%p) — Arg(I33) ]} (13) We investigated five types of monopoles. The

_ . _ monopoles, which carry information about colored
with respect to the gauge transformations. This gauge fie|ds are extracted fror@’:

condition is invariant under the central subgrotipof 1 '
UEM). Joi = Z—*d([dc’] mod 2r). (16)
In our model U(3) fields are connected with & ] ] ]
the U(1) and SU(2) fields via the center of the Here we used the notations of differential forms on

gauge group. Therefore, instead of the center vor- the lattice. For a definition of those notations see, for

tices and center monopoles we define various kinds x@mple[7]. _

of monopole-like fields. The definitions of these fields ~ Puret (1) monopoles, corresponding to the second

includes the following integer-valued link variable term in(7), are extracted frome

defined after fixing the maximal center gauge): 1

( g gauge) joo = 5="d(1d20] mod 2r). (17)
JT

Nyy =0 if (Arg(I11) + Arg(I22) + Arg(I33)) /3 The electromagnetic monopoles, corresponding to the

€l—n/3,7/3], first term in(7), are:
Nyy =1 if (Arg(I11) + Arg(I22) + Arg(I* 3
xy (Arg(I'1) + Arg(I22) + Arg(I33))/ jAzi*d([dA] mod 2r). 18)
eln/3, 7], 21
Nyy=—1 if (Arg(I'1) + Arg(I22) + Arg(I133))/3 The density of the monopoles is defined as follows:
€l—n /3. (14) _ [ Links | ink| 19
p 44 , (19)

In other wordsN =0if I"'iscloseto 1IN =1if I' is
close toe?"i/3 andN = —1 if I is close toe=27i/3,
Next, we define the following link fields

whereL is the lattice size. To understand the dynam-
ics of external charged particles, we consider the Wil-
son loops defined in the fermion representations listed

[ 27 1 above (in the table):
cl = =3 Vv +Arg UL+ éexy] mod 2r, ( )
[ 21 2 Wiept(D) = <ReTr []u e_ie"«">,
2 _ | = _ £ lept xy
Cyy = 3 Nyy 39Xy] mod 2r, o)el
[2r 4 ;
C2 = 2 Ve + éexy] mod 2r. (15)  Wixh= <Re I1 e—z'%>,
- (xy)el
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0.8
Wk D ={Re [ooU.oe 500 i L G—o left-handed quarks y=10.5
quarkd!) H ey 071 % — — % left-handed quarks y=1.5
Gy)el : a——a left-handed leptons  y=0.5
” i - - — 0 left-handed leptons y=1.5
Wcﬁ{ownquarkgl) =(Re l_[ nye_§9” , =~ 0.6 »——— right-handed leptons y=0.5
(y)el s : ¥ - - = wright-handed leptons y=1.5
S 051
R 40, L
WE quarkdD) = <Re [] roes n>. (20) % b
(xy)el ;5 ’
Here ! denotes a closed contour on the lattice. We 3 (5|
consider the following quantity constructed from the _T“;\ i
rectangular Wilson loop of size x ¢: S ook I e e
. W(a xt r
V(a) = lim —) (21) 01k
t—o00 W(a x (t + 1)) :
A linear behavior oV (a) would indicate the existence ool L Ll )
of a charge—anticharge string with nonzero tension. o 1 2 3 4 5 6 7 8
a
. Fig. 2.V (a) calculated a = 0.7. Here the potentials are extracted
6. Numerical results from Wzliuarks (left-handed quarks))/vl';ept (left-handed leptons),

: . . : dWR _ (right-handed leptons).
In our calculations we investigated lattice$ for andWep (fight-handed leptons)

L =6, L =12, andL = 16 with symmetric boundary

conditions. leptons are observed at all. In all three phases there
We summarize our qualitative results in the phase is the confinement of all external quark fields (left
diagram represented iRig. 1 The model contains  quarks, right up quarks, right down quarks).
three phases. The first one (1) is a phase, in which the  This is illustrated byFig. 2, in which we show/(a)
dynamics of external leptons is confinement-like, i.e., extracted from the Wilson loops E(RO) at two typ-
is similar to that of external charges in QCD with dy- jcal points that belong to phases jt & 0.5) and IlI
namical fermions. In the second phase (I1) the behav- (, = 1.5) of the model (the behavior of all potentials
ior of left-handed leptons is confinement-like, while  in the phase | is confinement-like). We represent here
for right-handed ones it is not. The last one (lll) is the  the potential for only one colored Wilson loop, i.e., for
Higgs phase, in which no confining forces between ¢ . - because the string tension extracted from the
other two potentials coincides with the string tension
\ extracted from the potential represented in the figure
\ within the errors. This is, of course, exactly what we
1.5~ ! * — have expected: string tensions for different types of
|
|

2.0 LI - T T L L B | 7 T

quarks are equal to each other. Thus, the potential, ex-
Phase | Phase il tracted from the colored fields, possesses linear behav-

1.0 — o NSNS i
- ‘¥ ior in all phases, indicating appearance of confinement
I 'u . of quarks.

0.5+ * 4 * = By making a linear fit to the lepton potentials at val-
L : Phase Il J uesa > 5 we found that only in the case of left-handed
ool Lol 11 HE leptons the value of the string tension is much larger

0.0 01 02 03 04 05 06 07 08 09 10 than its statistical uncertainty in phase Il. For left-
B handed leptons in the Higgs phase and right-handed

leptons in both phases, the uncertainty in the values
Fig. 1. The phase diagram of the model in tifey)-plane. of the string tension turns out to be larger than about
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0.5

0.1
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| PRI Rt =P B

0.50 0.55 0.60
p

ool Ly L.
840 0.45 0.65

Fig. 3. The monopole densities (constructed of the link fieldg6,
andc?l) versusg at fixedy = 0.5.
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colored fields feel the phase transition, which are due,
according to our intuition, to th& (1) variables. This
happens again because thg symmetry binds/ (1)
variables with the center of tHaJ (3) subgroup of the
gauge group.

As in [2] we mention here that th8U(2) funda-
mental Higgs model, has a similar phase structure as
our model, except for the absence of the phase transi-
tion line between phases | and Il. In the latter model
it was shown that different phases are actually not dif-
ferent. This means that the phase transition line ends at
some point and the transition between two states of the
model becomes continuous. Thus one may expect that
in our model the phase transition line between phases
| and Il ends at some point. However, we do not ob-
serve this for the considered values of couplings.

In our model both phase transition lines join in
a triple point, forming a common line. This is, evi-
dently, the consequence of the mentioned additional
symmetry that relateSU (2), U (1), andSU (3) excita-

24% of its value. In these cases we do not consider tions. The same picture, of course, does not emerge in

the string tension to be significantly different from
zero. However, as for QCD with dynamical fermions
or theSU(2) fundamental Higgs mod¢10,13], these
results do not mean that confinement of leptons oc-

curs. The charge—anticharge string must be torn by

virtual charged scalar particles, which are present in
the vacuum due to the Higgs field. Thliga) may be
linear only at sufficiently small distances, while start-
ing from some distance it must not increase, indicating
the breaking of the string. Unfortunately, the accuracy

the conventionaBU (3) ® SU(2) ® U (1) gauge-Higgs

model: itsSU(2) ® U (1) part was investigated, for ex-
ample, in[4]. As for theSU(3) gauge theory, it has no
phase transition at finitg and zero temperature at all.

7. Conclusions

We summarize our results as follows:

of our measurements does not allow us to observe this 1. We performed a numerical investigation of the

phenomenon in detail.
The connection between the properties of mono-

poles and the phase structure of the model is illustrated 2.

by Fig. 3 which shows the monopole density vergus
at fixed y = 0.5. Again, we represent here only one
type of the three monopoles, which have colored ori-
gin. Namely, we considej-1. (Behavior of the others

is similar.) One can see, that the density of tite 2
monopoles as well as*-monopoles falls sharply in
phase I, while the electromagnetic monopole density
does not.

We note here, that according to our measure-
ments the electromagnetic monopole density falls to
zero while shifting from phases | to lll. The colored
monopoles and@monopole densities fall sharply in
the phase Il as well. Thus monopoles composed of

quenched lattice model that respects the additional
symmetry.

The lattice model contains three phases. In the
first phase the potential between static leptons is
confinement-like. In the second phase the confin-
ing forces are observed, at sufficiently small dis-
tances, between the left-handed external leptons.
The last one is the Higgs phase, where there are
no confinement-like forces between static leptons
at all.

Investigation of the monopoles constructed of col-
ored fields shows that colored fields feel the phase
transition lines.

In all phases of the model we observe confinement
of quarks. The string tensions for different kinds
of quarks are equal to each other.

3.

4,
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5. The main consequence of the emergence of theand disappear in the continuum limit. This phenom-
additional symmetry is that the phase transition enon of fermion doubling is widely discussed in the
lines corresponding to th8U(2) and U (1) de- literature. It is worth mentioning that another differ-
grees of freedom join in a triple point forming a ence between these two formulations is the absence of
common line. This reflects the fact that t8d (2) exact chiral symmetry in the Wilson formulation and
and U (1) excitations are related due to the men- its appearance in the naive discretization.
tioned symmetry. The same situation does not  The second example is the pure non-Abelian gauge
occur in the conventionafU (2) ® U (1) gauge- theory. If we would discretize its form written in terms
Higgs model4]. of gauge potentials losing the exact gauge invariance,

the resulting lattice model would have the same naive
So, we have found a qualitative difference between continuum limit as the conventional lattice gluody-
the conventional discretization and the discretization namics, which is written in terms of link matrices.
that respects the invariance under the transformationsHowever, in such a definition of lattice gauge theory

given in Eq.(6).

In order to illustrate other possible differences let
us consider the problem of constructing the operator
which creates a glueball in thgs-invariant version of
the lattice SM. Here we cannot use the conventional
expression

1
O,=1- 3 Retripiaq (22)
as it is not invariant under outg symmetry. Instead
we may use&Zg-invariant expressions like

1 i 1

O = 1 - é Retr{Fp|aq€_%0plaq} - 5(1 — COS 2p|aq)
(23)

In the naive continuum limit the above expressions
(22) and (23)xoincide. In a similar way the naive con-
tinuum limit of the action(7) coincides with that of
the conventional lattice SM action for the appropriate
choice of coupling constants.

However, this coincidence does not mean necessar-
ily, that either the models themselves or the correlators

of operatorg22) and(23) lead to the same results. Let
us recall here two precedents, i.e., two similar situa-
tions, where the coincidence of the naive continuum
limits does not lead to the same physics.

The first example is the massless lattice fermion.
One may compare Wilson fermions with the simplest
direct discretization of the Dirac fermion actigtl].
These two actions differ from each other by a term
which naively vanishes in the continuum limit. How-
ever, the corresponding models are not identical from
the physical point of view. Namely, the second one
contains 15 additional fermion species while in the
Wilson formulation all of them acquire infinite mass

confinement is lost12].

In the two examples of lattice models considered
above, which have the same naive continuum limit but
different symmetry properties, finally lead to different
physics. Exactly the same situation may be present in
our case, where the naive continuum limit of the two
lattice realizations of the SM is the same, while only
one formulation isZg-invariant.

Another argument in favor of the point of view that
these two models are indeed different, comes from
the direct consideration of how continuum physics
emerges in the lattice SM. Namely, there are indica-
tions [8,9] that several kinds of singular field config-
urations may survive in the continuum limit of non-
Abelian lattice gauge models. If so, the conventional
action of the lattice SM and the acti¢i) may appear
to be different when approaching the continuum for
singular field configurations of various kinds.
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