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Abstract

We show that the first-order D = 4, N = 1 pure supergravity lagrangian four-form can be obtained ge-
ometrically as a quadratic expression in the curvatures of the Maxwell superalgebra. This is achieved by
noticing that the relative coefficient between the two terms of the lagrangian that makes the action locally
supersymmetric also determines trivial field equations for the gauge fields associated with the extra gen-
erators of the Maxwell superalgebra. Along the way, a convenient geometric procedure to check the local
supersymmetry of a class of lagrangians is developed.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Since the advent of supersymmetry, there has been an interest in superalgebras going be-
yond the standard superPoincaré one. For instance, enlarged D = 11 supersymmetry algebras
were considered by D’Auria and Fré in [1] and further in [2] in a search for the group struc-
ture underlying D = 11 supergravity [3], which is hidden due to the presence of the three-form
that needs being trivialized as a product of one-forms to be associated with Maurer–Cartan
(MC) forms. The resulting superalgebras go beyond the D = 11 superPoincaré algebra and
contain additional fermionic generators and tensorial charges. Larger supersymmetry algebras
(and correspondingly enlarged superspaces), also appear associated with super-p-branes, where
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the tensorial charges are realized as topological charges [4] (see [5] for the M5-brane and fur-
ther [6]). The 560-dimensional D = 11 superlagebra includes 528 vector and tensorial charges
and is usually referred to as the M-theory superalgebra [7]; fermionic extensions of the su-
perPoincaré algebra, similar to those of D’Auria and Fré but without tensorial charges, were
introduced by Green in [8] by adding an extra spinorial generator. The Green algebra was used
by Siegel [9] to produce a superstring action with a manifestly supersymmetric Wess–Zumino
term, a procedure further generalized by Bergshoeff and Sezgin to super-p-branes by introduc-
ing larger Green-type superalgebras [10] (see also [11]). These algebras can be viewed as the
result of successive extensions of the supertranslations algebra [6], and the associated enlarged
superspace group manifolds may be used to construct strictly invariant (rather than invariant up
to total derivative) Wess–Zumino terms for general p-branes, as discussed in detail in [6].

In a separate context, Hatsuda and Sakaguchi showed that there is a suitable flat limit for the
AdS superstring that leads to bilinear WZ terms and to enlarged Poincaré superalgebras [12].
They interpreted these [13] as what now are termed (super)algebra expansions, which were stud-
ied in detail in [14] (see also [15] for an expansion-related procedure). Expansions are obtained
from the original algebras by means of a series expansion (hence their name [14]) of their MC
one-forms. As a result, the expansion procedure leads to algebras of higher dimension than the
original one; nevertheless, the dimension preserving İnönü–Wigner contraction (and its Weimar-
Woods generalization [16]) are obtained as particular cases [14]. Expansions were shown to
lead to the full (i.e. including the D = 11 Lorentz algebra) M-theory superalgebra, which is a
particular expansion of osp(1|32) [14]. The (p,q)-superPoincaré algebras [17] governing the
D = 3 extended supergravities have also been shown [18] to be related to particular expansions
of osp(p + q|2).

Recently, a D = 4 Maxwell superalgebra has been introduced in [19] as the minimal su-
peralgebra that contains the Maxwell algebra as its bosonic subalgebra (see [20] for Maxwell
algebras). This Maxwell superalgebra can be viewed as an extension of the D = 4 Green algebra
by the tensorial charges algebra, and it was used in [19] to construct a superparticle model. But
the Maxwell algebra is also an expansion of the D = 4 adS algebra o(3,2) [21]. The minimal
Maxwell superalgebra sM to be considered here also follows from an expansion of the D = 4
adS superalgebra osp(N |4) (further N -extended superMaxwell algebras are also described in
[21] using the expansion method).

The geometric approach to supergravity has a long history (see e.g. [22] and references
therein). In this paper we wish to show that the minimal D = 4 Maxwell superalgebra sM
may be used to derive the action of the basic (or minimal) N = 1, D = 4 supergravity from the
curvature forms of the Cartan structure equations associated with sM. This extends to the su-
persymmetric case the D = 4 gravity results obtained from the bosonic Maxwell algebra [23]
(the D = 1 + 2 gravity case has been considered very recently in [24]). To this aim, we first
briefly review the Maxwell algebra and its relation to ordinary gravity. In Section 3, a family
of lagrangian forms depending on a parameter k will be constructed geometrically in terms of
curvatures associated with the D = 4 Maxwell superalgebra sM. To show that a value of k pro-
vides the lagrangian of D = 4 minimal supergravity we present first in Section 4, for a generic
algebra, a procedure to analyze the local invariance of a class of D = 4 lagrangians that includes
the Chern–Simons lagrangians as a particular case. Section 5 applies the method to the sM
superalgebra and to supergravity. The final section contains some comments.

2. Maxwell algebra and the gravity action

The D = 4 Maxwell algebra M is given by the following commutators:
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[Mab,Mcd ] = ηbcMad − ηacMbd − ηbdMac + ηadMbc,

[Mab,Pc] = ηbcPa − ηacPb,

[Pa,Pb] = Zab,

[Mab,Zcd ] = ηbcZad − ηacZbd − ηbdZac + ηadZbc (2.1)

(a = 0, . . . ,3), where ηab is the (mostly plus) Minkowski metric. Besides the Poincaré genera-
tors, the Maxwell algebra contains six additional tensorial charges Zab that extend centrally the
abelian translation algebra and that behave tensorially under the Lorentz algebra L.

It is convenient to describe this algebra through its MC equations satisfied by the one-forms
ωab , ea , f ab dual to the generators Mab , Pa , Zab ,

ωab(Mcd) = δab
cd , ea(Pb) = δa

b , f ab(Zcd) = δab
cd . (2.2)

They are given by

0 = dωab + ωa
c ∧ ωcb,

0 = dea + ωa
b ∧ eb,

0 = df ab + ea ∧ eb + ωa
c ∧ f cb − ωb

c ∧ f ca. (2.3)

The ‘soft’ version of these MC equations introduce the gauge curvatures Rab,T a and Fab in
terms of the gauge field forms. Using without risk of confusion the same notation for the MC
one-forms and the gauge field ones, the Cartan structure equations Ω = dθ + θ ∧ θ = dθ +
1
2 [θ, θ ] where θ = eaPa + 1

2ωabMab + 1
2f abZab determine the various curvatures. Writing Ω =

1
2RabMab + T aPa + 1

2FabZab , they are found to be

Rab = dωab + ωa
c ∧ ωcb,

T a = dea + ωa
b ∧ eb,

F ab = df ab + ea ∧ eb + ωa
c ∧ f cb − ωb

c ∧ f ca. (2.4)

The Lorentz covariant differentials of the curvatures DR = dR + [ω,R], DT = dT + [ω,T ] =
[R,e], DF = dF + [ω,F ] = [R,f ] + [T , e] are then

DRab = (dR + ω ∧ R − R ∧ ω)ab = 0,

DT a = Rab ∧ eb,

DFab = Ra
c ∧ f cb − Rb

c ∧ f ca + T a ∧ eb − ea ∧ T b. (2.5)

The following Lorentz invariant lagrangian four-form constructed from the Maxwell curva-
tures (with length dimensions of an action in D = 4 (L2) in geometrized κ = 1 = c) units, was
considered in [23]

L ∼ εabcdRab ∧ Fcd ; (2.6)

other possibilities were also discussed there. Since the extra field fab appears in an exterior dif-
ferential this lagrangian leads, up to boundary terms that will be disregarded here, to the standard
Einstein–Hilbert action for gravity,∫

LEH ∼
∫

εabcdRab ∧ ec ∧ ed . (2.7)
M M
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Thus, since the gauging of the Maxwell group provides a geometric framework to derive the grav-
ity lagrangian, it is natural to ask [23] whether a minimal supersymmetrization of the Maxwell
algebra may lead to the pure gravity lagrangian. Our aim is to show that this is the case.

3. Maxwell superalgebra and geometric ingredients of minimal supergravity

Pure, simple D = 4 supergravity just includes the graviton and the gravitino, with two on-shell
degrees of freedom each. To express its lagrangian in terms of curvature bilinears we consider
the 24-dimensional minimal superMaxwell algebra sM [19]. It contains the 16-dimensional
Maxwell algebra (2.1) as its even subalgebra, and the brackets involving the odd generators are

[Mab,Qα] = 1

2
γab

β
αQβ,

[Mab,Σα] = 1

2
γab

β
αΣβ,

{Qα,Qβ} = γ a
αβPa,

[Pa,Qα] = 1

2
γa

α
βΣβ,

{Qα,Σβ} = −1

2
γ ab

αβZab, (3.8)

where Qα,α = 1, . . . ,4, is the supersymmetry generator ([Q] = L−1/2) and, as in the Green
algebra, the [P,Q] commutator produces an additional spinor generator Σα , [Σ] = L−3/2. All
spinors above and below are Majorana spinors.

The dual MC one-forms of sM are defined by the duality conditions (2.2) plus

ψα(Qβ) = δα
β = ξα(Σβ), (3.9)

and their MC equations, 0 = dθ +θ ∧θ , where now θ = eaPa + 1
2ωabMab + 1

2f abZab +ψαQα +
ξαΣα , are given by

0 = dωab + ωa
c ∧ ωcb,

0 = dea + ωa
b ∧ eb − 1

2
ψ̄γa ∧ ψ,

0 = df ab + ωa
c ∧ f cb − ωb

c ∧ f ca + ξ̄ γ ab ∧ ψ + ea ∧ eb,

0 = dψ + 1

4
ωabγ

ab ∧ ψ,

0 = dξ + 1

4
ωabγ

ab ∧ ξ + 1

2
eaγ

a ∧ ψ. (3.10)

We use (λλ′)∗ = λ∗λ′ ∗ for the conjugation of bilinears of odd scalars, so that both ωab and ea

are real. The gauge curvatures, again using the same notation for the gauge field one-forms and
for the MC ones, are given by the structure equations Ω = dθ + θ ∧ θ , where Ω = 1

2RabMab +
T aPa + 1

2FabZab + Ψ αQα + ξαΣα . Explicitly,

Rab = dωab + ωa
c ∧ ωcb,

T a = dea + ωa
b ∧ eb − 1

2
ψ̄γa ∧ ψ,

Fab = df ab + ωa
c ∧ f cb − ωb

c ∧ f ca + ξ̄ γ ab ∧ ψ + ea ∧ eb,
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Ψ α = dψα + 1

4
ωab

(
γ ab ∧ ψ

)α
,

Ξα = dξα + 1

4
ωab

(
γ ab ∧ ξ

)α + 1

2
ea

(
γ a ∧ ψ

)α
. (3.11)

These curvatures have dimensions [R] = L0, [Ψ ] = L1/2, [T ] = L, [Ξ ] = L3/2, [F ] = L2.
The Lorentz covariant exterior differential of the curvatures is given by DR = dR +

[ω,R] = 0,DT = dT + [ω,T ] = [R,e] + [Ψ,ψ], DF = dF + [ω,F ] = [R,f ] + [T , e] +
[Ψ,ξ ]+ [Ξ,ψ], plus DΨ = dΨ +[ω,ψ] and DΞ = dΞ +[ω,Ξ ]+ [T ,ψ]+ [Ψ,e]. Explicitly,

DRab = (dR + ω ∧ R − R ∧ ω)ab = 0,

DT a = Rab ∧ eb + ψ̄γa ∧ Ψ,

DFab = Ra
c ∧ f cb − Rb

c ∧ f ca + T a ∧ eb − ea ∧ T b + Ξ̄γ ab ∧ ψ − ξ̄ γ ab ∧ Ψ,

DΨ α = 1

4

(
Rabγ

ab ∧ ψ
)α

,

DΞα = 1

4

(
Rabγ

ab ∧ ξ
)α + 1

2
Ta

(
γ a ∧ ψ

)α − 1

2
ea

(
γ a ∧ Ψ

)α
. (3.12)

To show that D = 4 minimal supergravity can be written in terms of the above curvatures,
consider lagrangian four-forms B , [B] = L2 given by linear combinations of the type

B = εabcdRab ∧ Fcd + kΞ̄γ5 ∧ Ψ, (3.13)

where k is a constant to be determined and γ5 = −γ 0γ 1γ 2γ 3, γ 2
5 = −1, γ5γ

abcd = εabcd with
γ abcd = 1/4!γ [aγ bγ cγ d]. It will turn out that there is a value of k for which the field equa-
tions for f ab and ξα are trivial (0 = 0). For this value of k, the resulting action becomes the
well-known action of minimal D = 4 supergravity, given by Eq. (2.7) plus the Rarita–Schwinger
(R-S) action for the lagrangian

LRS ∼ ψ̄ ∧ γ5γae
a ∧ Dψ = 1

3!εabcd ψ̄ ∧ γ abcDψ ∧ ed . (3.14)

To see that this is the case, let us first discuss for a generic superalgebra the problem of local
invariance of a class of lagrangians depending on its gauge fields and their curvatures. This
includes as a particular case those depending only on the curvatures (as (3.13)).

4. Geometry of local invariance and the field equations

Let us introduce here a geometric procedure to discuss the local invariance of a class of la-
grangians. Let H be a form that is a combination of exterior products of the gauge forms Ai

associated with a generic Lie superalgebra and of their curvatures, as defined by the Cartan struc-
ture equations F i = dAi + 1

2Cjk
iAj ∧Ak . Thus, in general, H = H(A,F). Let us now introduce

two inner derivations iF i and iAi of degree −2 and −1, respectively, defined by iF i Aj = 0,
iF i F j = δ

j
i and iAi F j = 0, iAi Aj = δ

j
i . Since dF i = Ci

jkF
j ∧ Ak , the exterior differential d

may be expressed as

d = Ci
jkF

j ∧ AkiF i − 1

2
Ci

jkA
j ∧ AkiAi + F iiAi . (4.15)

Then, the commutator [d, iF i ] is given by

diF i − iF i d = −Cj
ikA

kiF j − iAi . (4.16)
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Now, let B be a lagrangian form B = B(A,F ) which is a potential form of H , H = dB . Then,
it follows that the Ai field equation is given simply by iF i H = 0. Indeed, let us first compute the
variation of

∫
M

B , where M stands for Minkowski space:

δ

∫
M

B =
∫
M

{
δAi ∧ iAi B + δF i ∧ iF i B

}

=
∫
M

{
δAi ∧ iAi B + (

dδAi + Ci
jkδA

j ∧ Ak
) ∧ iF i B

}

=
∫
M

δAi ∧ {
iAi B + diF i B − Cl

jiA
j ∧ iF lB

}

=
∫
M

δAi ∧ iF i H, (4.17)

where we have integrated by parts the second term in the second equality above and used
Eq. (4.16) for diF i B in the third one. Thus, the Ai field equation is

iF i H ≡ Ei = 0. (4.18)

We note that the differential d(iF i H) of the l.h.s. of the Ai field equation three-form is, since
dH ≡ 0,

d(iF i H) = −Cj
ikA

k iF j H − iAi H, (4.19)

a condition that will be relevant for the local invariance below.
Let us now assume that the three-form iAi H on M adopts the expression iAi H = X

j
i ∧ iF j H

for some one-forms Xi
j . This means that the iAi H vanish when the iF j H do i.e., that they vanish

on shell (or are zero). Then, the following lemma holds:

Lemma. Let iAj H vanish on shell or be zero. Then, iAj H has the form iAj H = Xi
j ∧ iF i H . Let

us assume that Xi
j ∧ iF i H �= 0. Then, the action is invariant under a local symmetry δAi of the

form

δAi = δgaugeA
i + δ′Ai = dαi − Ci

jkα
jAk + δ′Ai ≡ Dαi + δ′Ai, (4.20)

where

δ′Ai = −Xi
jα

j (4.21)

and the sum is extended to the indices j that make iAj H �= 0.

Proof. The extra piece δ′Ai is needed for δAi in (4.20) to be a symmetry when iAj H �= 0 (this
will be the case for the lagrangian B in Eq. (3.13), because H = dB , being a differential of
curvatures, will not be given in terms of curvatures only). Indeed, as an arbitrary variation of the
action has the form δ

∫
M

B = ∫
M

δAi ∧ iF i H , the specific δAi in (4.20) leads to

δ

∫
B =

∫ (
dαi − Ci

jkα
jAk + δ′Ai

) ∧ iF i H
M M
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= −
∫
M

αi
(
d(iF i H) + Cj

ikA
k ∧ iF j H

) +
∫
M

δ′Ai ∧ iF i H

=
∫
M

(
αiiAi H + δ′Ai ∧ iF i H

)
, (4.22)

where (4.19) has been used in the last equality. We see that the last line of (4.22) vanishes for
δ′Ai given by (4.21). �

In our case, it is at this point where the factor k in (3.13) is fixed so that B becomes the
supergravity lagrangian. Note that no on-sell condition has been used; only the expression of
the three-forms Ei ≡ iF i H that determine the field equations (Ei = 0) enter in the four-form
δAi ∧ iF i H .

The above procedure is reminiscent of the construction of bosonic Chern–Simons (C-S)
lagrangians in odd dimensions, where H is a (symmetric, gauge invariant and closed) even poly-
nomial in the curvatures and B in H = dB is the C-S form. In this C-S case, iAi H is identically
zero (H �= H(A)) and δ

∫
M

B = 0 without any δ′Ai term so that δAi = δgaugeA
i is a genuine

gauge transformation and, as we know, δgaugeB a total derivative. To derive this in the above
context, let B be a C-S lagrangian. If the two total differentials that were discarded in Eqs. (4.17)
and (4.22) are restored and (4.16) is used, then we obtain

δgaugeB = d
(
αiiAi B

)
. (4.23)

Let us now check that this formula reproduces the familiar expression for the gauge variation of
a C-S lagrangian form (see e.g. [25]). Let A = AiTi , F = F iTi and α = αiTi , where [Ti, Tj ] =
Ck

ijTk . Then, the C-S forms may be constructed as potentials of the closed (Chern) 2l-forms

Hl = Tr(F∧ l. . . ∧F), dBl = Hl (4.24)

(we ignore an l-dependent factor). Explicitly,

Bl = l

1∫
0

Tr(A ∧ Ft ∧ l−1. . . ∧Ft )δt (4.25)

where Ft = tF + (t2 − t)A∧A = tdA+ t2A∧A. Using (4.25) and (4.23), the following formula
for the gauge variation is obtained:

δBl = d

[
l

1∫
0

Tr

(
αFt ∧ l−1. . . ∧Ft

− (
t2 − t

)
A ∧

l−2∑
k=0

Ft ∧ k. . . ∧Ft ∧ [α,A] ∧ Ft ∧ l−2−k. . . ∧Ft

)
δt

]
. (4.26)

For instance, for l = 2 (D = 3),

δB2 = d

[
2 Tr(α F )

1∫
0

t δt + 6 Tr(αA ∧ A)

1∫
0

(
t2 − t

)
δt

]

= d
[
Trα (F − A ∧ A)

] = d
[
Tr(α dA)

]
. (4.27)
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Similarly, for l = 3, D = 5, Eq. (4.26) gives

δB3 = d

( 1∫
0

Tr
[
α Ft ∧ Ft − (

t2 − t
)(

A ∧ [α,A] ∧ Ft + A ∧ Ft ∧ [α,A])]δt
)

. (4.28)

Inserting now the expression of Ft and evaluating the integrals, one obtains:

δB3 = d Tr

(
α d

[
A ∧ dA + 1

2
A ∧ A ∧ A

])
. (4.29)

Both δB2 and δB3 reproduce the well known expressions for the variation of the C-S three- and
five-forms under the infinitesimal gauge function α.

5. Pure supergravity from sM

Let us apply the above to the superMaxwell algebra case. First, we compute the differential
of B in (3.13). H = dB is given by

H = 2εabcdRab ∧ T c ∧ ed +
(

1 − k

8

)
εabcdRab ∧ Ξ̄γ cd ∧ ψ

−
(

1 − k

8

)
εabcdRab ∧ ξ̄ γ cd ∧ Ψ + k

2
Ψ̄ ∧ eaγ

aγ5 ∧ Ψ

− k

2
ψ̄ ∧ Taγ

aγ5 ∧ Ψ. (5.30)

Now, we observe that H �= H(Fab) and that, when k = 8, the Ξα dependence is also absent
from H ; in fact, H �= H(ξα,Ξα,f ab,F ab). Thus, both the ξα and the fab field equations are
trivial for k = 8. This implies that the fields ξα and f ab are not relevant in the action, since they
have to appear in the lagrangian as total derivatives. For the same value of k, the ψ dependence
of H is reduced to the last term in (5.30) so that

iψ̄αH = −4
(
Ψ̄ ∧ Taγ

aγ5
)
α
. (5.31)

Moreover, the ωab field equation Eab = 0, where Eab ≡ iRabH , and the T a = 0 equation imply
each other since the vielbein is invertible. Since (5.31) is, through T a , related to the equation of
motion of ωab , this means that in iψαH = Xi

α ∧ Ei the only non-vanishing Xi
α corresponds to

i = (ab) i.e., to Xab
α . Thus (see (4.20)) only a certain δ′

εω
ab is needed for local supersymmetry

invariance since for δεψ and δεe no δ′
ε piece appears.

Since for k = 8 the extra one-form fields ξα and f ab are not relevant in the action, it is
sufficient to consider the procedure in Section 4 for the one-form fields Ai = (ωab,ψ

α, ea) and
their curvatures F i = (Rab,Ψ

α,Ta). From Eqs. (3.11) and (3.12) it is easy to see that, when
acting on the relevant variables (H = H(Ea,T a,ψα,Ψ α,Rab)), the Lorentz covariant exterior
differential is given by

D =
(

1

2
ψ̄γ a ∧ ψ + Ta

)
iea + Ψ αiψα

+ (
Rab ∧ eb − Ψ̄ γa ∧ ψ

)
iTa + 1

4

(
Rabγ

ab
)α

β ∧ ψβiΨ α . (5.32)

It follows from this expression that (cf. Eq. (4.16))
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DiΨ α − iΨ αD = (
ψ̄γ a

)
α
iT a − iψα . (5.33)

So writing respectively Eα ≡ iΨ αH = 0, Ea ≡ iT aH = 0 for the ψα and ea field equations, the
Lorentz covariant exterior differential of the R-S three-form Eα in the R-S equation satisfies

DEα − (
ψ̄γ a

)
α
Ea = −iψαH. (5.34)

Then, under the local supersymmetry variations

δεψ
α = Dεα, δεe

a = ε̄γaψ, (5.35)

(since δ′
εψ = 0, δ′

εe = 0) plus a certain non-zero variation δ′
εω

ab , the action is invariant:

δε

∫
M

B =
∫
M

(
δεψ

α ∧ Eα + δεe
a ∧ Ea + δ′

εω
ab ∧ Eab

)

=
∫
M

(
Dεα ∧ Eα + ε̄γ aψ ∧ Ea + δ′

εω
ab ∧ Eab

)

=
∫
M

(−εαDEα + ε̄γ aψ ∧ Ea + δ′
εω

ab ∧ Eab

)
. (5.36)

Using now (5.34) in (5.36) leads to

δε

∫
M

B =
∫
M

(
δ′
εω

ab ∧ Eab + εαiψαH
)
. (5.37)

Now, there exists on M a set of one-forms Xα
ab such that

iψαH = Xα
ab ∧ iRabH ≡ Xab

α ∧ Eab, (5.38)

where iψαH = −4(Ψ̄ ∧ Taγ
aγ5)α and iRabH = 2εabcdT c ∧ ed . A computation shows that the

one form Xα
ab is given by

Xα
ab = −1

2

(
εabcdeg + εbcdgea

) ∧ (Ψ̄cdγgγ5)α − (a ↔ b), (5.39)

where Ψ̄ = Ψ̄cd ec ∧ ed . Then, using (5.38) in (5.37), we find that there is local supersymmetry
for

δ′
εω

ab = −εαXα
ab (5.40)

with Xα
ab given by (5.39), which is seen to coincide with the well known local supersymmetry

variation of ω. Thus, the lagrangian (3.13) for k = 8 is local sypersymmetry invariant. As for the
local Lorentz and translation variations, the same general pattern of Section 4 applies. For the
Lorentz variations, iωabH = 0 since H in (5.30) does not depend on ωab . Thus Xi

ab = 0 for all
values of i, and there is no δ′ (the action is directly Lorentz invariant). For the local translations,
however, ieaH �= 0. In fact, besides the pieces containing Ta , and hence related to Eab , there is
the piece 4Ψ̄ γaγ5 ∧Ψ , which can be shown to be related to Eα (Eα = 0 being the R-S equation)
by Xα

a = Ψ α
abe

b . Therefore, Xα
a and Xbc

a are different from zero so that, besides the piece δ′
εω

ab

in the variation, there is also δ′
taψ

α = −Ψ α
abt

b , ta being the local translation.
We may finally show that the lagrangian (3.13) for k = 8 is that of pure D = 4 supergravity.

It may be rewritten in the form
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B = εabcdRab ∧ ec ∧ ed + 4ψ̄ ∧ eaγ
aγ5 ∧ Ψ + d

(
εabcdRab ∧ f cd + 8ξ̄ γ5Ψ

)
, (5.41)

which is the D = 4 simple supergravity lagrangian [26–28] (Eq. (2.7) plus Eq. (3.14)) but for the
total derivative in the second term.

6. Final comments

We have shown that the first-order lagrangian four-form of D = 4 minimal (N = 1) super-
gravity can be written out of bilinears of the curvatures of the gauge fields associated with the
minimal Maxwell superalgebra of [19], thus generalizing the results for gravity in [23] to the
supergravity case. The action is the sum of two terms in the sM curvatures, and for a certain
relative factor the extra gauge field forms not contained in the supergravity supermultiplet enter
in the action inside a total derivative. For this relative factor, the sum gives the action of minimal
D = 4 supergravity as shown by Eq. (5.41).

This provides one more example of how new geometrical aspects of a theory may be exhibited
by formulating it on the enlarged superspaces associated to larger algebras, even if the additional
fields in the enlarged superspace variables/fields correspondence (see [2,6,29]) do not have a
dynamical character. In the present case, the enlarged superspace would be determined by the
supergroup coset sM/L and would contain, besides the four-dimensional Minkowski spacetime,
6 bosonic tensorial variables and the 4 + 4 fermionic ones of the two Majorana spinors.

Going beyond D = 4 presents difficulties. An obvious one is the fact that in odd dimensions
there is no way of writing a lagrangian D-form out of curvature two-forms. This would seem
to indicate that in odd dimensions the appropriate point of view is to look for lagrangians the
differentials of which are written solely in terms of the curvatures. This is, of course, the case
of actions of the Chern–Simons type. For instance, for D = 3, the (p + q) supergravities [17]
are C-S theories [18] for an expansion of osp(p + q|2,R). Another difficulty, also present in
D = 4, N > 1, is the existence in some cases of Lagrange multiplier zero-forms in the first-order
actions, which cannot be interpreted in terms of one-form fields for Lie superalgebras. In higher
dimensions there are also forms of order higher than one, but these could, in principle, be given
a group theoretical interpretation, as done for D = 11 supergravity (see [1,2]). Another problem
of higher even-dimensional supergravities in our scheme is that, in the present D = 4 bosonic
case, the extra field f ab has trivial equations of motion since there is a single Fab curvature in
the lagrangian (see Eq. (3.13)), which would not be the case for D > 4.

It would be interesting to look further at the role of the relative weight of the two terms in the
basic supergravity lagrangian, as well as the effect of other possible lagrangian terms in (3.13)
which, in the case of simple gravity, lead to a generalized cosmological term [23]. Another case
worth studying in an analogous approach would be that of D = 4, N = 1 AdS supergravity.
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