Stable Clifford extensions of modules

Ziqun Lu

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

Received 9 September 2005
Available online 17 April 2006
Communicated by Jan Saxl

Let G be a finite group. Let (K, O, F) be a p-modular system, where O is a complete discrete valuation ring, K is the quotient field of R of characteristic 0, and F is the residual field of O of characteristic $p > 0$. We assume that K and F are big enough. Let R be O or F. In this paper, a module means a finitely generated right module. For a subgroup H of G, and for an RG-module X and an RH-module Y, we write X_H for the restriction of X to H and Y^G for the induction of Y to G. When $H \triangleleft G$ and Y is an RH-module, we denote $I_G(Y)$ the inertia subgroup of Y in G.

1. Clifford extensions of indecomposable modules

Let H be a normal subgroup of G, and let W be an indecomposable FH-module. Assume that $I_G(W) = G$. Set $E = \text{End}_{RG}(W^G)$ and $\Lambda = \text{End}_{RH}(W)$. We can write E in the form $E = \sum_{x \in X} E_x$ where $X = G/H$ and E_x is the R-submodule of E mapping $W = W \otimes 1$ to $W \otimes x$ inside W^G, and $E_x \cong \text{Hom}_{RH}(W, Wx)$ (as R-module) by [3, Chapter 4, Lemma 6.4]. Clearly $E_{\tilde{x}}E_{\tilde{y}} \subset E_{\tilde{x} \tilde{y}}$, for $\tilde{x}, \tilde{y} \in X$. Also we can use the stability hypothesis to choose an element $\varphi_{\tilde{x}} \in E_{\tilde{x}}$ mapping $W \otimes 1$ isomorphically onto $W \otimes x$; it follows that $\varphi_{\tilde{x}}$ is a unit in E. Since $E_{\tilde{x}}$ can be identified with Λ, we have $E_{\tilde{x}} = \Lambda \varphi_{\tilde{x}} = \varphi_{\tilde{x}} \Lambda$, so E is a free right Λ-module. The module $E \otimes_{\Lambda} W$ is an E-RG-bimodule with action $(e \otimes w) \cdot y = e \varphi_{\tilde{x}} \otimes \varphi_{\tilde{y}}^{-1}(w \otimes y)$, where $\tilde{y} = yH$, and $e' \cdot (e \otimes w) = e'e \otimes w$. Then we have the following proposition due to Cline.

Proposition 1. [1] There is an E-RG-bimodule isomorphism

$$E \otimes_{\Lambda} W \cong W^G$$

given by $f : e \otimes w \mapsto e(w)$, for $e \in E$ and $w \in W$.

0021-8693/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2006.03.004
By the isomorphism in Proposition 1, the indecomposable direct summands of W^G can be given by the indecomposable direct summands of E.

Proposition 2. [1, Corollary 3.15] *Keep the notation as above. Let $E = \sum \bigoplus U_i$ be a decomposition into indecomposable right E-modules. Then $V^G = \sum \bigoplus U_i W \cong \sum \bigoplus U_i \otimes_A W$ is a decomposition into indecomposable right RG-modules. Moreover, we have that dim$(U_i W) = \text{rank}_A(U_i) \dim(W)$, and that $U_i \cong U_j$ as E-modules if and only if $U_i W \cong U_j W$ as RG-module.*

Let W be a G-invariant indecomposable RH-module with vertex Q. Let W' be the Green correspondent of W with respect to $(H, Q, NH(Q))$. Then $G = HN_G(Q)$ (see Theorem 3), and W' is $N_G(Q)$-invariant. Thus $W^G \cong E \otimes_A W$ as right RG-modules by Proposition 1. Set $E' = \text{End}_{RG(Q)}((W')^{NG(Q)})$, and $A' = \text{End}_{RG(Q)}(W')$. Then $E' \otimes_{A'} W' \cong (W')^{NG(Q)}$ as right $RN_G(Q)$-modules. It is well known that $E' \otimes_{A'} W'$ is an algebra. It can be easily derived from [3, Chapter 4, Lemma 6.4] that $\dim(E' \otimes_{A'} W') = \dim(E \otimes_A W)$. Moreover, we have that $E/J(\Lambda)E$ (respectively $E'/J(\Lambda')E'$) is a twisted group algebra.

We now come to the main result. We are grateful to the referee for pointing out that this already appears without proof in Cline’s paper [2].

Theorem 3. $G = HN_G(Q)$. Under the canonical isomorphism $G/H \cong N_G(Q)/NH(Q)$ (x $H \mapsto xNH(Q)$, $x \in N_G(Q)$), we have $E/J(\Lambda)E \cong E'/J(\Lambda')E'$ as twisted group algebras.

Proof. Since W is G-invariant, Q^x is also a vertex of W for any $x \in G$. But Q^x and Q are conjugate in H, so $x \in HN_G(Q)$. Thus $G = HN_G(Q)$. For convenience, we set $U = N_G(Q)$, $V = NH(Q)$, and fix a set of right coset representatives $H \setminus G = \{ x_1, \ldots, x_n \}$ of H in G with $x_i \in N_G(Q) = U$ ($i = 1, 2, \ldots, n$). Then $\{ x_1, \ldots, x_n \}$ is a set of right coset representatives of V in U. We have $E = \sum x_i \oplus E_{\bar{x}_i}$ (respectively $E' = \sum x_i \oplus E'_{\bar{x}_i}$), where $E_{\bar{x}_i} \cong \text{Hom}_{RG}(W, W)$ (respectively $E'_{\bar{x}_i} \cong \text{Hom}_{RV}(W', W')$), and $E_{\bar{x}_i} \cong \text{Hom}_{RH}(W, Wx_{\bar{i}})$ (respectively $E'_{\bar{x}_i} \cong \text{Hom}_{RV}(W', W'x_{\bar{i}})$). Thus $E_{\bar{x}_i} \cong \text{Hom}_{RV}(W, Wx_{\bar{i}})$ to be the composition of f with \bar{h}, where \bar{h} is defined by

$$\bar{h} : W_{x_{\bar{i}}} \longrightarrow W_{x_{\bar{i}}},$$

$$w_{x_{\bar{i}}} \longmapsto h(w)x_{\bar{i}}.$$

Under the above multiplication, $\sum x_i \oplus \text{Hom}_{RH}(W, Wx_{\bar{i}})$ is an algebra. It can be easily derived from [3, Chapter 4, Lemma 6.4] that $\sum x_i \oplus \text{Hom}_{RH}(W, Wx_{\bar{i}})$ is isomorphic to E as algebras. Thus we identify E with $\sum x_i \oplus \text{Hom}_{RH}(W, Wx_{\bar{i}})$, and by the same way we identify E' with $\sum x_i \oplus \text{Hom}_{RV}(W', W'x_{\bar{i}})$.

Recall that W' is the Green correspondent of W with respect to (H, Q, V). Let $x \in U$. Then it is easy to see that $W'x$ is the Green correspondent of Wx with respect to (H, Q, V). Now we will define a map from E' to E. For $x \in U$, first define a trace map from $\text{Hom}_{RV}(W', W'x)$ to $\text{Hom}_{RH}(W', W'x)/\text{Tr}_{Q}(W', W'x)$ by

$$E' \longrightarrow E,$$

$$E' \longmapsto \text{Tr}_{Q}(W', W'x).$$
\[\text{Tr} : \text{Hom}_{RV}(W', W'x) \mapsto \text{Hom}_{RH}(W'^H, (W'x)^H), \]

\[f \mapsto \text{Tr}(f) : \sum_{h \in V \setminus H} w'_h \otimes h \mapsto \sum_{h \in V \setminus H} f(w'_h) \otimes h. \]

Let \(f \in \text{Hom}_{RV}(W', W'x) \) and \(h \in \text{Hom}_{RV}(W'x, W'y) \). It is easy to check that \(\text{Tr}(h \cdot f) = \text{Tr}(h) \cdot \text{Tr}(f) \). Assume that \((W')^H = W \oplus W_1 \) and \((W'x)^H = Wx \oplus W_2 \) as \(RH \)-modules, respectively. Let \(\iota_W : W \to (W')^H \) and \(\pi_{Wx} : (W'x)^H \to Wx \) be the inclusion map and projection map.

Then there is a map

\[\alpha : \text{Hom}_{RV}(W', W'x) \to \text{Hom}_{RH}(W, Wx), \]

\[f \mapsto \pi_{Wx} \cdot \text{Tr}(f) \cdot \iota_W. \]

By the above identification, \(\alpha \) is a map from \(E' \) to \(E \). By [3, Chapter 4, Theorem 5.4], \(\alpha \) is a one-to-one map from \(E'/I'E' \) to \(E/I'E \). By also [3, Chapter 4, Theorem 5.4] and its proof, we have that \(\alpha \) is an algebra homomorphism from \(E'/I'E' \) to \(E/I'E \). Since both \(W \) and \(W' \) are not \(\Omega \)-projective, \(I \subseteq J(\Lambda) \) and \(I' \subseteq J(\Lambda') \). Recall that \(\alpha \) induces an algebra isomorphism from \(\Lambda'/I' \) to \(\Lambda/I \). Thus \(\alpha \) induces a surjective homomorphism from \(\Lambda'/I' \) to \(\Lambda/J(\Lambda) \), and an isomorphism from \(\Lambda'/J(\Lambda') \) to \(\Lambda/J(\Lambda) \). So \(\alpha \) sends \(J(\Lambda') \) to \(J(\Lambda) \). As \(\alpha \) is an isomorphism from \(E'/I'E' \) to \(E/I'E \), we have that \(\alpha \) is an isomorphism from \(E'/J(\Lambda')E' \) to \(E/J(\Lambda)E \). As desired. \(\square \)

Corollary 4. Keep notation as in Theorem 3. Then \(W \) can be extended to an \(H \)-projective \(RG \)-module if and only if \(W' \) can be extended to a \(V \)-projective \(RU \)-module.

Proof. Let \(L \) be an indecomposable direct summand of \(W^G \). Then by Proposition 2, \(L \cong U_i \otimes A W \) as \(RG \)-modules for some indecomposable direct summand \(U_i \) of \(E \), and \(\text{rank}_R(L) = \text{rank}_R(W) \cdot \text{rank}_A(U_i) = \text{rank}_R(U_i / J(\Lambda)U_i) \). Note that \(U_i / J(\Lambda)U_i \) is an indecomposable direct summand of \(E/J(\Lambda)E \). Thus \(W \) can be extended to an \(H \)-projective \(RG \)-module if and only if the twisted group algebra \(E/J(\Lambda)E \) has a principal indecomposable module of dimension 1. By Theorem 3, \(E/J(\Lambda)E \) has a principal indecomposable module of dimension 1 if and only if \(E'/J(\Lambda')E' \), if and only if \(W' \) can be extended to a \(V \)-projective \(RU \)-module. As desired. \(\square \)

References

