[Linear Algebra and its Applications 435 \(2011\) 1903–1919](http://dx.doi.org/10.1016/j.laa.2011.03.037)

Reduction of matrices over orders of imaginary quadratic fields $\stackrel{\star}{\scriptscriptstyle \times}$

Miroslav Kureš ∗, Ladislav Skula

Institute of Mathematics, Brno University of Technology, Technická 2, 61669 Brno, Czech Republic

ARTICLE INFO ABSTRACT

Article history: Received 1 June 2010 Accepted 19 March 2011 Available online 27 April 2011

Submitted by H. Schneider

AMS classification: 13F07 15A33 11R11

Keywords: Order of an imaginary quadratic field Normed ring Generalized Euclidean ring Invertible matrix Elementary matrix (1,2)-Matrix

A special decomposition (called the near standard form) of (1,2) matrices over a ring is introduced and a method for a reduction of such matrices is explained. This can be applied for a detection of elementary second order matrices among invertible second order matrices. The tool is used in detail over orders of imaginary quadratic fields, where an algorithm, a number of properties and examples are presented.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

We start with some motivation. Let *R* be a ring with the identity 1 $_{R}\neq 0_{R}.$ All elementary matrices (which are defined as finite products of elementary transvections and elementary dilations, see e.g. [\[2](#page-16-0)]) of size $n \times n$ with entries in *R* form a subgroup GE_n(*R*) of the group GL_n(*R*) of all invertible matrices. If for any $n \in \mathbb{N}$ and a ring *R*, the equality $GL_n(R) = GE_n(R)$ is satisfied, we say *R* is a GE_n-ring. If *R* is a GE_n-ring for all $n \in \mathbb{N}$, then R is called a GE-ring or a generalized Euclidean ring.

For square matrices of size 2×2 , Cohn has used the concept of a standard form which is a very important tool for the investigation of GE₂-rings. In this paper, we introduce the concept of a near

Corresponding author.

0024-3795/\$ - see front matter © 2011 Elsevier Inc. All rights reserved. doi[:10.1016/j.laa.2011.03.037](http://dx.doi.org/10.1016/j.laa.2011.03.037)

 $\dot{\pi}$ Published results were acquired using the subsidization of the Ministry of Education, Youth and Sports of the Czech Republic, research plan MSM 0021630518 "Simulation modeling of mechatronic systems".

E-mail addresses: kures@fme.vutbr.cz (M. Kureš), skula@fme.vutbr.cz (L. Skula).

standard form close to that of a standard form. This is done by means of the reduction of matrices of size 1×2 , since the investigated considerations for square matrices of order 2 depend only on the first row. √

In particular, we apply results to rings of integers of imaginary quadratic fields $\mathbb{Q} [$ *d*], where *d* is a negative square-free integer. For such a ring *R*, Cohn has proved in [\[3\]](#page-16-1), Theorem 6.1, that *R* is √GE₂-ring if and only if $d \in \{-1, -2, -3, -7, -11\}$. We remark that the fields $\mathbb{Q}[\sqrt{d}]$ with $d \in$ {−1, −2, −3, −7, −11} are nothing but just all Euclidean imaginary quadratic fields ([\[4\]](#page-16-2), Corollary to Proposition 3.11). Nevertheless, we study not only rings of integers of imaginary quadratic fields but somewhat more general rings: orders of imaginary quadratic fields (including non-maximal, of course).

2. Notation and basic assertions

In this section, a ring *R* means a ring with the identity $1_R \neq 0_R$, not necessarily commutative. The group of all units of *R* is denoted by U(*R*) and U(*R*) \cup {0_{*R*}} is denoted shortly by U₀(*R*). Further, $M_{m\times n}(R)$ denotes the set of all $m\times n$ matrices with entries in *R*; we will also use special matrices from $M_{2\times2}(R)$, namely

$$
E(a) = \begin{bmatrix} a & 1_R \\ -1_R & 0_R \end{bmatrix} \text{ and } [\alpha, \beta] = \begin{bmatrix} \alpha & 0_R \\ 0_R & \beta \end{bmatrix},
$$

 $a \in R$, α , $\beta \in U(R)$. In Theorem 2.2 of [\[3](#page-16-1)] it was shown that each matrix $A \in \text{GE}_2(R)$ can be expressed in the *standard form* which is the following expression:

 $A = [\alpha, \beta]E(a_1) \cdots E(a_r),$

where $\alpha, \beta \in U(R), r \in \mathbb{N} \cup \{0\}, a_i \notin U_0(R)$ for $2 \leq i \leq r-1$ and in the case of $r = 2$ the pair $(a_1, a_2) \neq (0_R, 0_R)$; for $r = 0$ we put $A = [\alpha, \beta]$. In general, the standard form need not be determined uniquely.

For a more detailed investigation, notions of a norm and a discrete norm are needed. We recall these definitions.

Definition 1. A mapping $| \cdot |: R \to \mathbb{R}^+$ (\mathbb{R}^+ are non-negative real numbers) is called a *norm on the ring R* if

(N1) $|x| = 0$ if and only if $x = 0_R$; $(N2)$ $|x + y| \leq |x| + |y|$; $(N3)$ $|xy| = |x||y|$.

for all *x*, *y* is satisfied. A ring *R* with a fixed norm is called a *normed ring*.

Clearly, then *R* has no zero divisors, therefore normed rings are always integral domains (still not necessarily commutative).

Definition 2. Let *R* be a normed ring. If the conditions

 $(N4)$ $|x| \ge 1$ for all $0_R \ne x \in R$ and $|x| = 1$ if and only if $x \in U(R)$; (N5) there does not exist any $x \in R$ such that $1 < |x| < 2$.

are satisfied, then the norm is called a *discrete norm on the ring R* and *R* is called a *discretely normed ring*.

In [\[3\]](#page-16-1), (5.5), one more condition is used for certain purposes:

(N0) if $|x| = 1$ and $|x + 1| = 2$, then $x = 1_R$.

Cohn's results contain the following proposition. (Here from we simply denote by $\left[\begin{smallmatrix} a & b \end{smallmatrix} \right]$ a matrix of size 2×2 having *a* and *b* in the first row and any elements in the second row.)

Proposition 1. Let R be a discretely normed ring fulfilling (N0), $r > 2$ an integer, $a_1, \ldots, a_r \in R$ and $a_i \notin U_0(R)$ for every *i*, $2 \le i \le r$, and let

$$
A = E(a_1) \cdots E(a_r) = \left[\begin{array}{c} a & b \end{array} \right].
$$

Then $|a| > |b|$ *or* $a_1 = \alpha \in U(R)$ *and*

$$
A = \left[\begin{array}{c} 1_R \alpha \\ \alpha \end{array} \right] \text{ for } r \text{ even or } A = \left[\begin{array}{c} \alpha & 1_R \\ \alpha & \alpha \end{array} \right] \text{ for } r \text{ odd.}
$$

Proof. The assertion is nothing but slightly reformulated Lemma 5.1 in [\[3](#page-16-1)]. \Box

The following theorem is crucial for our theory.

 ${\bf Theorem~1.~}$ Let R be a discretely normed ring fulfilling (N0), $A=\left[\begin{smallmatrix}a&b\end{smallmatrix}\right]\in\mathrm{GE}_2(R)$ and $b\neq 0_R.$ Then there *exists* $q \in R$ *such that*

$$
AE(q)^{-1} = \left[\begin{array}{c}b \ c\end{array}\right] \quad \text{and} \quad |b| > |c|.
$$

 $|f| |b| \geq 2$, then $c \neq 0_R$, therefore $|c| \geq 1$. If $|b| = 1$, then $c = 0_R$.

Proof. Let $A = [\alpha, \beta]E(a_1) \cdots E(a_r)$ be a standard form of the matrix A, where r is a non-negative integer, $\alpha, \beta \in U(R)$, $a_1, \ldots, a_r \in R$ with $a_i \notin U_0(R)$ for $2 \le i \le r-1$. Since $b \ne 0_R$, $r \ge 1$. Now, we observe four situations.

(i) If
$$
b \in U(R)
$$
, we set $q = b^{-1}a$. Then
\n
$$
AE(q)^{-1} = \begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} 0_R & -1_R \\ 1_R & b^{-1}a \end{bmatrix} = \begin{bmatrix} b & 0_R \\ 0 & 0 \end{bmatrix},
$$

therefore $c = 0_R$ and we are done. (ii) If $r = 1$, we have

$$
A = \begin{bmatrix} \alpha & 0_R \\ 0_R & \beta \end{bmatrix} \begin{bmatrix} a_1 & 1_R \\ -1_R & 0_R \end{bmatrix} = \begin{bmatrix} \alpha a_1 & \alpha \\ 0 & \alpha \end{bmatrix},
$$

hence $b = \alpha$ and the result follows from (i). (iii) Let $r = 2$. Then

$$
A = \begin{bmatrix} \alpha & 0_R \\ 0_R & \beta \end{bmatrix} \begin{bmatrix} a_1 & 1_R \\ -1_R & 0_R \end{bmatrix} \begin{bmatrix} a_2 & 1_R \\ -1_R & 0_R \end{bmatrix} = \begin{bmatrix} \alpha a_1 & \alpha \\ -1_R & 0_R \end{bmatrix} \begin{bmatrix} a_2 & 1_R \\ -1_R & 0_R \end{bmatrix} = \begin{bmatrix} \alpha a_1 a_2 - \alpha & \alpha a_1 \\ -1_R & 0_R \end{bmatrix},
$$

thus $b = \alpha a_1$. Since $b \neq 0_R$, we can suppose $|a_1| > 1$ as the case $b \in U(R)$ is already done by (i). Set $q = a_2$. Since

$$
AE(q)^{-1} = \left[\begin{array}{c} \alpha a_1 \alpha \\ \alpha \end{array} \right],
$$

we obtain $|\alpha| = 1 < |\alpha a_1|$, which is the wanted result.

(iv) Let $r \ge 3$. Put $s = r - 1$ and $B = E(a_1) \cdots E(a_s)$. Since $s \ge 2$, we can use Proposition 1 for the matrix *B*. If $B = \left[\begin{array}{c} \gamma \ \delta \end{array}\right]$, where $\gamma, \delta \in \mathrm{U}(R)$, then $b = \alpha \gamma \in \mathrm{U}(R)$, since

$$
A = \begin{bmatrix} \alpha & 0_R \\ 0_R & \beta \end{bmatrix} B \begin{bmatrix} a_r & 1_R \\ -1_R & 0_R \end{bmatrix} = \begin{bmatrix} \alpha \gamma & \alpha \delta \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a_r & 1_R \\ -1_R & 0_R \end{bmatrix} = \begin{bmatrix} \alpha \gamma a_r - \alpha \delta & \alpha \gamma \\ 0 & 1 \end{bmatrix}.
$$

According to (i) we are done. If *B* has another form, say $B = \left[\begin{smallmatrix} x & y \end{smallmatrix} \right]$, then $|x|>|y|$ holds. It follows

$$
A = \begin{bmatrix} \alpha & 0_R \\ 0_R & \beta \end{bmatrix} BE(a_r) = \begin{bmatrix} \alpha x & \alpha y \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a_r & 1_R \\ -1_R & 0_R \end{bmatrix} = \begin{bmatrix} \alpha x a_r - \alpha y & \alpha x \\ 0 & 0 & 1 \end{bmatrix},
$$

thus $b = \alpha x$. If we set $q = a_r$, we get

$$
AE(q)^{-1} = \left[\begin{array}{c} \alpha & 0_R \end{array}\right] B = \left[\begin{array}{c} \alpha x & \alpha y \end{array}\right]
$$

and $|b|=|x|>|y|=|c|$. This completes the proof of the main part.

Suppose that $q \in R$, $AE(q)^{-1} = [\begin{array}{c} b & c \end{array}], |b| \geq 2$ and $|b| > |c|$. Since $c = -a + bq$, then for $c = 0_R$ we have $a = bq$ and $A = \left| \begin{smallmatrix} bq & b \end{smallmatrix} \right|$, which is in contradiction to the invertibility of A. Finally, the case $|b| = 1$ i s evident \Box

This theorem motivates the following definition.

Definition 3. Let *R* be a normed ring and $A = [ab] \in M_{1 \times 2}(R)$. The matrix *A* is said to be *reducible* if there exists an element $q \in R$ such that

 $AE(q)^{-1} = [bc]$

and $|b| > |c|$. The element *q* will be called a *reduction element of the matrix A*. Note that $E(q)^{-1} =$ $\left[\begin{smallmatrix} 0_R & -1_R \ 1_R & q \end{smallmatrix}\right]$ and $c=-a+bq$.

In the opposite case we call the matrix *A non-reducible*.

Proposition 2. Let R be a normed ring. Then each matrix $A = [r \circ] \in M_{1 \times 2}(R)$ is non-reducible. If $B = [ab] \in M_{1 \times 2}(R)$ *is non-reducible, then* $|a| \geq |b|$ *.*

Proof. The first statement is easy. Assume that $B = \int a b$ is non-reducible. If $|a| < |b|$, set $q = 0$. Then

$$
BE(q)^{-1} = [ab] \left[\begin{smallmatrix} 0_R & -1_R \\ 1_R & 0_R \end{smallmatrix} \right] = [b-a].
$$

This is a contradiction because we have found a reduction. \Box

The opposite direction to the first statement of Proposition 2 holds for discretely normed rings with (N0) in the following sense.

Proposition 3. Let R be a discretely normed ring fulfilling (N0) and $A = \left[\begin{smallmatrix} a & b \end{smallmatrix}\right] \in \text{GE}_2(R)$. Then the matrix $[a \ b]$ is non-reducible if and only if $b = 0_R$. In this case $A = \begin{bmatrix} \alpha & 0_R \ r & \beta \end{bmatrix}$, where $\alpha, \beta \in U(R)$ and $r \in R$.

Proof. If $b = 0_R$, according to Proposition 2 the matrix $[a \, b] = [a \, 0_R]$ is non-reducible. Let us suppose that the matrix [a b] is non-reducible. By Theorem 1, only $b=0_R$ is possible. The expression $A=\left[\begin{smallmatrix}\alpha&0_R\ r&\beta\end{smallmatrix}\right]$ follows from the fact that A is invertible. \Box

Of course, Proposition 3 is still valid for non-commutative rings, too.

Definition 4. Let *R* be a normed ring and $A = [ab] \in M_{1 \times 2}(R)$, *s* be a positive integer, $q_1, \ldots, q_s \in$ *R* and *B* ∈ $M_{1\times2}(R)$ a non-reducible matrix. Let $b_0, b_1, \ldots, b_{s+1}$ ∈ *R* be defined by $[b_{i-1}, b_i]$ = *BE*(q_s) \cdots *E*(q_i) for $1 \le i \le s$ and by [b_s b_{s+1}] = *B*. If *A* is expressed as

$$
(*) \qquad A = BE(q_s) \cdots E(q_1)
$$

and

$$
|b_i|>|b_{i+1}|
$$

is satisfied for every *ⁱ*, 1 ≤ *ⁱ* ≤ *^s*, then the expression (∗) is called a *nearly standard form for the matrix A*.

If *A* is non-reducible, then the expression $A = B$ is considered to be a nearly standard form for the matrix A (so $s = 0$).

Remark 1. The elements b_i ($0 \le i \le s + 1$) can be defined recursively as follows:

 $b_0 := a, b_1 := b, \ldots, b_{i+1} := b_i q_i - b_{i-1}$ for $1 \le i \le s$.

Further we will use the "descending chain condition" for norms in the following form.

Definition 5. Let *R* be a normed ring. We say that its *norm* | | *satisfies the descending chain condition* if it shares the following property:

 (N_{∞}) for $r_1, r_2, \ldots \in R$ with $|r_1| \geq |r_2| \geq \cdots$ there exists a positive integer *N* such that for every integer *j* \geq *N* the equality $|b_N|=|b_j|$ holds.

Now we are able to state the theorem.

Theorem 2. Let R be a normed ring fulfilling (N_{∞}). Then each matrix $A \in M_{1\times2}(R)$ has a nearly standard *form.*

Proof. Let $A = [a \ b] \in M_{1 \times 2}(R)$. If *A* is non-reducible, then $A = B$ is the nearly standard form. Assume that *A* is reducible. Then there exists $q_1 \in R$ with $AE(q_1)^{-1} = [b_1 b_2]$ and $|b_1| > |b_2|$ (where $b_1 = b$). Set $A_0 = A$ and $A_1 = AE(q_1)^{-1}$ and assume that *s* is a positive integer, $q_1, \ldots, q_s, b_1, \ldots, b_{s+1} \in R$ and $A_i = [b_i b_{i+1}]$ satisfies $A_i = A_{i-1} E(q_i)^{-1}$ and $|b_i| > |b_{i+1}|$ for every $i, 1 \le i \le s$. If A_s is reducible then there exists q_{s+1} ∈ *R* with the property $A_s E(q_{s+1})^{-1} = \begin{bmatrix} b_{s+1} & b_{s+2} \end{bmatrix}, \begin{bmatrix} b_{s+1} \end{bmatrix} > \begin{bmatrix} b_{s+2} \end{bmatrix}$. According to the condition (N_{∞}) this process cannot be arbitrarily lengthened, therefore we can assume that $A_s = B$ is a non-reducible matrix. Then we get

$$
A = A_1 E(q_1) = A_2 E(q_2) E(q_1) = \cdots = BE(q_s) \cdots E(q_1)
$$

which is a nearly standard form for the matrix A . \square

Remark 2. Theorem 2 can be used for a determining if a matrix $M \in GL_2(R)$ with entries in a discretely normed ring *R* fulfilling (N0) and (N_∞) belongs to $GE_2(R)$. Indeed, the first row of *M* is a (1,2)-matrix *A* and if *A* is non-reducible, then it has a nearly standard form given by Definition 4 with a non-reducible *B*. If $M \in \text{GE}_2(R)$, then $\left[\frac{B}{C}\right] \in \text{GE}_2(R)$. For $B = [a \ b]$, it follows from Proposition 3 that $M \in \text{GE}_2(R)$ if and only if $b = 0_R$. (We will demonstrate this method in Section 6.)

We remark that Cohn's and Tuler's well-known examples of non-elementary invertible matrices (see Section 7) easily can be checked by our method; let us notice that the special nearly standard form $A = B$ occurs in either case.

The following proposition demonstrates the relationship between the notions of the nearly standard form and the standard form.

Proposition 4. Let R be a discretely normed ring fulfilling (N0). Let s be a positive integer, $a_1, \ldots, a_s \in$ $R - U_0(R)$ *and let*

 $[a^b] = A = E(a_1) \cdots E(a_s) \in M_{2 \times 2}(R)$

be a standard form for the matrix A. Set $B = [1_R 0_R] \in M_{1 \times 2}(R)$ *. Then*

 $[a b] = BE(a_1) \cdots E(a_s)$

is a nearly standard form for the matrix [*a b*]*.*

Proof. Since for each $q \in R$ the expression $\lceil q \cdot 1 \rceil = BE(q)$ is a nearly standard form for the matrix $\lceil q \cdot b \rceil$, we can assume $s \ge 2$. Put for every $i, 1 \le i \le s$, $q_i = a_{s-i+1}$ and $[b_{i-1}, c_i] = B_i = BE(q_s) \cdots E(q_i)$ and $b_s = 1_g$. Since for every *i*, $1 \le i \le s - 1$, $[b_i c_{i+1}] = B_{i+1} = B_i E(q_i)^{-1} = [c_i - b_{i-1} + c_i q_i]$, we have $c_i = b_i$. Let $1 \le i \le s - 1$. Put $r = s - i + 1$. Then $2 \le r \le s$ and

1908 *M. Kureš, L. Skula / Linear Algebra and its Applications 435 (2011) 1903–1919*

$$
E(a_1)\cdots E(a_r)=E(q_s)\cdots E(q_i)=\left[\begin{array}{c}b_{i-1}&b_i\\0&1\end{array}\right].
$$

Using Proposition 1, we get $|b_{i-1}| > |b_i|$, hence $|b_i| > |b_{i+1}|$ for every $0 \le i \le s-2$. Since $[b_{s-1}, b_{s}] = [q_{s}, q_{R}] = [q_1, q_2],$ we have $|b_{s-1}| > |b_{s}|$, which completes the proof. \Box

3. Matrix reduction in orders of imaginary quadratic fields

From here throughout this paper we will assume that *d* is a negative square-free integer and *C* a positive integer. We will distinguish two cases:

(I) *d* ≡ 1 (mod 4), (II) $d \equiv 2 \text{ or } d \equiv 3 \pmod{4}$.

Further, we set

 $\varepsilon = \begin{cases} 1 & \text{for the case (I)} \\ 0 & \text{for the case (II)} \end{cases}$ 0 for the case (II);

we will use this ε for a formal integration of the two cases described above to a single one in a number of formulas below. Let

$$
\theta = \sqrt{d} + \frac{\varepsilon}{2}(1 - \sqrt{d})
$$

and

$$
D=-d+\frac{\varepsilon}{4}(1+3d).
$$

Further, we denote by $\mathbb Z\left[\mathcal C \theta\right]$ an order of the imaginary quadratic field $\mathbb Q\mathbb I$ √*d*] (cf. e.g. [\[1](#page-16-3)], Chapter 2, 2.2), so

$$
\mathbb{Z}[C\theta] = \{x + yC\theta; x, y \in \mathbb{Z}\}.
$$

The order $\mathbb{Z}[\mathcal{C}\theta]$ is a normed ring with the norm $|\cdot|: \mathbb{Z}[\mathcal{C}\theta] \to \mathbb{R}^+$ equal to the complex numbers absolute value. Then for $z = x + yC\theta \in \mathbb{Z}$ [*C* θ] we have

$$
|z|^2 = x^2 + \varepsilon xyC + y^2C^2D.
$$

It is easy to see that this norm satisfies (N4) and (N0). The condition (N5) is also satisfied with the exception for $d = -1, -2, -3, -7, -11$ and $C = 1$ (see [\[3](#page-16-1)], Section 6). Clearly, the condition (N_{∞}) is satisfied as well.

Further, we will suppose

$$
A = [ab] \in M_{1 \times 2}(\mathbb{Z}[\mathbb{C}\theta]), \quad a, b \in \mathbb{Z}[\mathbb{C}\theta], \quad b \neq 0,
$$

$$
a = u + v\mathbb{C}\theta, \quad b = r + s\mathbb{C}\theta, \quad u, v, r, s \in \mathbb{Z}.
$$

The aim of this section is a search of reduction elements of the matrix *A* and to give a result about an upper bound for the number of such elements.

According to the definition of the reduction element of a matrix we have the following assertion.

Proposition 5. An element $q \in \mathbb{Z}$ [C θ] is a reduction element of the matrix A if and only if

$$
|-a+ bq|^2 < |b|^2.
$$

Proof. See Definition 3 \Box

To specify a reduction element *q* of *A* we define

$$
R := |b|^2 = r^2 + \varepsilon r s C + s^2 C^2 D,
$$

\n
$$
S := |a|^2 = u^2 + \varepsilon uv C + v^2 C^2 D,
$$

\n
$$
\alpha := -(ur + v s C^2 D) - \frac{\varepsilon C}{2} (vr + u s),
$$

\n
$$
\beta := (u s - v r) C^2 D - \frac{\varepsilon C}{2} (ur + u s C + v s C^2 D),
$$

\n
$$
\gamma := S - R.
$$

Now, we set for $x, y \in \mathbb{R}$

$$
K(x, y) := x^2 + \varepsilon xyC + y^2C^2D + \frac{2\alpha}{R}x + \frac{2\beta}{R}y + \frac{\gamma}{R}.
$$

The equation $K(x, y) = 0$ represents an equation of a quadratic curve in the real plane. Its invariants are

$$
I_1 = 1 + C^2 D > 0, \quad I_2 = \frac{C^2}{4}(4D - \epsilon) > 0, \quad I_3 = -\frac{C^2}{4}(4D - \epsilon) < 0,
$$

hence $K(x, y) = 0$ is a real ellipse; we call it a *reduction ellipse of the matrix A* and denote it by \mathcal{E}_{red} . Points [*x*, *y*] of the plane satisfying *K*(*x*, *y*) < 0 will be called *interior points* of the reduction ellipse. (This notion we use also for other ellipses below.) The center of ε_{red} will be denoted by $S_{\text{red}} = [s_1, s_2]$. For s_1, s_2

$$
s_1 = \frac{1}{R} \left(\frac{\varepsilon (2\beta - \alpha C)}{C(4D - 1)} - \alpha \right), \quad s_2 = \frac{1}{C^2 DR} \left(\frac{\varepsilon (2\alpha CD - \beta)}{4D - 1} - \beta \right)
$$

holds.

The following theorem specifies a relation between a reduction ellipse and a reduction element.

Theorem 3. An element $q = x + yC\theta \in \mathbb{Z}[C\theta]$ is a reduction element of the matrix A if and only if $K(x, y) < 0$, *i.e.* [x, y] *is an interior point of the reduction ellipse* \mathcal{E}_{red} *.*

Proof. By Proposition 5, an element $q \in \mathbb{Z}[\mathcal{C}\theta]$ is a reduction element of the matrix *A* if and only if $|−a + bq|^2 < |b|^2$; a direct calculation gives this inequality in the equivalent form $K(x, y) < 0$. $□$

So, the reduction elements of *A* correspond one-to-one to the interior points of the reduction ellipse having integer coordinates (such points will be called *interior lattice points*) by $q = x + yC\theta \mapsto$ [*x*, *y*]. Now, we will find an upper bound of the number of these lattice points: to that end we use the translation of the reduction ellipse ε_{red} to the ellipse ε_1 . This translation is determined by the translation of the center S_{red} into $P = [0, 0]$.

Proposition 6. *The ellipse* \mathcal{E}_1 *has the equation*

$$
x^2 + \varepsilon x y C + y^2 C^2 D = 1.
$$

Proof. Since $P = [0, 0]$ is the center of the ellipse \mathcal{E}_1 , the ellipse \mathcal{E}_1 has the equation

$$
x^2 + \varepsilon x y C + y^2 C^2 D + \Gamma = 0,
$$

where $\Gamma \in \mathbb{R}$. We compute Γ by means of the invariant I_3 :

$$
-\frac{C^2}{4}(4D-\varepsilon) = I_3 = \begin{vmatrix} 1 & \frac{\varepsilon C}{2} & 0 \\ \frac{\varepsilon C}{2} & C^2 D & 0 \\ 0 & 0 & \Gamma \end{vmatrix} = \Gamma\left(C^2 D - \frac{\varepsilon C^2}{4}\right).
$$

This proves $\Gamma = -1$. \Box

Coordinates $[s_1, s_2]$ of the center of \mathcal{E}_{red} have integer parts $k := [s_1], l := [s_2]$ and fractional parts $\xi := \{s_1\} = s_1 - k, \eta := \{s_2\} = s_2 - l, \text{ i.e. } s_1 = k + \xi, s_2 = l + \eta, k, l \in \mathbb{Z}, \xi, \eta \in \mathbb{Q}, 0 \leq \xi, \eta < 1.$ We put $\Sigma := [\xi, \eta] \in \mathbb{R}^2$ and denote the translation $[\tilde{k}, l] \mapsto [0, 0] = P$ by *T*. Then *T* transfers the square $\{[x, y] \in \mathbb{R}^2; k \le x < k+1; l \le y < l+1\}$ into the square $\{[x, y] \in \mathbb{R}^2; 0 \le x < l+1\}$ 1; $0 \le y < 1$ } and the reduction ellipse \mathcal{E}_{red} with the center S_{red} into the ellipse denoted by \mathcal{E} with the center Σ.

Let us notice that the translation *T* can be composed from translations $S_{\text{red}} \mapsto P$ and $P \mapsto \Sigma$. Thus, the ellipse $\mathcal E$ can be viewed as the transferred ellipse $\mathcal E_1$. We obtain easily:

Proposition 7. *The ellipse E has the equation*

 $(x - \xi)^2 + \varepsilon (x - \xi)(y - \eta)C + (y - \eta)^2 C^2 D = 1.$

Proof. This follows immediately from the Proposition 6. \Box

Obviously, interior lattice points of \mathcal{E}_{red} transfer into interior lattice points of \mathcal{E} by the translation τ . Reciprocally, interior lattice points of $\mathcal E$ transfer into interior lattice points of $\mathcal E_{\rm red}$ by the inverse translation T^{-1} . Proposition 5 gives a way to derive reduction elements of the matrix A. It follows that a detection of interior lattice points of $\mathcal E$ is needful. First, we deduce the assertion.

Proposition 8. The interior points of the ellipse $\mathcal E$ lie in the rectangle $\mathcal O$ defined by its vertices by the *following way:*

- *(a) vertices of* \heartsuit *are* $[-2, -2]$ *,* $[3, -2]$ *,* $[3, 3]$ *,* $[-2, 3]$ *for the case C* = 1*, d* = −3*;*
- *(b) vertices of* \emptyset *are* $[-2, -1]$ *,* $[3, -1]$ *,* $[3, 2]$ *,* $[-2, 2]$ *for the case (I),* $(C, d) ≠ (1, -3)$ *;*
- *(c) vertices of ^O are* [−1, −1]*,* [2, −1]*,* [2, ²]*,* [−1, ²] *for the case (II).*

Proof. The bounds are derived by a direct calculation. \Box

For further investigation, we introduce the following notation of points in real plane:

 $P_1 := P = [0, 0],$ $P_2 := [1, 0],$ $P_3 := [2, 0],$ $P_4 := [-1, 1],$ $P_5 := [0, 1],$ *P*₆ := [1, 1], *P*₇ := [1, −1], *P*₈ := [0, 2].

Now, we find out the following fact (cases denoted as in Proposition 8).

Theorem 4. *(The 1st claim about an upper bound of number of reduction elements.) Only*

*(a) P*1*, P*2*, P*3*, P*4*, P*5*, P*6*, P*7*, P*8*, (b) P*1*, P*2*, P*3*, P*4*, P*5*, P*6*, (c) P*1*, P*2*, P*5*, P*⁶

can be possible interior lattice points of the ellipse E.

Proof

- (a) The rectangle \circ contains all points P_1 , P_2 , P_3 , P_4 , P_5 , P_6 , P_7 , P_8 and, moreover, points $[-1, 2]$, $[1, 2]$, $[2, 2]$, $[2, 1]$, $[-1, 0]$, $[-1, -1]$, $[0, -1]$, $[2, -1]$. We verify by a direct calculation that these eight additional points cannot be interior points of *E*.
- (b) Now, the rectangle $\mathcal O$ contains all points P_1 , P_2 , P_3 , P_4 , P_5 , P_6 and, moreover, points [2, 1] and [0, −1]. These two points cannot be interior points of *^E*.
- (c) Easily, the rectangle $\mathcal O$ contains only points P_1, P_2, P_5, P_6 . \Box

4. The 2nd and the 3rd claims about an upper bound of number of reduction elements of the matrix *A*

For an improvement of estimations of number of interior lattice points we use the following theorem.

Theorem 5 (Reciprocity theorem). Let *F*, *G* are two real ellipses in \mathbb{R}^2 with centers C_1 , C_2 , respectively, *such that the ellipse* G *is a transferred ellipse* F *with respect to the translation* $C_1 \mapsto C_2$ *. Then* C_1 *is an interior point of G if and only if* C_2 *is an interior point of* \mathcal{F} *.*

Proof. The theorem is familiar. \Box

For $1 \le i \le 8$, let \mathcal{E}_i denote the transferred ellipse \mathcal{E} by the translation $\Sigma \mapsto P_i$. (Or, the transferred ellipse \mathcal{E}_1 by the translation $P = P_1 \mapsto P_i$.) The equation of the ellipse \mathcal{E}_i is

$$
(x - x_i)^2 + \varepsilon (x - x_i)(y - y_i)C + (y - y_i)^2 C^2 D = 1,
$$

where $P_i = [x_i, y_i]$. We observe:

Corollary 1. For $1 \le i \le 8$, P_i is an interior point of \mathcal{E} if and only if Σ is an interior point of \mathcal{E}_i .

Proof. The corollary is an immediate consequence of Theorem 5. \Box

Therefore we investigate for which of the ellipses \mathcal{E}_i is the point Σ an interior point of \mathcal{E}_i ; then we use the reciprocity theorem. For calculation below, we use the orthogonal transformation T: $\mathbb{R}^2 \to \mathbb{R}^2$. $T: X = [x, y] \mapsto X' = [x', y']$ defined by

 $x' = -x + 1$. $v' = -v + 1$.

Proposition 9. $T(P_1) = P_6$, $T(P_2) = P_5$, $T(P_3) = P_4$, $T(P_7) = P_8$; $T(\mathcal{E}_1) = \mathcal{E}_6$, $T(\mathcal{E}_2) = \mathcal{E}_5$, $T(\mathcal{E}_3) = \mathcal{E}_4$, $T(\mathcal{E}_7) = \mathcal{E}_8$.

Proof. One can verify this proposition by a direct calculation. \Box

Proposition 10. Let us consider the case (I), $C^2D \geq 5$ and let us take two straight lines p, q in \mathbb{R}^2 with *equations p*: $y = \frac{1}{2}$, q : $y = -\frac{1}{2}$. Then neither p nor q has a common point with an ellipse \mathcal{E}_i , $1 \leq i \leq 6$.

Proof. A direct calculation gives this assertion for the ellipse \mathcal{E}_1 . As every ellipse \mathcal{E}_i , $1 \leq i \leq 6$ is nothing but a transferred ellipse \mathcal{E}_1 and the center P_i has integer coordinates, we have finished the proof. \Box

This enables to formulate the theorem.

Theorem 6. *(The 2nd claim about an upper bound of number of reduction elements for the case (I).) For the case (I) and* $C^2D > 5$ *we have:*

- *(i) if* $\eta \leq \frac{1}{2}$ *, then no point of P₄, P₅, P₆ is an interior point of* \mathcal{E} *;*
- *(ii) if* $\eta \geq \frac{1}{2}$ *, then no point of* P_1 *,* P_2 *,* P_3 *is an interior point of* \mathcal{E} *.*

Proof. The result follows directly from Proposition 10 and Theorem 5. \Box

For the case (II), we have:

Proposition 11. Let us consider the case (II) and let us take the straight line p with the equation p : $y = \frac{1}{2}$. *Then*

- *(i)* if $C^2D > 4$, then p has not any common point with an ellipse \mathcal{E}_i , $i \in \{1, 2, 5, 6\}$;
- *(ii)* if $C^2D = 4$ *(i.e.* $C = 2, D = 1$ *), then* p is a tangent to every ellipse ε _i, *i* ∈ {1, 2, 5, 6}*, namely* with $\left[0, \frac{1}{2}\right]$ as the common point of contact for $i \in \{1, 5\}$ and with $\left[1, \frac{1}{2}\right]$ as the common point of *contact for* $i \in \{2, 6\}$ *.*

Proof. One can verify this proposition by a direct calculation. \Box

We can formulate the following theorem.

Theorem 7. *(The 2nd claim about an upper bound of number of reduction elements for the case (II).) For the case (II) and* $C^2D > 4$ *we have:*

- *(i)* if $\eta \leq \frac{1}{2}$, then no point of P₅, P₆ is an interior point of \mathcal{E} ;
- *(ii) if* $\eta \ge \frac{1}{2}$, then no point of P₁, P₂ is an interior point of \mathcal{E} .

Proof. The result follows directly from Proposition 11 and Theorem 5. \Box

Now, we determine a number of reduction elements of the matrix *A* for the case, when the center Σ of the ellipse $\mathcal E$ equals $P = P_1$.

Proposition 12. For $1 \le i \le 8$, P is an interior point of \mathcal{E}_i if and only if $i = 1$.

Proof. The equation of the ellipse \mathcal{E}_i is

 $(x - x_i)^2 + \varepsilon (x - x_i)(y - y_i)C + (y - y_i)^2 C^2 D = 1,$

where $P_i = [x_i, y_i]$. For $1 \le i \le 8$, let us put

$$
V(i) = x_i^2 + \varepsilon x_i y_i C + y_i^2 C^2 D - 1.
$$

The values $V(i)$ are the following:

Since *P* is an interior point of ε _{*i*} if and only if P_i is an interior point of ε_1 , we have the result. \Box

Corollary 2. *If* $\Sigma = P$, then the matrix A has only one reduction element, namely $s_1 + s_2C\theta$, where $S_{\text{red}} = [s_1, s_2]$ *is the center of the reduction ellipse* \mathcal{E}_{red} *.*

Proof. See Theorem 3. \Box

Let us consider the case (I).

Proposition 13. *For the case (I)*

 $\mathcal{E}_1 \cap \mathcal{E}_3 = \{ [1, 0] \}$ *and* $\mathcal{E}_4 \cap \mathcal{E}_6 = \{ [0, 1] \}$

hold, it follows there are no common interior points of \mathcal{E}_1 *and* \mathcal{E}_3 *and no common interior points of* \mathcal{E}_4 and \mathcal{E}_6 .

Proof. One can verify this proposition by a direct calculation. \Box

Now, we can formulate the following theorem.

Theorem 8. *(The 3rd claim about an upper bound of number of reduction elements.) For the case (I) and* $C^2D > 5$ *and for the case (II) and* $C^2D > 4$ *the number of reduction elements of the matrix A is less or equal 2.*

Proof. The result follows directly from Proposition 13, Theorem 5, Theorem 6 and Theorem 7. \Box We put

 $Q = \{ [x, y] \in \mathbb{R}^2 : 0 \le x, y \le 1 \} - \{ [0, 0] \}$

and we denote by $\hat{\varepsilon}_i$ interior points of ε_i belonging to $\mathcal{Q}, 1 \leq i \leq 8$. We have:

Proposition 14. *For the case (I)*

 $\hat{\varepsilon}_3 \subset \hat{\varepsilon}_2$ and $\hat{\varepsilon}_4 \subset \hat{\varepsilon}_5$

hold.

Proof. One can verify this proposition by a direct calculation. \Box

Further, we denote

$$
\mathcal{Z}_{nonred} = \begin{cases} \mathcal{Q} - \{\hat{\mathcal{E}}_1 \cup \hat{\mathcal{E}}_2 \cup \hat{\mathcal{E}}_3 \cup \hat{\mathcal{E}}_4 \cup \hat{\mathcal{E}}_5 \cup \hat{\mathcal{E}}_6\} & \text{for the case (I),} \\ \mathcal{Q} - \{\hat{\mathcal{E}}_1 \cup \hat{\mathcal{E}}_2 \cup \hat{\mathcal{E}}_5 \cup \hat{\mathcal{E}}_6\} & \text{for the case (II).} \end{cases}
$$

If $\Sigma \in \mathcal{Z}_{\text{nonred}}$, then the matrix *A* has no reduction element. That is why we call the set $\mathcal{Z}_{\text{nonred}}$ the *zone of non-reductionability*. Then the matrix *A* is non-reducible.

Proposition 15. *If A represents the first row of a square matrix H* $\in M_{2\times 2}(\mathbb{Z}[C\theta])$ *and* $\Sigma \in \mathcal{Z}_{\text{nonred}}$ *, then H is not elementary.*

Proof. The complex numbers absolute value is a norm $| \cdot |: \mathbb{Z}[\mathcal{C}\theta] \rightarrow \mathbb{R}^+$ fulfilling (N4) and (N0). (This norm also fulfills (N5) with the exception for $d = -1, -2, -3, -7, -11$ and $C = 1$; these cases will be discussed in the next section.) Then the assertion follows from Proposition 3. $\;\;\Box$

5. Special cases

In this section, we describe situations which are not covered by Theorem 8, i.e. in the

case (I) it is
$$
C^2D \le 4
$$
, so $C = 1$, $D = 1$, $d = -3$
\n $C = 2$, $D = 1$, $d = -3$
\n $C = 1$, $D = 2$, $d = -7$
\n $C = 1$, $D = 3$, $d = -11$
\n $C = 1$, $D = 4$, $d = -15$
\ncase (II) it is $C^2D \le 3$, so $C = 1$, $D = 1$, $d = -1$
\n $C = 1$, $D = 2$, $d = -2$.

Remark 3. Notice that for the case (II) and $C = 1, D = 1, d = -1$ the ring $\mathbb{Z}[C\theta]$ is the ring of Gaussian integers and for the case (I) and $C = 1, D = 1, d = -3$ the ring $\mathbb{Z}[C\theta]$ is the ring of Eisenstein integers.

Proposition 16. *For the case (I) and* $C = D = 1$ *all points of Q are interior points of* \mathcal{E}_2 *and simultaneously interior points of* \mathcal{E}_5 *. Further,* $\mathcal{E}_7 \cap \mathcal{E}_8 = \emptyset$, $\mathcal{E}_7 \cap \mathcal{E}_6 = \{ [1, 0] \}$, $\mathcal{E}_7 \cap \mathcal{E}_4 = \{ [0, 0] \}$, $\mathcal{E}_7 \cap \mathcal{E}_3 = \{ [1, 0], [2, -1] \}$, $\mathcal{E}_8 \cap \mathcal{E}_6 = \{ [0, 1] \}$, $\mathcal{E}_8 \cap \mathcal{E}_4 = \{ [0, 1], [-1, 2] \}$, $\mathcal{E}_8 \cap \mathcal{E}_3 = \{ [1, 1] \}$.

Proof. One can verify this proposition by a direct calculation. \Box

Hence we obtain:

Theorem 9. For the case (I) and $C = D = 1$, the matrix A has only one reduction element if and only if $\Sigma = P = [0, 0]$ *. In other cases, A has at least 2 reduction elements and at most 4 reduction elements.*

Proof. The result follows directly from Proposition 16 and Proposition 13. \Box

For further investigation we recall that Theorem 4 asserts that P_7 and P_8 cannot be interior points of $\mathcal E$ (excluding the case (I) and $(C, D) = (1, 1)$).

Proposition 17. For the case (I) and $(C, D) \neq (1, 1)$, we have:

$$
\mathcal{E}_2 \cap \mathcal{E}_4 = \left\{ \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix} \right\}, \quad \mathcal{E}_3 \cap \mathcal{E}_5 = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \right\} \text{ for } CD = 2,
$$
\n
$$
\mathcal{E}_1 \cap \mathcal{E}_6 = \left\{ \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \right\} \text{ for } C = 1, D = 2,
$$
\n
$$
\mathcal{E}_1 \cap \mathcal{E}_6 = \mathcal{E}_2 \cap \mathcal{E}_4 = \mathcal{E}_3 \cap \mathcal{E}_5 = \emptyset \text{ in other cases.}
$$

Proof. One can verify this proposition by a direct calculation. \Box

Now we are able to state the theorem.

Theorem 10. *For the case (I) and* $(C, D) \neq (1, 1)$ *, the matrix A has at most three reduction elements. Namely, A has three reduction elements if and only if* Σ *lies in one of the following sets:* \hat{E}_3 ∩ \hat{E}_2 ∩ \hat{E}_6 , $\hat{\mathcal{E}}_4 \cap \hat{\mathcal{E}}_1 \cap \hat{\mathcal{E}}_5$, $\hat{\mathcal{E}}_1 \cap \hat{\mathcal{E}}_2 \cap \hat{\mathcal{E}}_5$, $\hat{\mathcal{E}}_2 \cap \hat{\mathcal{E}}_5 \cap \hat{\mathcal{E}}_6$.

Proof. We have $\hat{\varepsilon}_2 \cap \hat{\varepsilon}_4 = \hat{\varepsilon}_3 \cap \hat{\varepsilon}_5 = \hat{\varepsilon}_1 \cap \hat{\varepsilon}_6 = \emptyset$ from Proposition 17, $\hat{\varepsilon}_1 \cap \hat{\varepsilon}_3 = \hat{\varepsilon}_4 \cap \hat{\varepsilon}_6 = \emptyset$ from Proposition 13 and $\hat{\varepsilon}_3 \cap \hat{\varepsilon}_4 = \emptyset$ from Proposition 14.

Let Σ lies in an intersection of at least 4 sets $\hat{\varepsilon}_j$, $1 \le j \le 6$. As $\hat{\varepsilon}_3 \cap \hat{\varepsilon}_i = \emptyset$ for $i = 1, 4, 5$, we have *j* \neq 3. Analogously, we can show that *j* \neq 4. Hence $\Sigma \in \hat{\mathcal{E}}_1 \cap \hat{\mathcal{E}}_2 \cap \hat{\mathcal{E}}_5 \cap \hat{\mathcal{E}}_6$, but this is impossible because $\hat{\varepsilon}_1 \cap \hat{\varepsilon}_6 = \emptyset$. \Box

For the case (I) and $C^2D = 4$ (i.e. $C = 2$, $D = 1$ or $C = 1$, $D = 4$), the following proposition holds:

Proposition 18. For the case (1) and $C^2D = 4$, we have:

$$
\mathcal{E}_1 \cap \mathcal{E}_5 = \left\{ \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix} \right\}, \quad \mathcal{E}_2 \cap \mathcal{E}_6 = \left\{ \begin{bmatrix} 1, \frac{1}{2} \end{bmatrix} \right\}, \quad \mathcal{E}_3 \cap \mathcal{E}_6 = \left\{ \begin{bmatrix} 1, \frac{1}{2} \end{bmatrix}, \begin{bmatrix} 2, \frac{1}{2} \end{bmatrix} \right\},
$$

\n
$$
\mathcal{E}_4 \cap \mathcal{E}_1 = \left\{ \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}, \begin{bmatrix} -1, \frac{1}{2} \end{bmatrix} \right\} \quad \text{for } C = 2, D = 1,
$$

\n
$$
\mathcal{E}_2 \cap \mathcal{E}_5 = \left\{ \begin{bmatrix} \frac{1}{2}, \frac{1}{2} \end{bmatrix} \right\}, \quad \mathcal{E}_3 \cap \mathcal{E}_6 = \left\{ \begin{bmatrix} \frac{3}{2}, \frac{1}{2} \end{bmatrix} \right\}, \quad \mathcal{E}_4 \cap \mathcal{E}_1 = \left\{ \begin{bmatrix} \frac{-1}{2}, \frac{1}{2} \end{bmatrix} \right\} \quad \text{for } C = 1, D = 4.
$$

Proof. One can verify this proposition by a direct calculation. (The calculation is considerably facilitated thanks to using the orthogonal transformation T defined above and Proposition 9.) $\ \Box$

Theorem 11. For the case (I) and $C^2D = 4$, the matrix A has at most two reduction elements.

Proof. It follows easily from Proposition 18, that $\hat{\varepsilon}_1 \cap \hat{\varepsilon}_5 = \hat{\varepsilon}_2 \cap \hat{\varepsilon}_6 = \hat{\varepsilon}_3 \cap \hat{\varepsilon}_6 = \hat{\varepsilon}_1 \cap \hat{\varepsilon}_4 = \emptyset$ for $C = 2$, *D* = 1 and $\hat{\varepsilon}_2 \cap \hat{\varepsilon}_5 = \hat{\varepsilon}_3 \cap \hat{\varepsilon}_6 = \hat{\varepsilon}_1 \cap \hat{\varepsilon}_4 = \emptyset$ otherwise. Together with Theorem 9 this gives the assertion. \Box

Fig. 1. The case of Gaussian integers (*d* = −1, *C* = 1). Numbers of overlapping ellipses in the quadrant $\{[x, y] \in \mathbb{R}^2$; $0 \le x < 1$; $0 \le y < 1\}$ are presented.

Fig. 2. C = 1). Numbers of overlapping ellipses in the quadrant **Fig. 2.** The case of Eisenstein integers $(d = \{[x, y] \in \mathbb{R}^2; 0 \le x < 1; 0 \le y < 1\}$ are presented.

Proof. See Theorem 4, Theorem 8, Theorem 9, Theorem 10 and Theorem 11. \Box

At the end of this section, we give two important examples graphically: Gaussian (Fig. [1\)](#page-12-0) and Eisenstein (Fig. [2\)](#page-12-1) integers.

6. The Mathematica package

In this section, we report on an algorithmization for finding reductions for a (1,2)-matrix with entries in an order of an imaginary quadratic field. For this, our main task is to realize the computation of reductions of such matrices as a computer program. It is done in Wolfram Mathematica as a new original package ReMaOIF.m.

Input is represented by six numbers: *d* (negative square-free integer), *C* (positive integer), *u*, *v*, *r*, *s* integers representing the matrix $A = [ab] = [a + v \cos r + c \sin r]$. For some reasons, two names of variables are added to input in some commands (we use x and y here).

We have a number of commands for an investigation of reductionability and we present some of them in the following example.

Example 1. We set the input as $d = -3$, $C = 1$, $u = 4$, $v = 1$, $r = 1$, $s = -3$. So, we test the matrix $A = [4 + \frac{1}{2}(1+\sqrt{-3}) 1 - \frac{3}{2}(1+\sqrt{-3})].$

OIFella[d, C, u, v, r, s] This command gives the reduction ellipse parameters expressed as nine numbers: *R*, *S*, α , β , γ , s_1 , s_2 , ξ , η (see Section 3 for the denotation; $S_{\text{red}} = [s_1, s_2]$, $\Sigma = [\xi, \eta]$). Output: $\Big(7,21,\frac{9}{2},-\frac{15}{2},14,-\frac{11}{7},\frac{13}{7},\frac{3}{7},-\frac{6}{7}\Big).$

OIFelld[d, C, u, v, r, s, x, y] This command draws the reduction ellipse with the equation $K(x, y) = 0$. (See Fig. [3.](#page-13-0)) Output:

OIFreel[d, C, u, v, r, s, x, y] This command gives a list of reduction elements. This command gives a list of reduction elements.
Output: $(-1 + \sqrt{-3}, -1 + \frac{1}{2}(1 + \sqrt{-3}), \sqrt{-3}).$

OIFmmre[d, C, u, v, r, s, x, y]

Fig. 3. The reduction ellipse. The three lattice interior points are evident.

This command gives a list of new *u*, *v*, *r*, *s* after reductions (with respect to every reduction element). Output: $((1, -3, 0, 1), (1, -3, -2, 0), (1, -3, 1, -2)).$

Application (Continuation of Example 1). We show an iteration of the procedure. For instance, **Application (Continuation of Example 1).** We show an iteration of the procedure. For instance, we choose the second reduction element $q_1 = -1 + \frac{1}{2}(1 + \sqrt{-3})$. We obtain the matrix $A_1 =$ $AE(q_1)^{-1} = \left[1-\frac{3}{2}(1+\sqrt{-3})-2\right]$. Now, the package ReMaOIF.m enables a comfortable repetition of $\Delta E(q_1) = [1-\frac{1}{2}(1+\sqrt{-3})-2]$. Now, the package Remacri F in enables a commotable repetition of the procedure for *A*₁: we choose the reduction element $q_2 = \frac{1}{2}(1+\sqrt{-3})$ and obtain the matrix $A_2 = A_1 E(q_2)^{-1} = \left[\begin{array}{c} -2 - 1 + \frac{1}{2}(1 + \sqrt{-3}) \end{array} \right]$. If we apply the procedure again for A_2 , we obtain only one $R_2 = R_1 E(q_2) = \frac{1}{2} - 1 + \frac{1}{2}(1 + \sqrt{-3})$. If we apply the procedure again for A_2 , we obtain only one reduction element $q_3 = (1 + \sqrt{-3})$ and the matrix $A_3 = A_2 E(q_3)^{-1} = \frac{1}{2}(1 + \sqrt{-3})$ o]. Now, $B = A_3$ is a non-reducible matrix and $A = BE(q_3)E(q_2)E(q_1)$ is one of nearly standard forms for the matrix *A*.

So, if we consider the matrix $M = \left[\begin{array}{cc} 4 + \frac{1}{2}(1+\sqrt{-3}) & 1 - \frac{3}{2}(1+\sqrt{-3}) \\ 2 & 2 \end{array} \right]$ 1+√⁻³)</sub> 1⁻³₂(1+√⁻³)</sub> $\left[\epsilon \operatorname{GL}_2(\mathbb{Z}[\mathcal{C}\theta]) (\det M = 1), \text{ then} \right]$ $M = \left[\begin{smallmatrix} B \end{smallmatrix} \right] E(q_3) E(q_2) E(q_1).$ It follows $M \in \mathrm{GE}_2(\mathbb{Z}\left[\mathcal{C} \theta \right])$ because of Remark 2.

7. The zone of non-reductionability and some examples

We start this section with the study of areas of zones of non-reductionability. It leads to reflections on a "probability" that a matrix over $\mathbb{Z}[\mathcal{C}\theta]$ is non-reducible. We denote the area in question by $P(\mathcal{Z}_{\text{nonred}})$ and use standard integral calculus.

Proposition 19. *In the case (I) and C*²*D* \geq 5, *the area of the zone of non-reductionability* Z_{nonred} *is*

$$
P(\mathcal{Z}_{\text{nonred}}) = 1 - \frac{1}{C\sqrt{-d}} \left(\frac{2\sqrt{3}}{1-d} + \frac{\alpha_1 \beta_1 + \alpha_2 \beta_2}{2(1-d)} + 2 \left(\arctan \frac{\alpha_1}{\beta_1} + \arctan \frac{\alpha_2}{\beta_2} \right) \right),
$$

\nwhere $\alpha_1 = \sqrt{3} + \sqrt{-d}$,
\n $\alpha_2 = -\sqrt{3} + \sqrt{-d}$,
\n $\beta_1 = \sqrt{1 - 3d - 2\sqrt{-3d}}$,
\n $\beta_2 = \sqrt{1 - 3d + 2\sqrt{-3d}}$.

Proof. We have proved that the line $y = \frac{1}{2}$ has not any common point with ellipses \mathcal{E}_i , $1 \leq i \leq 6$ (Proposition 10). In consideration of Proposition 14, we compute the area \bar{P} bordered by the ellipse \mathcal{E}_5 and by the lines $p, x = 0, x = \frac{1}{2} + \frac{1}{2} \sqrt{\frac{3}{-d}}$ and the area $\frac{1}{p}$ bordered by the ellipse \mathcal{E}_6 and by the lines $p, x = \frac{1}{2} + \frac{1}{2}\sqrt{\frac{3}{-d}}$, $x = 1$; then it remains to multiply the sum $\bar{P}+\bar{\bar{P}}$ by 2. (Of course, we have easily found points of intersection of ε_5 and ε_6 : $\left[\frac{1}{2} + \frac{1}{2}\sqrt{\frac{3}{-d}}, 1 - \frac{1}{C}\sqrt{\frac{3}{-d}}\right]$ and $\left[\frac{1}{2} - \frac{1}{2}\sqrt{\frac{3}{-d}}, 1 + \frac{1}{C}\sqrt{\frac{3}{-d}}\right]$.) So, we have

$$
P(\mathcal{Z}_{\text{nonred}}) = 2 \int_0^{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{3}{4D-1}}} \left(1 + \frac{-Cx - \sqrt{C^2x^2 - 4C^2D(x^2 - 1)}}{2C^2D} \right) dx
$$

+
$$
2 \int_{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{3}{4D-1}}} \left(1 + \frac{-C(x-1) - \sqrt{C^2(x-1)^2 - 4C^2D((x-1)^2 - 1)}}{2C^2D} \right) dx - 1
$$

and the result is obtained by a technical simplifying process. \Box

Proposition 20. In the case (II) and $C^2D \geq 4$, the area of the zone of non-reductionability $\mathcal{Z}_{\text{nonred}}$ is

$$
P(\mathcal{Z}_{\text{nonred}}) = 1 - \frac{3\sqrt{3} + 2\pi}{6C\sqrt{-d}}
$$

Proof. The proof leans on the same reasons as the proof of the previous proposition, but the calculation is considerably easier. We compute the area \bar{P} bordered by the ellipse \mathcal{E}_5 and by the lines $p, x = 0$, $x = \frac{1}{2}$ (points of intersection of ε_5 and ε_6 are $\left[\frac{1}{2}, 1 - \frac{\sqrt{3}}{2\sqrt{3}}\right]$ $\frac{\sqrt{3}}{2c\sqrt{-d}}$ and $\left[\frac{1}{2}, 1 + \frac{\sqrt{3}}{2c\sqrt{-d}}\right]$ $\sqrt{\frac{3}{2c\sqrt{-d}}}$) and multiply \bar{P} by 4. So, we have

$$
P(\mathcal{Z}_{\text{nonred}}) = 4 \int_0^{\frac{1}{2}} 1 - \frac{\sqrt{1 - x^2}}{C\sqrt{D}} dx - 1
$$

and the result is obtained quickly. \Box

Thus, the main observation can be formulated as the following result.

Theorem 13. *In the case (I) and C*²*D* \geq 5 *as well as in the case (II) and C*²*D* \geq 4, for areas of zones of *non-reductionability*

$$
\lim_{C \to \infty} P(\mathcal{Z}_{\text{nonred}}) = 1 \quad \text{and} \quad \lim_{d \to -\infty} P(\mathcal{Z}_{\text{nonred}}) = 1
$$

hold.

Proof. The evaluation of limits follows directly from the expressions of areas in Proposition 19 and Proposition 20. \Box

Now, we return to some examples known from earlier studies of several authors about nonelementary second order matrices over rings, introducing them in Figs. [4](#page-15-0) and [5](#page-16-4) below.

Example 2 (*Cohn's example* [\[3](#page-16-1)]). Let $d = -19$, $C = 1$, $A = \{3-\theta, 2+\theta\}$. We have $P(\mathcal{Z}_{\text{nonred}}) =$ $1-\sqrt{\frac{3}{19}}-\frac{2\pi}{3\sqrt{19}}\approx 0.122153$. We find $\Sigma=\left[\frac{4}{11},\frac{6}{11}\right]\in\mathcal{Z}_{\text{nonred}}$. Before now, there has been proved by Cohn in [\[3\]](#page-16-1) that $\begin{bmatrix} 3-\theta & 2+\theta \\ -3-2\theta & 5-2\theta \end{bmatrix} \notin \text{GE}_2(\mathbb{Z}\left[\mathcal{C}\theta\right]).$

Fig. 4. The marked point represents Cohn's example. The number of reductions is presented, the white zone with 0 is \mathcal{Z}_{nonred} .

Fig. 5. The marked point represents Tuler's example. The number of reductions is presented, the white zone with 0 is $\mathcal{Z}_{\text{nonred}}$.

Example 3 (Tuler's example [\[5](#page-16-5)]). Let $d = -37$, $C = 1$, $A = [297 - \theta]$. We have $P(\mathcal{Z}_{nonred}) = 1 - \frac{1}{2}\sqrt{\frac{3}{37}} - \frac{\pi}{3\sqrt{37}} \approx 0.685468$. We find $\Sigma = \left[\frac{31}{86}, \frac{29}{86}\right] \in \mathcal{Z}_{nonred}$. Before now, there has be proved by R. Tuler in [\[5\]](#page-16-5) that $\left[\begin{array}{cc} 29 & 7-\theta \\ 7+\theta & 3 \end{array}\right] \notin \text{GE}_2(\mathbb{Z}\left[\text{C}\theta\right]).$

References

- [1] Z.I. Borevich, I.R. Shafarevich, Number Theory, Academic Press Inc., New York, 1966. (translation from Russian).
- [2] W.C. Brown, Matrices over Commutative Rings, Marcel Dekker, 1993.
- [3] P.M. Cohn, On the structure of *GL*² of a ring, Publ. Math. de l'I.H.É.S. 30 (1966) 5–53.
- [4] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, second ed., PWN – Polish Scientific Publishers, Springer-Verlag, 1990.
- [5] R. Tuler, Detecting products of elementary matrices in *GL*2(Z[√*d*]), Proc. Amer. Math. Soc. 89 (1) (1983) 45–48.