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Revisiting the notion of μ-almost equicontinuous cellular automata
introduced by R. Gilman, we show that the sequence of image
measures of a shift ergodic measure μ by iterations of such
automata converges in Cesàro mean to an invariant measure μc .
Moreover the dynamical system (cellular automaton F , invariant
measure μc) has still the μc-almost equicontinuity property and
the set of periodic points is dense in the topological support of
the measure μc . We also show that the density of periodic points
in the topological support of a measure μ occurs for each μ-
almost equicontinuous cellular automaton when μ is an invariant
and shift ergodic measure. Finally using most of these results
we give a non-trivial example of a couple (μ-equicontinuous
cellular automaton F , shift and F -invariant measure μ) such
that the restriction of F to the topological support of μ has no
equicontinuous points.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

A one-dimensional cellular automaton (CA) is a discrete mathematical idealization of a space–time
physical system. The space, called configuration space, is the set of doubly infinite sequences of ele-
ments of a finite set A. The discrete time is represented by the action of a CA on this space. Using
extensive computer simulations, Wolfram in [9] has proposed a first empirical (visual) classification
of one-dimensional CA. In [5] Gilman proposes a formal and measurable classification by roughly di-
viding the set of all CA in two parts, those with almost equicontinuous points or equicontinuous points
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and those with almost expansive points (partition in order and disorder). The Gilman’s classification
is defined thanks to Bernoulli measures and corresponds to the Wolfram’s classification based on
simulations that use random entries. The measure does not need to be invariant, so the Gilman’s
classification can be applied to any CA. In [7], Kůrka introduces a topological classification based on
the equicontinuity, sensitiveness and expansiveness properties. If a CA has equicontinuous points, then
there exist finite configurations that stop the propagation of the perturbations on the one-dimensional
lattice. If a CA has μ-almost equicontinuous points then the probability that a perturbation move to
infinity is equal to zero (see [5]). Remark that the class of CA with almost equicontinuous points con-
tains the topological class of CA with equicontinuous points. In this paper, we consider the definitions
of Gilman (μ-expansiveness and μ-equicontinuity) in the more general case of probability measure
on the configuration space AZ . In this case we call μ-equicontinuous CA, any CA which has a set of
measure one of μ-equicontinuous points. Our main goal is to study the μ-equicontinuous CA when
μ is an invariant measure and show the existence of such a measure. Here we prove (see Theorem 1)
that if μ is a shift ergodic measure and F a CA which has μ-equicontinuous points then the se-
quence (μ ◦ F −n) converges in Cesàro mean to an F -invariant measure μc . We also show that this
automaton F is still a μc-equicontinuous CA. Then, we describe properties of μ-equicontinuous CA
when μ is an F -invariant measure. Here we show that (see Proposition 4) under these assumptions,
the measure entropy is equal to zero. If the invariant measure we consider is shift ergodic or is given
by Theorem 1 (measure μc), the set of F -periodic points is dense in the topological support of this
measure (see Propositions 5 and 6). This result extends a previous result on the density of periodic
points of surjective CA with equicontinuous points acting on a mixing subshift of finite type (see [1]).
Remark that in [3] Boyle and Kitchen have shown that closing CA always have a dense set of periodic
points. The expansive CA and some other CA with equicontinuous points belong to this large class.
In [5] Gilman gives an example of a μ-equicontinuous CA that has no equicontinuous points. The
invariant measure μc (limit by Cesàro mean of (μ ◦ F n)) that we can construct (using our results) for
this particular automaton still has μc-equicontinuous points and no equicontinuous points, but the
restriction of this CA to the topological support of μc always has equicontinuous points. Using most
of our results, we describe a particular CA called Fe with a non-trivial dynamic which keep the sensi-
tiveness property (no equicontinuous points) if we restrict its action to the topological support S(μc)

of the invariant measure μc . The proofs of sensitiveness and μc-equicontinuity of the automaton
(S(μc), Fe) use non-classical arguments.

2. Definitions and preliminary results

2.1. Symbolics systems and cellular automata

Let A be a finite set or alphabet. Denote by A∗ the set of all concatenations of letters in A.
These concatenations are called words. The length of a word u ∈ A∗ is denoted by |u|. The set of
bi-infinite sequences x = (xi)i∈Z is denoted by AZ . A point x ∈ AZ is called a configuration. For in-
tegers i, j with i � j we denote by x(i, j) the word xi . . . x j and by x(i,∞) the infinite sequence
(vn)n∈N such that for all n ∈ N one has vn = xi+n . For each integer t and each word u = u1 . . . u|u| ,
we call cylinder the set [u]t = {x ∈ AZ: xt = u1 . . . ; xt+|u| = u|u|}. We endow AZ with the prod-
uct topology of the discrete topologies on the sets A. For this topology AZ is a compact metric
space. A metric compatible with this topology can be defined by the distance d(x, y) = 2−i where
i = min{| j| such that x j �= y j}. The shift σ : AZ → AZ is defined by: σ(x) = (xi+1)i∈Z . The dynamical
system (AZ, σ ) is called the full shift. A subshift X is a closed shift-invariant subset X of AZ . Consider
a probability measure μ on the Borel sigma-algebra B of AZ . If μ is σ -invariant then the topological
support of μ (which is the smallest closed subset of measure 1) is a subshift denoted by S(μ). If
α = {A1, . . . , An} and β = {B1, . . . , Bm} are two partitions of a compact space X , denote by α ∨ β the
partition {Ai ∩ A j; 1 � i � n; 1 � j � m}. The metric entropy hμ(T ) of a transformation T is an iso-
morphism invariant between two μ-preserving transformations. Put Hμ(α) = ∑

A∈α μ(A) logμ(A).
The entropy of the partition α is defined as hμ(α) = limn→∞ 1

n Hμ(
∨n−1

i=0 T −iα) and the entropy
of (X, T ,μ) as supα hμ(α). A cellular automaton is a continuous self-map F on AZ commuting with
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the shift. The Curtis–Hedlund–Lyndon theorem states that for every F there exist an integer r and a
block map f from A2r+1 to A such that: F (x)i = f (xi−r, . . . , xi, . . . , xi+r). The integer r is called the
radius of the CA. If X is a subshift of AZ and one has F (X) ⊂ X , the restriction of F to X determines
a dynamical system (X, F ); it is called a CA on X . For example, given any shift invariant measure we
can consider the restriction of F to S(μ). A closed subset of Y ⊂ AZ (not necessarily shift-invariant)
such that F (Y ) ⊂ Y is said F -invariant. The omega limit set of any set S ⊂ AZ under the action of F
is denoted by w(S, F ) = limn→∞

⋂n
j=0

⋃∞
i= j{F i(S)}.

2.2. Almost equicontinuous points of cellular automata

In [5] Gilman shows that considering any Bernoulli measure μ, it is possible to divide the set of all
CA in the three following classes: The class of CA where there exist equicontinuous points, the class of
CA with μ-almost equicontinuous points but without equicontinuous point and the class of μ-almost
expansive CA. In this section we recall the topological and classical definitions for the expansive and
equicontinuous classes of CA acting on AZ and we extend the Gilman’s measurable definitions to any
probability measure μ.

For any integer n � 0 and point x ∈ AZ , we denote by Bn(x) the set of points y such that for
all i ∈ N one has d(F i(x), F i(y)) � 2−(n+1) and by Cn(x) the set of points y such that y j = x j with
−n � j � n.

Definitions 1 (Equicontinuity).

– A point x ∈ AZ is called an equicontinuous point if for all positive integers n there exists another
positive integer m such that Bn(x) ⊃ Cm(x).

– A CA is called almost equicontinuous when there exist equicontinuous points.
– A CA is equicontinuous when all points in AZ are equicontinuous.
– A point x is μ-almost equicontinuous if for all m ∈ N one has

lim
n→∞

μ(Cn(x) ∩ Bm(x))

μ(Cn(x))
= 1.

– A CA is μ-almost equicontinuous if there exists a set of full measure of μ-almost equicontinuous
points.

The last definition extends the notion of μ-equicontinuity to all measurable CA (AZ, F ,μ). If x is
a μ-equicontinuous point which belongs to the topological support S(μ) of some measure μ then
x is also a μ-equicontinuous point. Remark that for CA, to have no equicontinuous points is equivalent
to sensitiveness (see [7]).

Definitions 2 (Expansiveness).

– A Cellular automaton is positively expansive if there exists a positive integer n such that for all
x ∈ AZ one has Bn(x) = {x}.

– A cellular automaton F is almost expansive if there exists a positive integer n such that for all
x ∈ AZ , μ(Bn(x)) = 0.

In [5] Gilman proves the following proposition that allows to establish a classification based on
μ-equicontinuity. Since in [5], the proof of the original Proposition 1 requires only the ergodicity of
any Bernoulli measure, it can be extended to any shift ergodic measure.

Proposition 1. (See [5].) Let μ be a shift-ergodic measure and F a cellular automaton with radius r. The
following properties are equivalent:
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(i) F has a μ-equicontinuous point.
(ii) There exists a point x ∈ AZ such that μ(Bm(x)) > 0 for all m � 0.

(iii) There exists a point x ∈ AZ such that μ(Br(x)) > 0.
(iv) The set of μ-equicontinuous points has measure 1 for F .

When μ is a shift ergodic measure and F has no μ-equicontinuous points then F is an almost
expansive CA. A point x is an equicontinuous point when the interior of Bn(x) is non-empty for
all n ∈ N. In [5], Gilman introduces a measure-theoretic analogue of the interior of a set. For any
measurable set E , define ρE (x) = λ if limn→∞ μ(Cn(x)∩E)

μ(Cn(x)) = λ and call Eμ the set {x ∈ E: ρE(x) = 1}.

Lemma 1 (Lebesgue). If μ is a Borel probability measure and E any measurable set, we have μ(Eμ) = μ(E).

Remark that x is a μ-equicontinuous point if for all n ∈ N, x ∈ Bμ
n (x). The next topological result is

due to Gilman (see [6]). We give here a detailed proof of this key result.

Proposition 2. (See [6].) If there exist a point x and an integer m �= 0 such that Bn(x) ∩ σ−m Bn(x) �= ∅ with
n � r (the radius of the automaton F ) then the common sequence (F i(y)(−n,n))i∈N of all points y ∈ Bn(x) is
ultimately periodic.

Proof. First remark that for each shift periodic point w of period P , the cardinal of the set
{F i(w) | i ∈ N} is finite and less or equal to (#A)P (for all integer k � 0 one has σ P ◦ F k(w) =
F k ◦ σ P (w) = F k(w)). This implies that the sequence (F i(w))i∈N is ultimately periodic. Since all the
elements of Bn(x) share the same ultimately periodic sequence (F i(x)(−n,n))i∈N , we only need to
show that Bn(x) contains a shift periodic element w to finish the proof. Now suppose without loos-
ing generalities that m > 0, pick a point y1 ∈ Bn(x) ∩ σ−m(Bn(x)) and put w := y1(−n,−n + m − 1).

We claim that for all points x, integers n � r and y ∈ Bn(x), all points z, z′ that verify z(−∞,−n) =
y(−∞,−n), z(−n + 1,+∞) = x(−n + 1,+∞), z′(−∞,−n) = x(−∞,−n) and z′(−n + 1,+∞) =
y(−n + 1,+∞) belong to Bn(x).

We prove the claim only for z using a recurrence proof. To simplify, we indifferently denote by f ,
the local rule of F which is a block map from A2r+1 to A and also all the finite extensions of f which
are block maps from A2r+1+k to Ak+1 with k ∈ N. Since y ∈ Bn(x) we have z(−n,n) = y(−n,n) =
x(−n,n). Suppose that for i > 0 one has F t(z)(−n,n) = F t(x)(−n,n) for 0 � t � i. In this case
we have F t(z)(−∞,−n) = F t(y)(−∞,−n) for 0 � t � i and F i+1(z)(−n,0) = f (F i(z)(−n − r, r)) =
f [F i(z)(−r − n,−n − 1)F i(x)(−n, r)] = f [F i(y)(−r − n,−n − 1)F i(x)(−n, r)] = F i+1(x)(−n,0). Since
F i+1(z)(1,n) = f (F i(x)(−r + 1,n + r)) = F i+1(x)(1,n) it follows that F i+1(z)(−n,n) = F i+1(x)(−n,n).
We can conclude saying that (F k(z)(−n,n))k∈N = (F k(x)(−n,n))k∈N which implies that z ∈ Bn(x).

Now we apply the claim to a point σm(y1) ∈ σm Bn(x) ∩ Bn(x). The points y1 and σm(y1) be-
long to Bn(x), so the point y2 such that y2(−∞,−n) = σm(y1)(−∞,−n) and y2(−n + 1,+∞) =
y1(−n+1,+∞) belongs to Bn(x). We can see that y2(−n−m,−n+m−1) = w w and y2 ∈ σm Bn(x)∩
Bn(x) ∩ σ−m Bn(x). Next we construct y3 by applying the claim to σm(y2) and σ−m(y2) (remark
that σm(y2) ∈ Bn(σ−m(y2)) = Bn(x)). The point y3 is such that y3(−∞,−n) = σm(y2)(−∞,−n)

and y3(−n + 1,+∞) = σ−m(y2)(−n + 1,+∞). Since we have y3(−n − 2m,2m − 1) = w w w w ,
we can repeat the same process to σ 2m(y3) and σ−2m(y3) and construct a point y4 such that
y4(−n − 4m,4m − 1) = w8. Finally, the sequence (yn)n∈N of points of Bn(x) that we construct by
this algorithm converges to the shift periodic point w =∞ w∞ = . . . w w w w . . . . Since Bn(x) is closed
and compact, w is in Bn(x). �

In [6] Gilman states the following result using the ergodic properties of any Bernoulli measure μ.

Proposition 3. (See [6].) Let μ be a shift ergodic measure. If a cellular automaton F has a μ-equicontinuous
point, then for all ε > 0 there exists an F -invariant closed set Y such that μ(Y ) > 1 − ε and the restriction
of F to Y is equicontinuous.
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Proof. Let x be a μ-equicontinuous point and m and integer greater than r, the radius of F . Since μ is
a shift ergodic measure and μ(Bm(x)) > 0, for each integer k � 0 and μ-almost all points y, there
exist positive integers i, j greater than k such that y ∈ σ−i Bm(x) ∩σ j Bm(x). Then from Proposition 2,
the sequences (un)n∈N = (F n(y)(i − m, i + m))n∈N and (vn)n∈N = (F n(y)(− j − m,− j + m))n∈N are
ultimately periodic with respective preperiods ppu and ppv . For all n ∈ N, denote by wn the word
F n(y)(− j + m + 1, i − m) and remark that for each integer n � 1, one has wn = f (un−1 wn−1 vn−1)

where f is a block map. It follows that if a word w = wt with t � ppu, ppv appears infinitely often
in (wn)n∈N , the sequence (wn+t)n∈N is periodic. This implies that (wn)n∈N and (F n(y)(−k,k))n∈N

are ultimately periodic sequences. Let P be a map from N to N
2 and Y P (k) be the set of points y

such that each sequence (F n(y)(−k,k))n∈N are periodic of period p(k) and preperiod pp(k) where
(p(k), pp(k)) = P (k). As μ is shift ergodic measure, for each real ε > 0 there exists a map Pε : N → N

2

such that for all n ∈ N we have μ(Y Pε (n)) > 1 − ε × 2−n . Since each Y Pε (k) is closed and F -invariant,
the set Yε = limn→∞

⋂n
k=1 Y Pε (k) is closed and F -invariant too. Clearly μ(Yε) > 1 − ε and each point

y ∈ Yε is an equicontinuous point since for each integer k � 0 one has Cl×r(y) ⊂ Bk(y) with l =
p(k) + pp(k) and (p(k), pp(k)) = Pε(k). �
3. Results on invariant measures

3.1. Measure entropy and density of the set of periodic points

Proposition 4. The measure entropy hμ(F ) of a μ-equicontinuous and μ-invariant cellular automaton F is
equal to zero.

Proof. Let αp be the partition of AZ by the 2p + 1 central coordinates. Two points x and y belong to
the same element of αp if and only if x(−p, p) = y(−p, p). Let αn

p(x) be the element of the partition

αp ∩ F −1αp . . . F −n+1αp which contains x. Clearly for all n ∈ N, we have αn
p(x) ⊃ B p(x). Since almost

all points are μ-equicontinuous points, there exists a set Z with measure 1 such that if y ∈ Z then
μ(Bm(y)) > 0 for all integer m � 0. This implies that for almost all y and all positive integer p, we

have limn→∞
− logμ(αn

p(y))

n � limn→∞ − logμ(B p(x))
n = 0. Using the Shannon–Breiman–McMillan theorem

which tells that

hμ(F ,αp) =
∫
AZ

lim
n→∞

− logμ(αn
p(y))

n
dμ(y) = 0,

we can conclude that hμ(F ) = limp→∞ hμ(F ,αp) = 0. �
In Proposition 4, the measure μ does not need to be shift invariant. Note that from the last propo-

sition each cellular automaton F which has equicontinuous points in the topological support of a
shift ergodic and F -invariant measure μ verifies hμ(F ) = 0. This result about CA with equicontinuous
points first appears in [8].

In [2] it is shown that if a measure is shift and F -invariant, the entropy of the CA (AZ, F ,μ)

is equal to zero when some discrete analogues of Lyapunov exponents are null. Remark that these
Lyapunov exponents can be equal to zero for almost expansive CA (see [2]) but even if they are
always null when there exists a set of full measure of equicontinuous points (see [8]), they are not in
general equal to zero for μ-equicontinuous CA (it can be easily seen in examples of Section 3.3).

Proposition 5. If a cellular automaton F has some μ-equicontinuous points where μ is an F -invariant and
shift ergodic measure then the set of F -periodic points is dense in the topological support of μ.

Proof. It is sufficient to show that for each point z in S(μ) (the topological support of μ) and
positive integer p we can construct a σ and F periodic point w =∞ w∞ (bi-infinite repetition of
the word w) such that w(−p, p) = z(−p, p). Remark that if x is a μ-equicontinuous point then
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μ(Br(x)) > 0 where r is the radius of F . Since z is in S(μ) and μ is a shift ergodic measure
then μ(C p(z)) > 0 and there exist (i, j) ∈ N

2 such that μ(C p(z) ∩ σ−(i+p)Br(x) ∩ σ j+p Br(x)) > 0.
To simplify, write S = C p(z) ∩ σ−(i+p)Br(x) ∩ σ j+p Br(x). Clearly there exists a point y ∈ S such
that μ([y(−r − i − p, j + p − r − 1)]−r−i−p ∩ S) > 0. Denote by S ′ the set [y(−r − i − p, j + p −
r − 1)]−r−i−p ∩ S and remark that using the Poincaré recurrence theorem, we obtain that there exists
an integer m > 0 such that μ(S ′ ∩ F −m S ′) > 0. Remark that all points y′ ∈ S ′ share the same sequence
(F n(y′)(−r − i − p, j + p − r − 1))n∈N since it results of the same combination of block maps on the
word y(−i − p + r + 1, j + p − r − 1) and on the two sequences (F n(x)(−i − p − r,−i − p + r))n∈N and
(F n(x)( j + p − r, j + p + r))n∈N . It follows that ∀y′ ∈ S ′ one has F m(y′)(−r − i − p, j + p − r − 1) =
y′(−r − i − p, j + p − r − 1). From Proposition 2 and its proof, since σ−i Br(x) ∩ σ j Br(x) �= ∅, the shift
periodic point w = ∞w∞ such that w = w(−r − i − p, j + p − r − 1) = y(−r − i − p, j + p − r − 1) be-
longs to the set S ′ . Finally, we obtain that F m(w)(−r − i − p, j + p −r −1) = w(−r − i − p, j + p −r −1)

and since the common σ -period of w and F m(w) is less or equal to |w| = 2p + 2r + i + j, we get
that F m(w) = w which finishes the proof. �
3.2. Invariant measures as limit of Cesàro means

Proposition 3 allows us to prove a Cesàro mean convergence result.

Theorem 1. Let μ be a shift-ergodic measure. If a cellular automaton F has some μ-almost equicontinuous
points then the sequence (μ ◦ F −n)n∈N converges vaguely in Cesàro mean to an invariant measure μc .

Proof. To show that the sequence of measure ( 1
n

∑n−1
i=0 μ ◦ F −i)n∈N = (μn)n∈N converges vaguely in

measure, we need to show that for all x ∈ S(μ) and m ∈ N the sequence (μn(Cm(x)))n∈N converges.
From Proposition 3 there exists a set Yε of measure greater than 1 − ε such that for all points y ∈ Yε

and positive integer k the sequences (F n(y)(−k,k))n∈N are eventually periodic with preperiod ppε(k)

and period pε(k). Hence for all x ∈ AZ and integer k � m

μn
(
Cm(x) ∩ Yε

) = 1

n

ppε (k)−1∑
i=0

μ
(

F −i(Cm(x)
) ∩ Yε

) + 1

n

n−1∑
i=ppε (k)

μ
(

F −i(Cm(x)
) ∩ Yε

)
.

The first term tends to 0; using periodicity one gets

lim
n→∞μn

(
Cm(x) ∩ Yε

) = 1

pε(k)

pε (k)−1∑
i=0

μ
(

F −(i+ppε (k))
(
Cm(x)

) ∩ Yε

)
.

Clearly we have limε→0 μn(Cm(x) ∩ Yε) = μn(Cm(x)). The convergence is uniform with respect to
ε since for all x and m ∈ N

∣∣μn
(
Cm(x) ∩ Yε

) − μn
(
Cm(x)

)∣∣ � nε

n
= ε.

Consequently, letting ε go to 0, we get the result by inverting the limits

lim
n→∞

1

n

n−1∑
i=0

μ ◦ F −i(Cm(x)
) = lim

n→∞
1

n

n−1∑
i=0

lim
ε→0

μ ◦ F −i(Cm(x) ∩ Yε

)

= lim
ε→0

lim
n→∞

1

n

n−1∑
μ ◦ F −i(Cm(x) ∩ Yε

)

i=0
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= lim
ε→0

1

pε(k)

pε (k)−1∑
i=0

μ
(

F −(i+ppε (k))
(
Cm(x)

) ∩ Yε

)
= μc

(
Cm(x)

)
.

We denote by μc the Cesàro mean limit of (μ ◦ F n)n∈N . �
In the following of this section, we suppose that μc is the probability measure which came from

the Cesàro mean of the sequence (μ ◦ F −n)n∈N when F is a μ-equicontinuous CA and μ is a shift
ergodic measure.

Theorem 2. If μ is a shift ergodic measure and F has a μ-equicontinuous point then F is also a μc-
equicontinuous CA.

Proof. We need to show that there exists a set of measure one (for the measure μc) of μc-
equicontinuous points. We will prove this by showing that μc-almost all points y belong to Bμc

m (y)

for all m ∈ N. Since F is a μ-equicontinuous CA then there exists a point x such that x ∈ Bμ
m(x) for all

m ∈ N. Moreover, for all positive integers k one has μ(Bk(x)) > 0.
For all m ∈ N, define Ym = ⋃

i, j∈N2 (σ−i−m Br(x) ∩ σ j+m Br(x)) where r is the radius of the au-
tomaton F . Since μ is a shift ergodic measure, for all m ∈ N we get μ(Ym) = 1. Then consider the
omega limit sets of Ym called Ωm := w(Ym, F ) = limn→∞

⋂n
j=0

⋃∞
i= j F i(Ym). Clearly for all m ∈ N,

we have μc(Ωm) = 1. Let Λ(F ) = w(AZ, F ), the omega limit set of the F . Since μ is a shift er-
godic measure then there exists an integer k such that Br(x) ∩ σ k Br(x) �= ∅ and using Proposition 2
we obtain that the sequence (F n(x)(−r, r))n∈N is ultimately periodic of period p. It follows that
there exist p points z0, . . . , zp−1 such that we have w(Br(x), F ) = {Br(zl) ∩ Λ(F ) | 0 � l � p − 1}.
This implies that Ωm = ⋃

z∈[z0...zp−1]
⋃

i, j∈N2 (σ−i−m Br(z) ∩ σ j+m Br(z)) ∩ Λ(F ). Define the set Ω ′
m =⋃

z∈[z0...zp−1]
⋃

i, j∈N2 (σ−i−m Br(z) ∩ σ j+m Br(z))μc ∩ Λ(F ). Since for any measurable set E one has
μ(E) = μ(Eμc ) (see Lemma 1) and that we need to take off a countable number of sets of mea-
sure zero from Ωm to obtain Ω ′

m , we get that μc(Ω
′
m) = 1 for all m ∈ N.

Define the set Ω := ⋂
m∈N

Ω ′
m and remark that μc(Ω) = 1. Clearly, for all y ∈ Ω and all

m ∈ N, there exist i, j � m and z ∈ w(x, F ) such that y ∈ (σ−i Br(z) ∩ σ j Br(z))μc . Since for all
y′ ∈ (σ−i Br(z) ∩ σ j Br(z))μc , the sequence (F n(y′)(−m,m))n∈N depends only on y′(−m,m) and the
common sequences (F n(y′′)(−r + j, j + r))n∈N and (F n(y′′)(−r − i,−i + r))n∈N where y′′ is any point
in (σ−i Br(z) ∩ σ j Br(z))μc , for all k � m, we have Ck(y) ∩ (σ−i Br(z) ∩ σ j Br(z))μc ⊂ Bm(y). Since
y ∈ Ck(y) ∩ (σ−i Br(z) ∩ σ j Br(z))μc , we get that y ∈ Bm(y)μc which finishes the proof. �
Proposition 6. If μc and F are respectively a measure and a cellular automaton that verify the assumptions
of Theorem 2 then the set of F -periodic points is dense in S(μc) (the topological support of μc).

Proof. Let x be a μ-equicontinuous point. From the proof and definitions of Theorem 2, there
exists a finite number of points z0, . . . , zp−1 ∈ w({x}, F ) such that ∀m ∈ N, the sets Ωm =⋃

z∈[z0...zp−1]
⋃

i, j∈N2 (σ−i−m Br(z) ∩ σ j+m Br(z)) ∩ Λ(F ) have full measure with respect to the invari-
ant measure μc . It follows that for each point y ∈ S(μc) and k ∈ N, one has μc(Ck(y) ∩ Ωm) > 0
(∀m ∈ N). Since for each y ∈ S(μc) and k ∈ N one has μc(Ck(y) ∩ Ωk) > 0, using the Σ-additivity
of μc , we can see that there always exist integers i, j � k and point z ∈ w({x}, F ) such that
μc(Ck(y) ∩ σ−i Br(z) ∩ σ j Br(z)) > 0 (I). Finally, using the final part of the proof of Proposition 5 that
only use the F -invariance of μc and inequality (I), we get that there exists a dense set of F -periodic
points in S(μc). �

We remark that the measure μc is not necessarily shift ergodic.
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3.3. Examples of μ-equicontinuous CA without equicontinuous points

In [5] Gilman gives an example of a μ-equicontinuous CA Fs that has no equicontinuous points.
The automaton Fs acts on {0,1,2}Z and is defined thank to the following block map of radius 1:

∗00 ∗01 ∗02 ∗10 ∗11 ∗12 ∗20 ∗21 ∗22
0 1 0 0 1 0 2 0 2

where ∗ stands for any letter in {0,1,2}. Considering 0 as a background element, the 2s move straight
down, 1s move to the left and 1 and 2 collide annihilate each other. In this case the measure μ is
a Bernoulli measure on {0,1,2}Z and the existence of μ-equicontinuous points depends on the pa-
rameters p(0), p(1), p(2) of this measure. In [5] it is shown that if p(2) > p(1) then the probability
that a 2 is never annihilated is positive and this implies that there exist μ-equicontinuous points.
Nevertheless for this interesting example, there is no Bernoulli measure μ which is preserving by this
automaton F . In this case a “natural” way to obtain an invariant measure μ′ such that Fs is a μ′-
equicontinuous CA is to use Cesàro mean of image by Fs of an appropriate Bernoulli measure using
Theorem 1. The dynamical system ({0,1,2}Z, Fs,μ

′) we obtain is again a μ′-equicontinuous CA which
is sensitive (without equicontinuous points) but the CA (S(μ′), Fs,μ

′) where S(μ′) is the topologi-
cal support of μ′ has always equicontinuous points since S(μ′) = {0,2}Z and the restriction of Fs to
{0,2}Z is the identity map. Since it has more interest to consider a dynamical system (S(μ), F ,μ) in-
stead of the system (AZ, F ,μ) when we mix topological and measurable conditions, we will describe
here a CA called Fe and a measure μc such that (S(μc), Fe) is sensitive and μc-equicontinuous.

Roughly, to have μ-equicontinuous points but no equicontinuous points requires that there ex-
ist some ‘perturbations’ that can move to infinity but the probability that these perturbations move
to infinity is equal to zero. One way to get these properties for an automaton F and an invariant
measure μc (obtained thanks to the results of Theorem 1) is that (AZ, F ) generates permanently
“propagating structures” of all type of sizes. The “length of life” of the “propagating structures” de-
pends on their sizes. This is roughly the dynamic of the following cellular automaton Fe .

3.3.1. Definition of the cellular automaton Fe

The automaton Fe we consider acts on X = X1 × X2 where X1 = {E0, E1, E2, E3,0, R, L}Z and
X2 = {0,1}Z . We define Fe as the composition of 3 other CA: Fe = F3 ◦ F2 ◦ F1. To simplify, we write
Ê = {E0, E1, E2, E3} and E = {0, L, R}. We denote by x = (x1, x2) any point x ∈ X and by x j

i the letter
in position i of x j (1 � j � 2). Next we call 1S(x) the map which is equal to one if x ∈ S and zero
otherwise.

The automaton F1 is the identity on X1 and its restriction to X2 came from the following block
map f1 of radius 3

f1
(
x2

i−3, x2
i−2, x2

i−1, x2
i , x2

i+1, x2
i+2, x2

i+3

) = 1{1}
(
x2

i−3

) × 1{1}
(
x2

i−2

) × 1{1}
(
x2

i−1

)
.

The automaton F2 is still the identity on X0 × X1 but its action on X2 depends on X1. The block
map f2 is defined by

f2

( x1
i−2, x1

i−1, x1
i , x1

i+1, x1
i+2

x2
i−2, x2

i−1, x2
i , x2

i+1, x2
i+2

)
=

( x1
i∨2

j=0 1{E0}(x1
i− j)

)

where
∨2

i=0 1{E0}x1
i− j is equal to 1 if at least one x1

i− j is equal to 1 and equal to 0 in all the other
cases.

The automaton F3 is the identity map on X2 and is defined thanks to a local rule f3 on X1.
When the central coordinate xi is an element of E , the block map f3 is defined by the following

rules:
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f3
(
x1

i−11, . . . , x1
i , . . . , x1

i+11

)
= R if x1

i−10, . . . , x1
i , . . . , x1

i+m = R011+m where m = min
{

10,min{k − 1 | xi+k ∈ Ê}}
= L if x1

i−m, . . . , x1
i , . . . , x1

i+10 = 011+m L where m = min
{

10,min{k − 1 | xi−k ∈ Ê}}
= R if ∃0 � k, j � 9 such that x1

i− j−k, . . . , x1
i , . . . , x1

i+10 = E∗0k L0 j+10

with j + 2k + 1 = 10 and E∗ ∈ Ê

= L if ∃0 � k, j � 9 such that x1
i−10, . . . , x1

i , . . . , x1
i+ j+k = 010+ j R0k E∗

with j + 2k + 1 = 10 and E∗ ∈ Ê.

If the central coordinate xi is an element of Ê , for each i ∈ {0,1,2,3}, one has

f3
(
x1

i−10, . . . , Ei, . . . , x1
i+10

) = Ei+1

if x1
i−k, . . . , x1

i = R0k−1 Ei with 0 � k � 9 where the addition ‘i + 1’ is modulo 4.

For all the other cases where the central coordinate xi is an element E∗ in Ê , we have f3(x1
i−10, . . . , E∗,

. . . , x1
i+10) = E∗ . In all other cases not described above we have, f3(x1

i−10, . . . , x1
i , . . . , x1

i+10) = 0.

3.3.2. The invariant measure μc

Let S1 be a subshift of finite type defined by the following list of accepted words: words of type
LE j0k with (1 � j � 3 and k = 170); words of type 0El0k with (0 � l � 3 and k = 170); words of
type 0l with l ∈ N. A typical configuration in S1 is

. . . 00E2000 . . . 00LE000 . . . 00LE100 . . . 00E100 . . . 00E300 . . . 00LE000 . . . .

We denote by μ1 the Parry measure on S1 (see for example [4]), by δ∞0∞ the Dirac measure
on the point ∞0∞ = . . . 00000 . . . and we call μI the measure μ1 × δ∞0∞ on X . Since μI is a shift
ergodic measure, using Proposition 1, Theorems 1 and 2, Fe is a μc-equicontinuous CA (with μc =
limn→∞ 1

n

∑n−1
i=0 μI ◦ F i

e) if there exists a point x such that μI (Br(x)) > 0. Remark that S1 ×∞ 0∞ is
not an invariant set for Fe . In Section 3.3.3 we will characterize the topological support of μc by
describing the action of F3 on the non-invariant set S1.

3.3.3. The dynamic of Fe

In this subsection, we describe the global dynamic of Fe by showing in first place the contribution
of each of the 3 cellular automata F1, F2 and F3.

The dynamic of F1
The action of F1 on X2 is only the shift of consecutive sequences of letters “1” (that we call “trains

of 1”) of one coordinate to the right and the destruction of the two last letters “1” at the left side of
this train.

Action of F1 on a configuration of X2:

. . . 01111110000 . . .
F1�−→ . . . 00001111000 . . .

F1�−→ . . . 00000001100 . . .
F1�−→ . . . 0000000000 . . . .

Remark that a train of 1 with a length 2k +1 will move of k coordinates to the right before collapsing.



P. Tisseur / Advances in Applied Mathematics 42 (2009) 504–518 513
The dynamic of F2
The action of the cellular automaton F2 is to ‘create’ a sequence of three letters ‘1’ in X2 when

there is a letter E0 in x1
i .

Example:

x =
x1 . . . E0 ∗ ∗ . . . . .

x2 . . . 0 0 0 0 0 . . .

F2(x)�−→
. . . E0 ∗ ∗ . . . . .

. . . 1 1 1 0 0 . . .

F2(x)�−→
. . . E0 ∗ ∗ . . . . .

. . . 1 1 1 0 0 . . .
.

The symbol ∗ replaces any letter in {0, L, R}.

Action of F2 ◦ F1
If F i

e(x1) = E0 for 0 � i � n − 1, then there is at least a train of 1 of length n + 3 moving to the left
of at least �n+3

2 � coordinates.

Example of the action of F2 ◦ F1 on x = x1

x2

x1 = ∞0E0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ . . .

x2 = ∞0 0 0 0 0 0 0000 . . . .

(F2◦F1)n�⇒
∞0E0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ . . .

∞0 1 1 1 1 . . . 1︸ ︷︷ ︸
n+3 times

000 · · ·
= F n(x)1

= F n(x)2
.

Here the symbol ∗ replaces any letter in Ê ∪ E .

The oscillator dynamic of F3 and the subshifts S1 and S(μc)

First remark that S(μc) ⊂ w(S1 ×∞ 0∞, Fe) where

w
(

S1 ×∞ 0∞, Fe
) = lim

n→∞

n⋂
j=0

∞⋃
i= j

F i
e

(
S1 ×∞ 0∞)

.

When we apply F3 to a finite configuration of the subshift S1, it is easy to see that only fi-
nite configurations of the type 0k LE j0l will be affected by the first iteration of the automaton F3

where k, l ∈ N
2 and j ∈ [0..3]. We have F3(. . . 0k LE j0l+m . . .) = . . . L010 E j0l . . . and F 2

3 (. . . 0k LE j0l . . .) =
. . . L020 E j0l . . . where m,k � 170, l ∈ N and 0 � j � 3. Remark that the L moves to the left indefinitely
unless it would approach a letter E∗ in Ê . If there is less than nine 0 between the L and the E∗ , the
L disappears and an R appears at i coordinates to the right of E∗ if the L was at 10 − i coordinates to
the right of the E∗ . A similar process occurs when after some iterations, the R ’s appears and move to
the right until they encounter a letter E∗ ∈ Ê . The letter R disappears, it appears an L which return
to the left and the letter E∗ = E j in the neighborhood become E j+1 mod 4.

Let us see a typical evolution of an oscillator:

. . .
···↪→

E∗0 . . . 0R0 . . . 0Ei . . .︸ ︷︷ ︸
oscillator size 50n

F n
3�⇒ . . . E∗0 . . . R0k Ei︸ ︷︷ ︸

same oscillator

. . .
F3�⇒ . . .

←↩···
E∗0 . . . 0L0l Ei+1 mod 4︸ ︷︷ ︸

same oscillator

. . .

where k � 9, n � 4 and l + k = 10.
We will describe only the projection on X1 of the subshift S(μc) = w(S1, Fe) × w(∞0∞, Fe). In

w(S1, Fe):

(i) There is at least 170 letters in E between two E∗ .
(ii) There is at most one letter M ∈ {L, R} between two E∗ .
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(iii) At the right side of the last E∗ to the right (if it exists) there are only letters 0.
(iv) At the left side of the last E∗ (if it exists), there are only letters 0.
(v) There is no configurations of the type E∗0m E0 ∗l E∗ where ∗ is in place of any letter in {0, R, L}

and l � 170.

We remark that the configurations of S(μc) can be generated by a finite automata which means that
S(μc) is a sofic subshift.

Action of Fe

Since the action of Fe on letters E∗ ∈ Ê is the identity or a permutation in Ê , the set of configura-
tions that contains an infinite number of letters in Ê has measure one in S(μc).

Under the action of F2 ◦ F1, a configuration of the type . . . E0 . . . ×∞ 0∞ will generate in X2 (at
the same coordinate that E0) a train of 1 until the E0 will change in Ei (with i � 1). Under the action
of Fe (see action of F2 ◦ F1) a configuration . . . E∗0l M0k E0 . . .×∞ 0∞ (E∗ ∈ Ê , M ∈ {R, L}) will produce
a train of 1 of length L such that �m

5 � + 2 � L � �m
5 � + 4 with m = l + k + 1. In the following we will

choose �m
5 � + 2 or �m

5 � + 4 for the length L of this train of 1 according to the context.
Let see a typical dynamic of an oscillator transmitter

x =
∞0 . . .

↪→
E∗0 . . . . . . R09︸ ︷︷ ︸

size l

E3 . . . . . . .

∞0 . . . 0000 . . . . . . . . . 00000 . . .

Fe�⇒
∞0 . . .

←↩

E∗0 . . . . . . L0E0︸ ︷︷ ︸
size l

. . . . . . . . .

∞0 . . . 0000 . . . . . . . . . 00000 . . .

=
∞0 . . .

←↩

E∗0 . . . L0︸ ︷︷ ︸
size l

E0 . . . . . . .

∞0 . . . 0000 . . . . . . 0000 . . .

F �(l/5�
e�⇒

∞0 . . .
←↩

E∗0 . . . . . . L00E1︸ ︷︷ ︸
size l

. . . . . . . . . . . . . .

∞0 . . . 000 . . . . . . 0000
···⇒

111 . . . 11︸ ︷︷ ︸
� l

5 �+4

00 . . .
.

We call oscillator transmitter of size l+m+1, any pattern of the form E∗0l M0m E∗ and void oscillator
any pattern of the form E∗0k E ′∗ where k, l+m+1 � 170, each E∗ belongs to Ê , each E ′∗ ∈ {E1, E2, E3}
and M ∈ {R, L}. Remark that oscillators of the type E∗0k E0 do not belong to the language of S(μc).

For each l ∈ N, denote by Cl[i] the union of all the sets [U ]i × X2 ⊂ X where U = [E∗0 j M0k E∗]i
is a cylinder in X1, M replaces one letter in {L, R}, each E∗ are any letters in Ê and j,k, l verify
j +k +1 = l. Let Ck[i] be the union of sets ([E∗0k E ′∗]i × X2) where E∗ replaces any letter in Ê , k � 170
and E ′∗ ∈ {E1, E2, E3}. We call respectively oscillators transmitter in position i and void oscillators in
positions i the sets Cl[i] and Cl[i]. Remark that μI (Cl[i]) = μI ([E∗0i−1 R E∗] ×∞ 0∞). Without taking
into consideration the position of the oscillators, we will call respectively Cl and Cl the oscillators
transmitter and void oscillators of size l.

Propagation of trains of 1 generated by oscillator transmitter
Since an oscillator transmitter Cl generate a train of 1 with a length L at most equal to � l

5 �+ 4 and
that train looses 2 elements when it moves of 1 coordinate, it can influences some patterns situated
at (� l

5 �+ 4)+ (� l
5 �+ 4)/2 = � 3l

10 �+ 6 coordinates to the right of the right extremity of the oscillator if
there is no concatenation process with another train created by other oscillators transmitter. Since the
proofs of Propositions 7 and 8 only require the understanding of the propagation of trains of 1 when
the initial configuration is in S1 ×∞ 0∞ , we will only consider concatenation process with trains
generated by oscillators transmitter situated to the right side. For two consecutive oscillators ClCm , a
train of 1 generated by the first one Cl will reach the coordinates situated under the beginning of Cm

only if m � � 3l
10 � + 6 (iq1).

When a train will cross the l coordinates of another oscillator, it will loose 2l elements and can
incorporate at most �2l/5� + 8 others (�l/5� + 4 at the beginning and �l/5� + 4 at the end of the
train). Now consider a sequence of three oscillators ClCmCn where m and n are fixed and l is the
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Fig. 1. An illustration of the dynamic of Fe on 5 oscillators C4200, C600 and three C300 and the resulting dynamic of train of 1
in X2. For simplification, we do not specify the states of the oscillators and their evolution because the interesting part of their
dynamic can be deduced from the evolution of the train of 1 in X2. Each line represents the sequence of images of x2 after
every 60 iterations of Fe . The black horizontal lines represent the trains of 1 and blank ones, the sequences of 0. The extremity
of the oscillators are delimited by arrows. The first oscillator of size 300 is a void oscillator which never generates any trains of 1
in X2. To the left side, there is one large oscillator transmitter of size 6000 which is in a non-emitting state (the last letter is not
an E0). Remark that the non ‘emitting period’ of the oscillators transmitter last 3 times more than the ‘emitting’ one. The circle
shows the end of the propagation of the train generated by C4200.

minimum size of the first oscillator in order that its train will reach Cn . The train of length at most
�l/5�+ 4 will gain at most �2m/5�+ 8 and will loose at least 2m + 2(n − (�m/5�+ 4)) elements when
the head of the train has crossed the two oscillators (we take into consideration that the head of the
train may eventually progress of �m/5� + 4 coordinates when it passes under Cm). We obtain that
l � 6m + 10n − 100. More generally for all sequences of n + 1 consecutive oscillators Cln Cln−1 . . .Cl0 ,
any change of the state of the first oscillator Cln will affect the train of 1 situated in the oscillator Cl0

if ln �
∑1

i=n−1 6li + 10l0 − 80n + 60 (iq2).
Recall that 170 is the minimum size of an oscillator. This minimum size is required to simplify

the proof of Proposition 8 which uses quantitative arguments on “flows of trains of 1.” For a typical
illustration of this dynamic see Fig. 1.

3.3.4. The topological and measurable properties of Fe

Proposition 7. The dynamical system (S(μc), Fe) is a μc-equicontinuous cellular automaton.

Proof. From the discussion of Section 3.3.2, we only need to show that there exist a point x and an
integer m � r such that μI (Bm(x)) > 0. Remark that since μI (X) = μI (S1 ×∞ 0∞) we will take into
consideration only configuration in S1 ×∞ 0∞ in this proof. Let x0 = (∞0∞,∞ 0∞) and for each integer
k � 1, pick a point xk ∈ Ck[−k − 1 − r] ∩ Br(x0) ∩ X1 ×∞ 0∞ . We will prove that there exist integers
k > 0 such that μI (Br(xk)) > 0 by showing that μI (Ck[−k − 1 − r] ∩ Br(xk)

�) < μI (Ck[−k − 1 − r])
(where Br(xk)

� is the complement of Br(xk)). The set Ck[−k − 1 − r] ∩ Br(xk)
� is the set of points

that contains oscillators transmitter in the left side of Ck[−k − 1 − r] that are able to generate trains
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of 1 which move to the right and cross this void oscillator Ck[−k − 1 − r] (the trains of “1” may enter
in the central coordinates ([−r, r]) and in this case the point does not belong to Bm(x0) = Bm(xk)).
Now, consider an oscillator transmitter of size l in position −p − l − k − r − 1: Cl[−p − l − k − 1 − r].
Denote by S(p,k) the minimum size of the oscillator Cl[−p − l −k − 1 − r] (whose the right extremity
is situated at p coordinates to the left of Ck[−k − 1 − r]) in order that it can produce trains of 1
that cross completely the void oscillator Ck[−k − 1 − r]. From the discussion in Section 3.3.3 about the
propagation of train of 1, it follows that Ck[−k − 1 − r] ∩ Br(xk)

� is equal to Sk = {⋃∞
i=S(0,k) Ci[−i −

k − 1 − r]⋃∞
p=lm {⋃∞

j=S(p,k) C j[− j − p − k − 1 − r]}} ∩ Ck[−k − 1 − r] where lm = 170 be the minimum

size of the oscillators in S(μI ).
Next we claim that there exists a real M � 0 such that for all integers k � lm one has

μI (Ck[−k − 1 − r] ∩ Br(xk)
�) = μI (Sk) � μI (Ck[−k − 1 − r]) × η(k) × M with limk→∞ η(k) = 0. Re-

mark that since μI (Ck[−k − 1 − r]) > 0, the proof of this claim will finish the proof.
From Section 3.3.3 a train of 1 generated by an oscillator Cln will cross the n − 1 oscillator

Cln−1 . . .Cl1 and reach Cl0 if ln �
∑1

i=n−1 6li + 10l0 − 80n + 60 (iq2). Remark that the last oscillator

is Ck[−k − 1 − r] which implies l0 = k and that the number of oscillators n � p
lm

= p
170 . Using (iq2) we

obtain that S(p,k) � 6p + 10k − 80(
p

lm
) + 60 � 5p + 10k + 60 (iq3).

Since μI is the product of the Parry measure on the mixing subshift of finite type S1 (see [4])
and the Dirac measure on ∞0∞ , then there exist a real 0 < q < 1 and a positive integer L such that

∀m � 0 one has μI ([u0 . . . um] ×∞ 0∞) � q� m+1
L � .

To prove the claim put η(k) = μI (CS(0,k)[−S(0) − k − 1 − r]) and using the lower bound (iq3)

for S(0,k), we obtain that η(k) � μI (C10k+60[−10k − 60 − k − 1 − r]) � q� 11k+59
L � which implies that

limk→∞ η(k) = 0. Using again (iq3) for S(p,k), we obtain that μI (
⋃∞

i=S(0,k) Ci[−i − k − 1 − r]) �
η(k)

∑+∞
i=1 q� i

L � . Remark that the last and the following inequality will give us an upper bound for
the measure of Sk:

μI

( ∞⋃
p=lm

{ ∞⋃
j=S(p,k)

C j[− j − p − k − 1 − r]
})

� η(k)

+∞∑
i=1

q� i
L �

( +∞∑
j=1

q� j
L �

)
.

It follows that we can prove the claim and consequently finish the proof taking

M =
+∞∑
i=1

q� i
L � +

+∞∑
i=1

q� i
L �

( +∞∑
j=1

q� j
L �

)
< +∞. �

Proposition 8. The cellular automaton (S(μc), Fe) is sensitive (has no equicontinuous points in the topologi-
cal support S(μc)).

Proof. If we suppose that there exists an equicontinuous point x ∈ S(μc), there must exist an inte-
ger m such that Cm(x) ⊂ B0(x). First suppose that if for all positive integers n, there exist integers
i > n, such that (F i(x))2

0 = 0, then there exists y ∈ Cm(x) such that (F i(y))2
0 = 1 (it is always pos-

sible to choose a point y ∈ Cm(x) that contains a large enough oscillator transmitter at the left
side of −m that sent a train of 1 that can arrived at coordinate 0 after i iterations). This contra-
dict the hypothesis Cm(x) ⊂ B0(x) and it follows that if there exist x ∈ X and m > 0 such that
Cm(x) ⊂ B0(x), then there exists a positive integer n such that for all y ∈ Cm(x) and i ∈ N one has
(F i+n(y))2

0 = 1 (condition (∗)). Then suppose that there exists m ∈ N such that Cm(x) ⊂ B0(x). Since
the point z := ∞0∞(−∞,−m − 1)x(−m,∞) belongs to Cm(x) and by hypothesis (F i+n(z))2

0 = 1 for
all i ∈ N, we obtain that the pattern x(−m,−1) contains a finite sequence of consecutive oscillators
Clk ,Clk−1 , . . . ,Cl0 that generates a “continuous flow of letters 1.” To finish the proof we need to show
that this finite sequence of oscillators does not exist. In order to do that, we will consider the propa-
gation of trains of 1 generated by a finite sequence of k oscillators (k ∈ N). (See Fig. 2.)
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Fig. 2. The flow of 1 generated by a sequence of k oscillators. The parts not in white color represents the successive flows of
letters 1 due to the trains which come from the oscillators transmitters Clk ,Clk−1 , . . . ,Clk−4 .

Let Pi (0 � i � k) be an upper bound of the number of iterations needed for a train of 1 generated
by the oscillator Cli to cross completely the coordinate 0. We consider that there is no concatenations
with other trains coming from the left but possible concatenations with trains generated by oscillators
situated to the right. The value of Pi depends on the difference between the lost and gained letters
when the left extremity of the train arrived in coordinate 0. It follows that Pi � � li

5 � + 4 − si where

si = ∑i−1
j=0 2l j − ∑i−1

j=0 2(� l j
5 � + 4) = ∑i−1

j=0� 8
5 l j� − 8i. Remark that si � 0 if ∀0 � j � i − 1, l j � 5. As

lm = 170 we obtain that Pi � � li
5 � + 4 for all 0 � i � k. Without loosing generalities, we can suppose

that the train of 1 generated by the first oscillator of size lk arrive in coordinate 0 at t = 0 and last at
most Pk iterations. For time t = Pk + 1 to 4 × Pk , there is no train of 1 due to this first oscillator that
passes through the central coordinate (because Pi � � lk

5 � + 2 and the oscillator Clk stop to generate

train of 1 for at least 3(� lk
5 � + 2) iterations). The train of 1 generated by the second oscillator from the

left: Clk−1 last at most Pk−1 iterations and its effect stops for a period of 3Pk−1 in the interval time
t = Pk + 1 to t = 4Pk . Clearly, if Pk−1 is small enough, between t = Pk + 1 and t = 4Pk , there is at
least one interval of length at least 3Pk−1 that will be not affected by the two first oscillators. This
interval is minimum when the train of 1 generated by the second oscillator pass exactly in the middle
of the interval [Pk + 1,4Pk], between 2 trains of the first oscillator. In this case the condition of non-
existence of “continuous flow” is that 3Pk − (2 × 3 + 1)(Pk−1) � 0 ⇔ Pk−1 � 3Pk

7 . Hence repeating the

same process if Pi−1 � 3Pi
7 (0 � i � k), there will always remain a blank interval and the “flow of 1”

would not be continuous. Since for all 0 � i � k one has Pi � � li
5 � + 4, it follows that the condition

� li−1
5 � + 4 � 3

7 (� li
5 � + 2) (iq4) also implies that the “flow of 1” is not continuous. Remark that we take

a lower bound for Pi and upper bound for Pi−1 which leads to a stronger condition on the minimum
size lm . Then by simplification of (iq4) we get that 3li −7li−1 � 110. Using (iq1) ≡ (li−1 � � 3li

10 �+6) that
gives the minimum condition for a train generated by an oscillator Cli to cross the following one Cli−1

we obtain that if 3li − 7(� 3li
10 � + 6) � 110 (iq5) then the condition 3li − 7li−1 � 110 (iq6) remains true.

The simplification of inequality (iq5) leads to li � 1520
9 ≈ 168.88. Since we have chosen lm = 170 as

the minimum size of the oscillators, there is no equicontinuous points in (S(μc), Fe) which finishes
the proof. �

The dynamical system (X, Fe) has equicontinuous points since patterns of the type E∗0k E0 (with
E∗ ∈ Ê) will produce a continuous flow of letters 1. Note that we can construct F ′

e a CA similar to Fe

with a more complex local rule such that the initial measure μ′
I is the uniform measure on X and

the invariant measure obtained by Cesàro means is similar to the measure μc used in our example. In
this case (X, F ′

e,μc) and (S(μc), F ′
e,μc) both have μc-equicontinuous points but no equicontinuous

points.
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3.4. Questions

– Is it possible to find a sensitive, μ-equicontinuous and μ-invariant CA when μ is the uniform
measure? Or more generally when the topological support S(μ) of the F -invariant measure is a
mixing subshift of finite type?

– To simplify the proof of Proposition 8, we have taken a lot of upper bounds (for example the
use of (iq1) is very strong). We wonder what is the minimum size for the oscillators such that
(S(μ), Fe) cannot produce equicontinuous points?

– From inequality (iq3) in Proposition 7, it is possible to see that for each point x and m ∈ N such
that μc(Bm(x)) > 0, we have Bμc

m (x) = Bm(x). What are the conditions on the minimum size
of the counters lm in order to loose this property? In this case is it possible that there are no
equicontinuous points? Remark that for some points x, Bμ

m(x) �= Bm(x) in the Gilman’s example
of μ-equicontinuous CA given in the beginning of Section 3.3.

– Is there exist a μ-invariant and μ-equicontinuous CA such that (S(μ), F ) has no equicontinuous
points and there exist m ∈ N and a point x ∈ AZ with Bm(x) �= Bμ

m(x) and μ(Bm(x)) > 0?
– More generally, what type of dynamic characterizes sensitive and μ-equicontinuous CA (S(μ), F )

and how common is this behavior that seems to appear in different simulations of one-
dimensional CA?
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