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1. Introduction

The Laplace transform provides an effective method for solving linear differential equations with constant coefficients and
certain integral equations, while the Z -transform, which can be considered as a discrete version of the Laplace transform,
is well suitable for linear recurrence relations and certain summation equations. The theory of Laplace transforms on time
scales, which is intended to unify and to generalize the continuous and discrete cases, was initiated by Hilger [12] and then
developed by Peterson and the authors [4–6].

In general, when we solve an equation (differential or integral) by the method of integral transformations, we match the
transforms that occur in it with a table of known transforms and we implicitly assume a uniqueness theorem, i.e., that no
two different functions have the same transform. The uniqueness theorem is essential for the existence of a well-defined
inverse transform. Another question is to find a formula for the inverse transform. These problems turned out to be difficult
for the Laplace transform on arbitrary time scales. Therefore, we undertake in the present paper to elucidate them in the
case of the particular time scales hZ and qN0 .

In a recent paper [4], the authors have introduced the concept of convolution of two functions defined on an arbitrary
time scale and proved the convolution theorem stating that the Laplace transform of the convolution of two functions equals
the product of the Laplace transforms of the functions. In the present paper, we also illustrate this general result for the
two interesting special cases of time scales hZ and qN0 .

The paper is organized as follows. Following [4–6], we present in Section 2 a definition of the exponential function on
an arbitrary time scale T and give some properties of the exponential function, whereas in Section 3 we present definitions
of the Laplace transform and the convolution of two functions on an arbitrary time scale. In Sections 4 and 5, we specify
the concepts from Sections 2 and 3 for the particular time scales T = hZ and T = qN0 , respectively. The inversion of the
Laplace transform for these particular cases is considered more carefully.
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Note that the contents of Section 4 is closely connected to the classical Z -transform (for the Z -transform and its appli-
cations see [14]). Various versions of the q-Laplace transform and their applications were earlier considered in [1–3,8–10].
Our definition of the q-Laplace transform turns out to be different from those.

2. The exponential function

For the usual notions and notations connected to time scales calculus, we refer the reader to Appendix A at the end of
this paper.

Let T be a time scale with the forward jump operator σ and the delta differentiation operator �. Let μ(t) = σ(t) − t for
all t ∈ T. A function p : T → C is called regressive if

1 + μ(t)p(t) �= 0 for all t ∈ T.

The set of all regressive and rd-continuous functions f : T → C will be denoted by R. The set R forms an Abelian group
under the addition ⊕ defined by

(p ⊕ q)(t) = p(t) + q(t) + μ(t)p(t)q(t) for all t ∈ T.

The additive inverse of p in this group is denoted by �p, and it is given by

(�p)(t) = − p(t)

1 + μ(t)p(t)
for all t ∈ T.

We then define the “circle minus” subtraction � on R by

(p � q)(t) = (
p ⊕ (�q)

)
(t) = p(t) − q(t)

1 + μ(t)q(t)
for all t ∈ T.

It follows directly from the definitions that

p � p = 0, �(�p) = p, �(p � q) = q � p, �(p ⊕ q) = (�p) ⊕ (�q).

The group (R,⊕) is called the regressive group. Suppose p ∈ R and fix t0 ∈ T. Then the initial value problem

y� = p(t)y, y(t0) = 1 (2.1)

has a unique solution on T (see [5, Theorem 5.8]).

Definition 2.1. If p ∈ R and t0 ∈ T, then the unique solution of the initial value problem (2.1) is called the exponential
function and denoted by ep(·, t0).

In the following theorem we collect some important properties of the exponential function. Their proofs can be found in
[5, Theorems 2.36 and 2.39].

Theorem 2.2. If p,q ∈ R, then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

(ii) ep(σ (t), s) = [1 + μ(t)p(t)]ep(t, s) and ep(t, σ (s)) = ep(t,s)
1+μ(s)p(s) ;

(iii) ep(t, s) = 1
ep(s,t) = e�p(s, t);

(iv) ep(t, s)ep(s, r) = ep(t, r);
(v) ep(t, s)eq(t, s) = ep⊕q(t, s);

(vi) ep(t,s)
eq(t,s) = ep�q(t, s);

(vii) (ep(·, s))�(t) = p(t)ep(t, s) and (ep(s, ·))�(t) = −p(t)ep(s, σ (t));

(viii) ( 1
ep(·,s) )

�(t) = − p(t)
ep(σ (t),s) .

Note that if T = R, then we have for all t ∈ T that σ(t) = t , μ(t) = 0, and y� = y′ is the usual derivative. Therefore, in
this case for any function p : T → C and t, t0 ∈ T we have

ep(t, t0) = exp

{ t∫
t0

p(τ )dτ

}
.

In particular, for any complex constant α, we have

eα(t, t0) = eα(t−t0).
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3. The Laplace transform

Let T be a time scale such that sup T = ∞ and fix t0 ∈ T. Below we assume that z is a complex constant which is
regressive, that is, 1 + μ(t)z �= 0 for all t ∈ T. Then also �z ∈ R and therefore e�z is well defined on T.

Definition 3.1. Suppose x : [t0,∞)T → C is a locally �-integrable function, i.e., it is �-integrable over each compact subin-
terval of [t0,∞)T . Then the Laplace transform of x is defined by

L{x}(z) =
∞∫

t0

x(t)e�z
(
σ(t), t0

)
�t for z ∈ D{x}, (3.1)

where D{x} consists of all complex numbers z ∈ R for which the improper �-integral exists.

The following two concepts are introduced and investigated by the authors in [4].

Definition 3.2. For a given function f : [t0,∞)T → C, its shift (or delay) f̂ (t, s) is defined as the solution of the problem

f̂ �t
(
t,σ (s)

) = − f̂ �s (t, s), t, s ∈ T, t � s � t0,

f̂ (t, t0) = f (t), t ∈ T, t � t0. (3.2)

Definition 3.3. For given functions f , g : [t0,∞)T → C, their convolution f ∗ g is defined by

( f ∗ g)(t) =
t∫

t0

f̂
(
t,σ (s)

)
g(s)�s, t ∈ T, t � t0, (3.3)

where f̂ is the shift of f introduced in Definition 3.2.

Note that if T = R, then �z = −z, σ(t) = t ,

e�z
(
σ(t), t0

) = e−z(t−t0),

and (3.1) with t0 = 0 becomes the usual Laplace transform

L{x}(z) =
∞∫

0

x(t)e−zt dt.

The problem (3.2) takes the form

∂ f̂ (t, s)

∂t
= −∂ f̂ (t, s)

∂s
, f̂ (t, t0) = f (t),

and its unique solution is f̂ (t, s) = f (t − s + t0). Therefore the definition (3.3) with t0 = 0 takes in this case the form

( f ∗ g)(t) =
t∫

0

f (t − s)g(s)ds.

4. The h-Laplace transform

In this section we consider the time scale

T = hZ = {hk: k ∈ Z},
where h is a fixed positive real number and Z denotes the set of all integers. Then we have

σ(t) = t + h and μ(t) = h.

For a function f : hZ → C we have

f �(t) = f (t + h) − f (t)
for all t ∈ hZ.
h



78 M. Bohner, G.Sh. Guseinov / J. Math. Anal. Appl. 365 (2010) 75–92
Therefore for any complex number z, the initial value problem

y� = zy, t ∈ T, y(t0) = 1

takes the form

y(t + h) = (1 + hz)y(t), t ∈ hZ, y(t0) = 1.

Hence ez(t, t0) has (for z �= −1/h) the form

ez(t, t0) = (1 + hz)
t−t0

h for all t ∈ hZ.

Next, we have

�z = − z

1 + μ(t)z
= − z

1 + hz

so that the initial value problem

y� = (�z)(t)y, t ∈ T, y(t0) = 1

takes the form

f (t + h) = 1

1 + hz
y(t), t ∈ hZ, y(t0) = 1.

Hence e�z(t, t0) has (again for z �= −1/h) the form

e�z(t, t0) = (1 + hz)−
t−t0

h for all t ∈ hZ.

Consequently, for any function x : [t0,∞)hZ → C, its Laplace transform x̃(z) has, according to (3.1), the form

x̃(z) = L{x}(z) = h
∑

t∈[t0,∞)hZ

x(t)(1 + hz)−
t+h−t0

h

= h
∑

t∈[0,∞)hZ

x(t + t0)(1 + hz)−
t+h

h

= h
∞∑

k=0

x(kh + k0h)

(1 + hz)k+1
= h

1 + hz

∞∑
k=0

x(kh + k0h)

(1 + hz)k
,

where we have put k0 = t0/h so that k0 ∈ Z. It is clear from the latter formula that the case t0 �= 0 does not essentially
differ from the case t0 = 0. Thus we arrive at the following definition.

Definition 4.1. If x : hN0 → C is a function, then its h-Laplace transform is defined by

x̃(z) = L{x}(z) = h

1 + hz

∞∑
k=0

x(kh)

(1 + hz)k
(4.1)

for those values of z �= −1/h for which this series converges.

Setting

h∗ = −1

h
, (4.2)

we can rewrite the formula (4.1) in the form

x̃(z) = L{x}(z) = 1

z − h∗

∞∑
k=0

x(kh)

hk(z − h∗)k
. (4.3)

Remark 4.2. The classical Z -transform of a sequence {x(k)}∞k=0 is defined by (see [14])

Z{x}(z) =
∞∑ x(k)

zk
.

k=0
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Our definition (4.3) shows that in the case h = 1 we have

L{x}(z) = Z{x}(z + 1)

z + 1
.

Let us now set

R = lim sup
k→∞

k
√∣∣x(kh)

∣∣. (4.4)

Note that the number R in general may depend on h. If 0 < R < ∞, then the series (4.3) converges in the region |z − h∗| >
R/h and diverges for |z − h∗| < R/h. If R = 0, then the series (4.3) converges everywhere with the possible exception of the
point z = h∗ . Finally, if R = ∞, then the series (4.3) diverges everywhere.

Let us present some useful properties of the h-Laplace transform.

Theorem 4.3 (Shifting Theorem). If

L
{

x(kh)
}
(z) = x̃(z) for |z − h∗| > A,

then, for the same values of z,

L
{

x(kh + h)
}
(z) = (1 + hz)x̃(z) − hx(0) (4.5)

and

L
{

x(kh + 2h)
}
(z) = (1 + hz)2x̃(z) − h(1 + hz)x(0) − hx(h). (4.6)

Proof. Indeed,

L
{

x(kh + h)
}
(z) = 1

z − h∗

∞∑
k=0

x(kh + h)

hk(z − h∗)k
= 1

z − h∗

∞∑
k=1

x(kh)

hk−1(z − h∗)k−1

= h
∞∑

k=1

x(kh)

hk(z − h∗)k
= h

∞∑
k=0

x(kh)

hk(z − h∗)k
− hx(0)

= h(z − h∗)x̃(z) − hx(0) = (hz + 1)x̃(z) − hx(0)

so that (4.5) holds. Formula (4.6) is obtained by applying (4.5) twice. �
Theorem 4.4 (Initial Value and Final Value Theorem). We have the following:

(a) If x̃(z) exists for |z − h∗| > A, then

x(0) = lim
z→∞

{
zx̃(z)

}
.

(b) If x̃(z) exists for |z − h∗| > h−1 and zx̃(z) is analytic at z = 0, then

lim
k→∞

x(kh) = lim
z→0

{
zx̃(z)

}
.

Proof. Part (a) follows immediately from the definition (4.1) of the h-Laplace transform. To prove (b), consider

L
{

x(kh + h) − x(kh)
}
(z) = 1

z − h∗

∞∑
k=0

x(kh + h) − x(kh)

hk(z − h∗)k

= h

1 + hz

∞∑
k=0

x(kh + h) − x(kh)

(1 + hz)k
.

By using the shifting theorem (Theorem 4.3), we have

L
{

x(kh + h) − x(kh)
}
(z) = L

{
x(kh + h)

}
(z) − L

{
x(kh)

}
(z)

= (1 + hz)x̃(z) − hx(0) − x̃(z) = hzx̃(z) − hx(0).

Therefore
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(1 + hz)
[
zx̃(z) − x(0)

] =
∞∑

k=0

x(kh + h) − x(kh)

(1 + hz)k
.

Hence, for any n ∈ N0,

(1 + hz)
[
zx̃(z) − x(0)

] −
n∑

k=0

x(kh + h) − x(kh)

(1 + hz)k
=

∞∑
k=n+1

x(kh + h) − x(kh)

(1 + hz)k
.

Next,

n∑
k=0

x(kh + h) − x(kh)

(1 + hz)k
=

n∑
k=0

x(kh + h)

(1 + hz)k
−

n∑
k=0

x(kh)

(1 + hz)k

= −x(0) +
n∑

j=1

x( jh)

[
1

(1 + hz) j−1
− 1

(1 + hz) j

]
+ x(nh + h)

(1 + hz)n

= −x(0) + hz
n∑

j=1

x( jh)

(1 + hz) j
+ x(nh + h)

(1 + hz)n
.

Thus

(1 + hz)
[
zx̃(z) − x(0)

] + x(0) − x(nh + h)

(1 + hz)n
− hz

n∑
j=1

x( jh)

(1 + hz) j

=
∞∑

k=n+1

x(kh + h) − x(kh)

(1 + hz)k
. (4.7)

Now choosing a sufficiently large value of n ∈ N0, we can make the absolute value of the right-hand side of (4.7) less than
an arbitrarily given ε > 0, uniformly with respect to z in a small neighbourhood of z = 0. Then we pass to the limit in (4.7)
as z → 0. These reasonings complete the proof of part (b). �

For the case T = hZ, the shifting problem (3.2) takes the form

f̂ (t + h, s + h) = f̂ (t, s), t, s ∈ hZ, t � s � t0,

f̂ (t, t0) = f (t), t ∈ hZ, t � t0,

where f : [t0,∞)hZ → C is a given function. The unique solution of this problem is

f̂ (t, s) = f (t − s + t0).

Therefore, for given functions f , g : [t0,∞)hZ → C, their convolution f ∗ g is, according to (3.3),

( f ∗ g)(t) = h
∑

s∈[t0,t)hZ

f (t − s − h + t0)g(s) for t ∈ hZ, t � t0.

In the case t0 = 0, this formula yields the following definition.

Definition 4.5. For given functions f , g : hN0 → C, their convolution f ∗ g is defined by

( f ∗ g)(t) = h
∑

s∈[0,t)hN0

f (t − s − h)g(s) for t ∈ hN0,

i.e.,

( f ∗ g)(kh) = h
k−1∑
m=0

f (kh − mh − h)g(mh) for k ∈ N0,

where the value of the sum for k = 0 is understood to be zero and N0 denotes the set of all nonnegative integers.
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It is easy to see that the convolution product is commutative and associative (i.e., f ∗ g = g ∗ f and ( f ∗ g) ∗ u =
f ∗ (g ∗ u)).

Theorem 4.6 (Convolution Theorem). If L{ f }(z) exists for |z − h∗| > A and L{g}(z) exists for |z − h∗| > B, then

L{ f ∗ g}(z) = L{ f }(z)L{g}(z) for |z − h∗| > max{A, B}.

Proof. For |z − h∗| > max{A, B}, we have

L{ f }(z)L{g}(z) = 1

z − h∗

{ ∞∑
j=0

f ( jh)

h j(z − h∗) j

}
1

z − h∗

{ ∞∑
m=0

g(mh)

hm(z − h∗)m

}

= h

z − h∗

∞∑
j=0

∞∑
m=0

f ( jh)g(mh)

h j+m+1(z − h∗) j+m+1
,

and if we put j + m + 1 = k, then we obtain

L{ f }(z)L{g}(z) = h

z − h∗

∞∑
j=0

∞∑
k= j+1

f ( jh)g(kh − jh − h)

hk(z − h∗)k
.

Interchanging the order of summation yields

L{ f }(z)L{g}(z) = 1

z − h∗

∞∑
k=1

{
h

k−1∑
j=0

f ( jh)g(kh − jh − h)

}
1

hk(z − h∗)k

= 1

z − h∗

∞∑
k=1

{
h

k−1∑
m=0

f (kh − mh − h)g(mh)

}
1

hk(z − h∗)k

= 1

z − h∗

∞∑
k=0

{
h

k−1∑
m=0

f (kh − mh − h)g(mh)

}
1

hk(z − h∗)k

= L{ f ∗ g}(z).

This completes the proof. �
Now we consider the inverse problem, i.e., given x̃(z), find x(t). For the existence of a well-defined inverse transform, the

uniqueness property must hold: If there are two functions x and y for which x̃(z) ≡ ỹ(z), then we must have x(t) ≡ y(t).
Equivalently, if x̃(z) ≡ 0, then we must have x(t) ≡ 0.

Let x : hN0 → C be a function and R be defined by (4.4) and h∗ be defined by (4.2). Suppose R < ∞.

Lemma 4.7. For each A > R/h, the series (4.3) converges uniformly in the region |z − h∗| � A.

Proof. It follows from A > R/h that there exists ε > 0 such that

A >
R + ε

h
.

Next, for this ε we can find by (4.4) a positive integer m such that∣∣x(kh)
∣∣ � (R + ε)k for all k � m.

Then for |z − h∗| � A we have∣∣∣∣∣
∞∑

k=m

x(kh)

hk(z − h∗)k

∣∣∣∣∣ �
∞∑

k=m

|x(kh)|
hk|z − h∗|k

�
∞∑

k=m

(R + ε)k

hk Ak
=

(
1 − R + ε

h A

)−1( R + ε

h A

)m

→ 0 as m → ∞.

This means that the series (4.3) converges uniformly in the region |z − h∗| � A. �
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Theorem 4.8 (Uniqueness Theorem). Let x̃(z) be defined by (4.3). If x̃(z) ≡ 0 for |z − h∗| > R/h, then x(t) ≡ 0 for t ∈ hN0 .

Proof. By the assumption, we have

x(0) + x(h)

h(z − h∗)
+ x(2h)

h2(z − h∗)2
+ · · · ≡ 0 for |z − h∗| > R

h
. (4.8)

Passing in (4.8) to the limit as |z| → ∞ (we can take a term-by-term limit in (4.8) due to the uniform convergence proved
in Lemma 4.7), we get x(0) = 0. Now we multiply the remaining equation (4.8) by z − h∗ and pass to the limit as |z| → ∞
to obtain x(h) = 0. Repeating this procedure we find x(0) = x(h) = x(2h) = · · · = 0. �
Theorem 4.9. Let x̃(z) be defined by (4.3) and A be a real number such that A > R/h. Then

x(kh) = hk

2π i

∫
Γ

(z − h∗)kx̃(z)dz for k ∈ N0, (4.9)

where Γ denotes the positively oriented circle {z ∈ C: |z − h∗| = A}.

Proof. For any j ∈ N0, we have from (4.3) that

(z − h∗) j x̃(z) =
∞∑

k=0

x(kh)

hk
(z − h∗) j−k−1.

Integrating both sides over the circle Γ and noting that we can integrate under the sum sign by the uniform convergence
of the series, we obtain∫

Γ

(z − h∗) j x̃(z)dz =
∞∑

k=0

x(kh)

hk

∫
Γ

(z − h∗) j−1−k dz.

Since ∫
Γ

(z − h∗) j−1−k dz =
{

2π i if k = j,

0 if k �= j,

the latter implies∫
Γ

(z − h∗) j x̃(z)dz = 2π i
x( jh)

h j
.

This concludes the proof. �
Theorem 4.9 means that the inverse of the h-Laplace transform is given by the formula

L−1{x̃}(kh) = hk

2π i

∫
Γ

(z − h∗)kx̃(z)dz for k ∈ N0.

5. The q-Laplace transform

In this section we consider the time scale

T = qN0 = {
qk: k ∈ N0

} = {
1,q,q2,q3, . . .

}
,

where q > 1 is a fixed number. Calculus on this time scale is called quantum calculus, see [13]. On this time scale we have

σ(t) = qt and μ(t) = (q − 1)t.

For a function f : qN0 → C its �-derivative (also called q-derivative or Jackson derivative) is

f �(t) = f (qt) − f (t)

(q − 1)t
for all t ∈ qN0 . (5.1)

Therefore for any complex number z, the initial value problem
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y�(t) = zy(t), y(s) = 1, t, s ∈ T

becomes

y(qt) = (1 + q′tz)y(t), y(s) = 1, t, s ∈ qN0 ,

where q′ = q − 1. It follows that if we put

t = qn and s = qm with m,n ∈ N0,

then ez(t, s) has the form

ez
(
qn,qm) =

n−1∏
k=m

(
1 + q′qkz

)
if n � m (5.2)

and

ez
(
qn,qm) = 1∏m−1

k=n (1 + q′qkz)
if n � m, (5.3)

where the products for n = m are understood, as usual, to be 1. Next we will assume that

z �= − 1

q′qk
for all k ∈ N0. (5.4)

Since

(�z)(t) = − z

1 + μ(t)z
= − 1

1 + (q − 1)tz
= − 1

1 + q′tz
,

the initial value problem

y�(t) = (�z)(t)y(t), y(s) = 1, t, s ∈ T

becomes

y(qt) = 1

1 + q′tz
y(t), y(s) = 1, t, s ∈ qN0 .

It follows that e�z(qn,qm), where m,n ∈ N0 and z satisfies (5.4), has the form

e�z
(
qn,qm) = 1∏n−1

k=m(1 + q′qkz)
if n � m (5.5)

and

e�z
(
qn,qm) =

m−1∏
k=n

(
1 + q′qkz

)
if n � m.

Comparing these with (5.2) and (5.3), we see that, as is expected,

e�z
(
qn,qm) = 1

ez(qn,qm)
.

Taking into account the general definition (3.1) of the Laplace transform and (5.5), we get that for any function
x : [t0,∞)qN0 → C with t0 ∈ qN0 , its Laplace transform has the form

x̃(z) = L{x}(z) =
∑

t∈[t0,∞)
qN0

μ(t)e�z(qt, t0)x(t)

= (q − 1)

∞∑
n=n0

qne�z
(
qn+1,qn0

)
x
(
qn) = q′

∞∑
n=n0

qnx(qn)∏n
k=n0

(1 + q′qkz)
.

Thus, taking t0 = 1, i.e., n0 = 0, we can introduce the following definition.



84 M. Bohner, G.Sh. Guseinov / J. Math. Anal. Appl. 365 (2010) 75–92
Definition 5.1. If x : qN0 → C is a function, then its q-Laplace transform is defined by

x̃(z) = L{x}(z) = q′
∞∑

n=0

qnx(qn)∏n
k=0(1 + q′qkz)

(5.6)

for those values of z �= −1/q′qk , k ∈ N0, for which this series converges, where q′ = q − 1.

Let us set

Pn(z) =
n∏

k=0

(
1 + q′qkz

)
, n ∈ N0, (5.7)

which is a polynomial in z of degree n + 1. It is easily verified that the equations

Pn(z) − Pn−1(z) = zq′qn Pn−1(z), n ∈ N0 (5.8)

and

1

Pn−1(z)
− 1

Pn(z)
= z

q′qn

Pn(z)
, n ∈ N0 (5.9)

hold, where P−1(z) = 1. The numbers

αk = − 1

q′qk
, k ∈ N0,

where q′ = q − 1, belong to the real axis interval [−(q − 1)−1,0) and tend to zero as k → ∞. For any δ > 0 and k ∈ N0, we
set

Dk
δ = {

z ∈ C: |z − αk| < δ
}

and

Ωδ = C \
∞⋃

k=0

Dk
δ = {

z ∈ C: |z − αk| � δ, ∀k ∈ N0
}

so that Ωδ is a closed domain of the complex plane C, whose points are in distance not less than δ from the set
{αk: k ∈ N0}.

Lemma 5.2. For any z ∈ Ωδ ,∣∣Pn(z)
∣∣ � (q′δ)n+1q

n(n+1)
2 , n ∈ N0 ∪ {−1}. (5.10)

Therefore, for an arbitrary number R > 0, there exists a positive integer n0 = n0(R, δ,q) such that∣∣Pn(z)
∣∣ � Rn+1 for all n � n0 and z ∈ Ωδ. (5.11)

In particular,

lim
n→∞ Pn(z) = ∞ for all z ∈ Ωδ. (5.12)

Proof. For any z ∈ Ωδ , we have∣∣Pn(z)
∣∣ =

∣∣∣∣∣
n∏

k=0

(
1 + q′qkz

)∣∣∣∣∣ =
∣∣∣∣∣

n∏
k=0

q′qk(z − αk)

∣∣∣∣∣
�

n∏
k=0

q′qkδ = (q′δ)n+1
n∏

k=0

qk = (q′δ)n+1q
n(n+1)

2 .

Hence (5.10) holds. Further, we can rewrite (5.10) in the form∣∣Pn(z)
∣∣ �

(
q′δq

n
2
)n+1

.

On the other hand, since q > 1, we can choose for any given number R > 0 a positive integer n0 = n0(R, δ,q) such that

q′δq
n
2 � R for all n � n0.

Therefore (5.11) follows. �
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Example 5.3. First we find the q-Laplace transform of x(t) ≡ 1. We have, using (5.6), (5.7), (5.9), and (5.12),

L{1}(z) = q′
∞∑

n=0

qn

Pn(z)
= 1

z

∞∑
n=0

[
1

Pn−1(z)
− 1

Pn(z)

]

= 1

z
lim

m→∞

[
1 − 1

Pm(z)

]
= 1

z
.

Now we find the q-Laplace transform of the function eα(t) = eα(t,1), for which we have by (5.2) and (5.7),

eα

(
qn) =

n−1∏
k=0

(
1 + q′qkα

) = Pn−1(α) for n ∈ N0.

It follows that

ẽα(z) = L{eα}(z) = q′
∞∑

n=0

qneα(qn)

Pn(z)
= q′

∞∑
n=0

qn Pn−1(α)

Pn(z)

= q′
∞∑

n=0

qn

1 + q′qnz

n−1∏
k=0

1 + q′qkα

1 + q′qkz
= q′

∞∑
n=0

qn

1 + q′qnz

n−1∏
k=0

α − αk

z − αk
. (5.13)

Since the numbers αk , k ∈ N0, are contained in the finite interval [−(q − 1)−1,0), there is a sufficiently large number R0 > 0
such that∣∣∣∣α − αk

z − αk

∣∣∣∣ � 1

2
for all |z| � R0 and k ∈ N0. (5.14)

Therefore the series (5.13) converges for |z| � R0. Next, we can write, using (5.9),

ẽα(z) = q′
∞∑

n=0

qn Pn−1(α)

Pn(z)
= q′

P0(z)
+ q′

∞∑
n=1

qn Pn−1(α)

Pn(z)

= q′

P0(z)
+ 1

z

∞∑
n=1

[
Pn−1(α)

Pn−1(z)
− Pn−1(α)

Pn(z)

]

= q′

P0(z)
+ 1

z

∞∑
n=1

[
(1 + q′qn−1α)Pn−2(α)

Pn−1(z)
− Pn−1(α)

Pn(z)

]

= q′

P0(z)
+ 1

z

∞∑
n=1

[
Pn−2(α)

Pn−1(z)
− Pn−1(α)

Pn(z)

]
+ αq′

z

∞∑
n=1

qn−1 Pn−2(α)

Pn−1(z)

= q′

P0(z)
+ 1

zP0(z)
− 1

z
lim

m→∞
Pm−1(α)

Pm(z)
+ α

z
ẽα(z)

= 1

z
+ α

z
ẽα(z),

where we have used the fact that

lim
m→∞

Pm−1(α)

Pm(z)
= 0

because of

Pm−1(α)

Pm(z)
= 1

1 + q′qmz

m−1∏
k=0

α − αk

z − αk

and (5.14). Thus, we have obtained the equality

ẽα(z) = 1

z
+ α

z
ẽα(z).

Hence

ẽα(z) = 1

z − α
.
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Theorem 5.4. If the function x : qN0 → C satisfies the condition∣∣x(qn)∣∣ � C Rn for all n ∈ N0, (5.15)

where C and R are some positive constants, then the series in (5.6) converges uniformly with respect to z in the region Ωδ and therefore
its sum x̃(z) is an analytic (holomorphic) function in Ωδ .

Proof. By Lemma 5.2, for the number R given in (5.15), we can choose an n0 ∈ N such that∣∣Pn(z)
∣∣ �

[
q(1 + R)

]n+1
for all n � n0 and z ∈ Ωδ.

Then for the general term of the series in (5.6), we have the estimate∣∣∣∣qnx(qn)

Pn(z)

∣∣∣∣ � C

q(1 + R)

(
R

1 + R

)n

for all n � n0 and z ∈ Ωδ.

Hence the proof is completed. �
A larger class of functions for which the q-Laplace transform exists is the class Fδ of functions x : qN0 → C satisfying the

condition

∞∑
n=0

(q′δ)−nq− n(n−1)
2

∣∣x(qn)∣∣ < ∞. (5.16)

Theorem 5.5. For any x ∈ Fδ , the series in (5.6) converges uniformly with respect to z in the region Ωδ , and therefore its sum x̃(z) is
an analytic function in Ωδ .

Proof. The proof follows from (5.10). �
Theorem 5.6. Let x� be the q-derivative of x, defined by (5.1). Suppose that x ∈ Fδ . Then

L
{

x�
}
(z) = zx̃(z) − x(1) (5.17)

and

L
{

x��
}
(z) = z2x̃(z) − zx(1) − x�(1). (5.18)

Proof. Using the definition (5.6) of the q-Laplace transform, we have

L
{

x�
}
(z) = q′

∞∑
n=0

qnx�(qn)

Pn(z)
=

∞∑
n=0

x(qn+1) − x(qn)

Pn(z)

=
∞∑

n=0

x(qn+1)

Pn(z)
−

∞∑
n=0

x(qn)

Pn(z)
=

∞∑
n=0

x(qn+1)

Pn+1(z)

(
1 + q′qn+1z

) −
∞∑

n=0

x(qn)

Pn(z)

=
∞∑

n=0

x(qn+1)

Pn+1(z)
−

∞∑
n=0

x(qn)

Pn(z)
+ q′z

∞∑
n=0

qn+1x(qn+1)

Pn+1(z)

= − x(q0)

P0(z)
+ z

[
x̃(z) − q′x(q0)

P0(z)

]
= − (1 + q′z)x(q0)

P0(z)
+ zx̃(z) = −x(1) + zx̃(z)

so that (5.17) holds. The formula (5.18) is obtained by applying (5.17) to the second derivative x�� . �
Theorem 5.7 (Initial Value and Final Value Theorem). We have the following:

(a) If x ∈ Fδ for some δ > 0, then

x(1) = lim
z→∞

{
zx̃(z)

}
. (5.19)
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(b) If x ∈ Fδ for all δ > 0, then

lim
n→∞ x

(
qn) = lim

z→0

{
zx̃(z)

}
. (5.20)

Proof. Assume x ∈ Fδ for some δ > 0. It follows from (5.6) that

x̃(z) = q′x(1)

1 + q′z
+ q′qx(q)

(1 + q′z)(1 + q′qz)
+ q′q2x(q)

(1 + q′z)(1 + q′qz)(1 + q′q2z)
+ · · ·

and

(1 + q′z)x̃(z) = q′x(1) + q′qx(q)

1 + q′qz
+ q′q2x(q)

(1 + q′qz)(1 + q′q2z)
+ · · · .

Hence

lim
z→∞ x̃(z) = 0 and lim

z→∞
{
(1 + q′z)x̃(z)

} = q′x(1),

which yields (5.19). Note that we have taken a term-by-term limit due to the uniform convergence of the series in the
region Ωδ .

Next, assume x ∈ Fδ for all δ > 0. In the proof of Theorem 5.6 we have obtained the formula

∞∑
n=0

x(qn+1) − x(qn)

Pn(z)
= zx̃(z) − x(1).

Further we can argue as in the proof of Theorem 4.4(b) taking into account that

lim
z→0

Pn(z) = 1 for any n ∈ N0

and that for any δ > 0 there is a positive integer n0 = n0(δ) such that |Pn(z)| � 2n+1 for all n � n0 and all z ∈ Ωδ . �
For the case T = qN0 , the shifting problem (3.2) with t0 = 1 takes the form

s
[

f̂ (qt,qs) − f̂ (t,qs)
] + t

[
f̂ (t,qs) − f̂ (t, s)

] = 0, t, s ∈ qN0 , t � s,

f̂ (t,1) = f (t), t ∈ qN0 , (5.21)

where f : qN0 → C is a given function. The unique solution of this problem is obtained as follows (see [4, Section 6]). Let
us use the notation from [13], in particular

[α] = [α]q = qα − 1

q − 1
, α ∈ R,

[n]! =
n∏

k=1

[k],
[

n
m

]
= [n]!

[m]![n − m]! , m,n ∈ N0,

(t − s)n
q =

n−1∏
k=0

(
t − qks

)
, t, s ∈ T, n ∈ N0,

with [0]! = 1 and (t − s)0
q = 1. Then if t, s ∈ qN0 and t � s, so that t = qks for some k ∈ N0, we have by [4]

f̂ (t, s) = f̂
(
qks, s

) =
k∑

ν=0

[
k
ν

]
sν(1 − s)k−ν

q f
(
qν

)
=

k∑
ν=0

f
(
qν

)[
k
ν

]
sν

k−ν−1∏
j=0

(
1 − q js

)
.

Hence, if we put t = qn and s = qm for m,n ∈ N0 with n � m, then we get

f̂
(
qn,qm) =

n−m∑
ν=0

[
n − m

ν

]
qmν

(
1 − qm)n−m−ν

q f
(
qν

)
=

n−m∑
f
(
qν

)[
n − m

ν

]
qmν

n−m−ν−1∏ (
1 − qm+ j) (5.22)
ν=0 j=0
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for any n � m � 0. Therefore, according to the general definition (3.3) of the convolution, we can introduce the following
definition.

Definition 5.8. For given functions f , g : qN0 → C, their convolution f ∗ g is defined by

( f ∗ g)
(
qn) = (q − 1)

n−1∑
k=0

qk f̂
(
qn,qk+1)g

(
qk)

= (q − 1)

n−1∑
k=0

qk

{
n−k−1∑
ν=0

f
(
qν

)[
n − k − 1

ν

]
q(k+1)ν

n−k−ν−2∏
j=0

(
1 − qk+ j+1)}g

(
qk)

with ( f ∗ g)(q0) = 0, where n ∈ N0.

Theorem 5.9 (Convolution Theorem). Assume that L{ f }(z), L{g}(z), and L{ f ∗ g}(z) exist for a given z ∈ C. Then at the point z,

L{ f ∗ g}(z) = L{ f }(z)L{g}(z). (5.23)

Proof. For brevity let us set

enm(z) = ez
(
qn,qm)

and f̂nm = f̂
(
qn,qm)

.

Then (5.2) gives

enn(z) = 1 for all n ∈ N0, (5.24)

en+1,m(z) = (
1 + q′qnz

)
enm(z) for n,m ∈ N0, n � m, (5.25)

en,m+1(z) = enm(z)

1 + q′qmz
for n,m ∈ N0, n � m + 1, (5.26)

and Eqs. (5.21) can be written as, taking t = qn and s = qm with n � m,

qm( f̂n+1,m+1 − f̂n,m+1) + qn( f̂n,m+1 − f̂nm) = 0, n � m � 0,

f̂n0 = f
(
qn), n ∈ N0. (5.27)

Using definition (5.6) of the q-Laplace transform and Definition 5.8 for the convolution, we have

L{ f ∗ g}(z) = (q − 1)

∞∑
n=1

qn( f ∗ g)(qn)

en+1,0(z)

= (q − 1)2
∞∑

n=1

qn

en+1,0(z)

n−1∑
k=0

qk f̂n,k+1 g
(
qk)

= (q − 1)2
∞∑

k=0

qk g
(
qk) ∞∑

n=k+1

qn f̂n,k+1

en+1,0(z)
.

Substituting here

en+1,0(z) = en+1,k+1(z)ek+1,0(z),

we get

L{ f ∗ g}(z) = (q − 1)2
∞∑

k=0

qk g(qk)

ek+1,0(z)

∞∑
n=k+1

qn f̂n,k+1

en+1,k+1(z)

= L{g}(z) · (q − 1)

∞∑
n=k+1

qn f̂n,k+1

en+1,k+1(z)
. (5.28)

Let us set

ψm =
∞∑ qn f̂nm

en+1,m(z)
, m ∈ N0. (5.29)
n=m
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We will show that ψm is independent of m. Then

(q − 1)

∞∑
n=k+1

qn f̂n,k+1

en+1,k+1(z)
= (q − 1)

∞∑
n=0

qn f̂n0

en+1,0(z)

= (q − 1)

∞∑
n=0

qn f (qn)

en+1,0(z)
= L{ f }(z),

and (5.28) gives (5.23). So, it remains to show that the quantity ψm defined by (5.29) does not depend on m ∈ N0. We have,
putting enm(z) = enm and using (5.27) and (5.24), (5.25), and (5.26),

ψm+1 =
∞∑

n=m+1

qn f̂n,m+1

en+1,m+1
=

∞∑
n=m+1

qn f̂nm + qm f̂n,m+1 − qm f̂n+1,m+1

en+1,m+1

=
∞∑

n=m+1

qn f̂nm

en+1,m+1
− qm

∞∑
n=m+1

[
f̂n+1,m+1

en+1,m+1
− f̂n,m+1

en,m+1
+ f̂n,m+1

en,m+1
− f̂n,m+1

en+1,m+1

]

=
∞∑

n=m+1

qn f̂nm

en+1,m

(
1 + q′qmz

) + qm f̂m+1,m+1

em+1,m+1
− qm

∞∑
n=m+1

f̂n,m+1

en+1,m+1
q′qnz

= (
1 + q′qmz

)
ψm − qm f̂mm

em+1,m

(
1 + q′qmz

) + qm f̂m+1,m+1 − q′qmzψm+1

= (
1 + q′qmz

)
ψm − qm f̂mm + qm f̂m+1,m+1 − q′qmzψm+1

= (
1 + q′qmz

)
ψm − q′qmzψm+1,

where we have used the fact that, as it follows from (5.22), f̂nn = f (1) for all n ∈ N0. Consequently(
1 + q′qmz

)
ψm+1 = (

1 + q′qmz
)
ψm,

and hence ψm+1 = ψm as 1 + q′qmz �= 0 under the condition (5.4). �
Finally we consider the inversion of the q-Laplace transform.

Theorem 5.10 (Uniqueness Theorem). Let x : qN0 → C be a function in the space Fδ , i.e., x satisfies (5.16). Further, let x̃(z) be the
q-Laplace transform of x defined by (5.6) for z ∈ Ωδ . If x̃(z) ≡ 0 for z ∈ Ωδ , then x(qn) = 0 for all n ∈ N0 .

Proof. By the assumption, we have

x(q0)

1 + q′z
+ qx(q)

(1 + q′z)(1 + q′qz)
+ q2x(q)

(1 + q′z)(1 + q′qz)(1 + q′q2z)
+ · · · ≡ 0 (5.30)

for z ∈ Ωδ . Multiplying (5.30) by 1 + q′z and then passing to the limit as |z| → ∞ (we can take a term-by-term limit due to
the uniform convergence proved in Theorem 5.5), we get x(q0) = 0. Now we multiply the remaining equation

qx(q)

(1 + q′z)(1 + q′qz)
+ q2x(q)

(1 + q′z)(1 + q′qz)(1 + q′q2z)
+ · · · ≡ 0

by (1 + q′z)(1 + q′qz) and pass then to the limit as |z| → ∞ to obtain x(q1) = 0. Repeating this procedure, we find that
x(q0) = x(q1) = x(q2) = · · · = 0. �

Theorem 5.10 implies that the inverse q-Laplace transform exists. The following theorem gives an integral formula for
the inverse q-Laplace transform.

Theorem 5.11. Let x ∈ Fδ and x̃(z) be its q-Laplace transform defined by (5.6). Then

x
(
qn) = 1

2π i

∫
Γ

x̃(z)
n−1∏
k=0

(
1 + q′qkz

)
dz for n ∈ N0,

where Γ is any positively oriented closed curve in the region Ωδ that encloses all the points αk = −(q′qk)−1 for k ∈ N0 .
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Proof. For any j ∈ N0 we have from (5.6) that

x̃(z)
j−1∏
k=0

(
1 + q′qkz

) = q′
j−1∑
n=0

qnx
(
qn) j−1∏

k=0
k �=n

(
1 + q′qkz

) + q′q jx(q j)

1 + q′q j z
+ q′

∞∑
n= j+1

qnx(qn)∏n
k= j(1 + q′qkz)

.

Integrating both sides over the curve Γ and noting that we can integrate under the sum signs by the uniform convergence
of the series, we obtain∫

Γ

x̃(z)
j−1∏
k=0

(
1 + q′qkz

)
dz = q′

j−1∑
n=0

qnx
(
qn)∫

Γ

j−1∏
k=0
k �=n

(
1 + q′qkz

)
dz + q′q jx

(
q j)∫

Γ

dz

1 + q′q j z

+ q′
∞∑

n= j+1

qnx
(
qn) ∫

Γ

dz∏n
k= j(1 + q′qkz)

.

Since ∫
Γ

j−1∏
k=0
k �=n

(
1 + q′qkz

)
dz = 0 for j � 0,

∫
Γ

dz

1 + q′q j z
= 2π i

q′q j
for j � 0,

∫
Γ

dz∏n
k= j(1 + q′qkz)

= 0 for j � 0, n � j + 1,

we obtain∫
Γ

x̃(z)
j−1∏
k=0

(
1 + q′qkz

)
dz = 2π ix

(
q j).

Note that we have used the following well-known fact from the theory of complex variable functions: If P (z) is any poly-
nomial of degree � 2 and if Γ is any closed contour that encloses all the roots of the polynomial P (z), then∫

Γ

dz

P (z)
= 0.

This completes the proof. �
6. Concluding remarks

1. It follows from (4.1) (respectively, (5.6)) that the values x̃(mh) (respectively, x̃(qm)) with m ∈ N0 are well defined for
a large class of functions x : hN0 → C (respectively, x : qN0 → C). Reasoning similarly as in the proof of Theorem 4.8 (re-
spectively, Theorem 5.10), taking in that proof z = mh (respectively, z = qm) and letting then m → ∞, we can see that
the sequence {x̃(mh)}m∈N0 (respectively, {x̃(qm)}m∈N0 ) is determined uniquely from the sequence {x(nh)}n∈N0 (respectively,
{x(qn)}n∈N0 ). In connection with this situation, it would be interesting to find an explicit inversion formula expressing x(nh)

(respectively, x(qn)) for each n ∈ N0 in terms of {x̃(mh)}m∈N0 (respectively, {x̃(qm)}m∈N0 ). For the result concerning a similar
problem see Feinsilver [8].

2. We can see from Theorem 4.4(a) (respectively, Theorem 5.7(a)) that no function has its h-Laplace (respectively, q-
Laplace) transform equal to the constant function 1. An important theoretical question is about finding conditions that
guarantee that a certain function is a Laplace transform of some function. In the usual case T = R, there are various criteria
on which one can predetermine whether a given function (analytic in a suitable region) is a Laplace transform. However,
for other examples of the time scale T, including hN0 and qN0 , this problem awaits its investigation.

3. Finally, we note that most of the results concerning the Laplace transform on hN0 and qN0 as given in this paper can be
generalized appropriately to an arbitrary isolated time scale T = {tn}n∈N0 such that

lim
n→∞ tn = ∞ and inf{tn+1 − tn: n ∈ N0} > 0.

This problem will be considered by the authors in a forthcoming paper.
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Appendix A. Some time scale essentials

In this section, for the convenience of the reader, we introduce some basic concepts concerning the calculus on time
scales. A time scale T is an arbitrary nonempty closed subset of the real numbers. Thus the real numbers R, the integers Z,
the natural numbers N, the nonnegative integers N0, the h-numbers hZ = {hk: k ∈ Z} with fixed h > 0, and the q-numbers
qN0 = {qk: k ∈ N0} with fixed q > 1 are examples of time scales, as are

[−1,0] ∪ [1,2], [−1,0] ∪ N, and the Cantor set.

The calculus of time scales was initiated by Stefan Hilger in [11] in order to create a theory that can unify discrete and
continuous analysis. Indeed, below we introduce the delta derivative f � for a function f : T → C, and it turns out that

(i) f �(t) = f ′(t) is the usual derivative if T = R,
(ii) f �(t) = f (t+h)− f (t)

h is the usual forward difference quotient if T = hZ,

(iii) f �(t) = f (qt)− f (t)
(q−1)t is the usual Jackson derivative if T = qN0 .

In [11], Hilger also introduced dynamic equations (or �-differential equations) on time scales in order to unify and extend
the theories of ordinary differential equations and difference equations (including q-difference equations as well). For a
general introduction of the calculus on time scales we refer the reader to the original paper by Hilger [11] and to the
textbooks by Bohner and Peterson [5,7]. Here we give only those notions and notations connected to time scales, which the
reader may need in order to read this paper.

Any time scale T is a complete metric space with the metric (distance) d(t, s) = |t − s| for t, s ∈ T. Consequently, ac-
cording to the well-known theory of general metric spaces, we have for T the fundamental concepts such as open balls
(intervals), neighbourhoods of points, open sets, closed sets, compact sets and so on. In particular, for a given δ > 0, the δ-
neighbourhood Uδ(t) of a given point t ∈ T is the set of all points s ∈ T such that d(t, s) < δ. By a neighbourhood of a point
t ∈ T is meant an arbitrary set in T containing a δ-neighbourhood of the point t . Also we have for functions f : T → C the
concepts of limit, continuity, and the properties of continuous functions on general complete metric spaces (note that, in
particular, any function f : Z → C is continuous at each point of Z). A remarkable circumstance is that, unlike for functions
on general metric spaces, we can introduce and investigate a concept of derivative for functions on time scales. This proves
to be possible due to the special structure of a time scale.

In the definition of the derivative an important rôle played by the so-called forward and backward jump operators.

Definition A.1. Let T be a time scale. We define the forward jump operator σ : T → T by

σ(t) = inf{s ∈ T: s > t} for t ∈ T,

while the backward jump operator ρ : T → T is defined by

ρ(t) = sup{s ∈ T: s < t} for t ∈ T.

In this definition we put in addition σ(max T) = max T if there exists a finite max T, and ρ(min T) = min T if there exists
a finite min T. Next, let t ∈ T. If σ(t) > t , then we say that t is right-scattered, while if ρ(t) < t , then we say that t is
left-scattered. Also, if t < max T and σ(t) = t , then t is called right-dense, while if t > min T and ρ(t) = t , then t is called
left-dense. Points that are right-dense or left-dense are called dense and points that are right-scattered and left-scattered at
the same time are called isolated. Finally, the graininess function μ : T → [0,∞) is defined by

μ(t) = σ(t) − t for all t ∈ T.

Obviously both σ(t) and ρ(t) are in T when t ∈ T. This is because of our assumption that T is a closed subset of R.

Example A.2. If T = R, then σ(t) = t and μ(t) = 0. If T = hZ, then σ(t) = t + h and μ(t) = h. These are time scales with
constant graininess. On the other hand, if T = qN0 with q > 1, then σ(t) = qt and μ(t) = (q − 1)t .

Let T
κ denote Hilger’s truncated (“kappen” = lop off) above set consisting of T except for a possible left-scattered

maximal point. Now we consider a function f : T → C and define the so-called delta (or Hilger) derivative of f at a point
t ∈ T

κ .
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Definition A.3. Assume f : T → C is a function and t ∈ T
κ . Then we define f �(t) to be the number (provided it exists)

with the property that given any ε > 0, there is a neighbourhood U (in T) of t such that∣∣ f
(
σ(t)

) − f (s) − f �(t)
[
σ(t) − s

]∣∣ � ε
∣∣σ(t) − s

∣∣ for all s ∈ U .

We call f �(t) the delta (or Hilger) derivative of f at t .

If t ∈ T \ T
κ , then f �(t) is not uniquely defined, since for such a point t small neighbourhoods U of t consist only of t ,

and besides, we have σ(t) = t . Therefore the requirement in Definition A.3 holds for an arbitrary number f �(t). This is why
we omit a maximal left-scattered point.

The �-integration is defined as the inverse operation to the �-differentiation.

Definition A.4. A function F : T → C is called a �-antiderivative of f : T → C provided F �(t) = f (t) holds for all t ∈ T
κ .

Then we define the �-integral from a to b of f by

b∫
a

f (t)�t = F (b) − F (a) for all a,b ∈ T.

Example A.5. Let a,b ∈ T with a < b. If T = R, then

b∫
a

f (t)�t =
b∫

a

f (t)dt,

where the last integral is the ordinary integral. If T = hZ (with h > 0) and a = hm, b = hn with m < n, then

b∫
a

f (t)�t = h
n−1∑
k=m

f (hk).

Finally, if T = qN0 (with q > 1) and a = qm , b = qn with m < n, then

b∫
a

f (t)�t = (q − 1)

n−1∑
k=m

qk f
(
qk).

In order to describe a class of functions that are “delta integrable”, we introduce the concept of rd-continuity. It turns
out that every rd-continuous function has an antiderivative.

Definition A.6. A function f : T → C is called rd-continuous provided it is continuous at right-dense points in T and its
left-sided limits exist (finite) at left-dense points in T.

For a more general treatment of the delta integral on time scales (Riemann and Lebesgue delta integrals on time scales),
see [7, Chapter 5].
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