PERGAMON

Local Search Structure in the Symmetric Travelling Salesperson Problem under a General Class of Rearrangement Neighborhoods

J. W. Barnes
Graduate Program in Operations Research and Industrial Engineering
The University of Texas at Austin
Austin, TX 78712, U.S.A.
wbarnes@mail.utexas.edu
B. W. Colletti
Chief of Military and Industrial Studies
SeiCorp, Inc., 13890 Braddock Road, Suite 312
Centreville, VA 20121-2435, U.S.A.
www.seicorp-inc.com
bcolletti@computerserve.com

(Received October 1999; accepted November 1999)

Abstract

The symmetric travelling salesperson problem with n cities (1-STSP) possesses no arbitrarily poor local optima for search neighborhoods defined by arbitrary unions of conjugacy classes in the symmetric group on n letters, $S(n)$.(c) 2000 Elsevier Science Ltd. All rights reserved.

Keywords-TSP, Symmetric group, Rearrangement neighborhood, Conjugacy class.

Colletti and Barnes [1] detailed how the conjugacy class of n cycles in $S(n)$ may be viewed as the set of all solutions, or tours, to the symmetric travelling salesperson problem with one agent (1STSP). Large 1-STSPs overwhelm exact solution methods, causing recourse to heuristic methods like the tabu search metaheuristic [2] which iteratively chooses a new solution from among those in the neighborhood of a previously obtained incumbent solution. In this paper, we use group theory to reveal a useful property common to a general class of rearrangement neighborhoods.

In earlier work, Grover [3] and Codenotti and Margara [4,5] showed that four specific elementary 1-STSP neighborhoods-2-city swap, $2+3$-new-change, 3-new-change, and 2-opt-satisfy a simple homogeneous linear difference equation

$$
\begin{equation*}
\nabla^{2} f+\frac{k}{n} f=0 \tag{1}
\end{equation*}
$$

where n is the number of cities; $k>0$ is a constant which depends on the neighborhood; and for tour $p, f(p)$ is the tourlength of p minus the average tourlength of all tours, μ. Finally, $\nabla^{2} f(p)$ denotes the average of all $f(q)-f(p)$, where q is a neighbor of p. Grover [3] shows that the

[^0]tourlength of any local optimum of any duplicative 1-STSP neighborhood (not only the above four) does not exceed μ, i.e., arbitrarily poor local optima cannot exist for such neighborhoods. A duplicative neighborhood is one whose construction method admits duplicate members; and henceforth, we presume such neighborhoods.

Let $|C|$ denote the cardinality of $C \subseteq S(n)$. For any n-cycle $p \in S(n)$, define $p^{C} \equiv\left\{p^{c}=c^{-1} p c\right.$: $c \in C\}$ to be the C-rearrangement neighborhood of p. Note, that each element of C contributes a neighbor, and so p^{C} is a duplicative neighborhood since there may be distinct $x, y \in C$ such that $p^{x}=p^{y}$. When C is a conjugacy class of $S(n),[1]$ showed that in the multiple asymmetric TSP (m-ATSP), the summed neighbor tourlengths-denoted weight[tourlength, p^{C}]-is linear in the tourlengths of p and its inverse. Thus, for the m-STSP and $n>3$, this weight is linear in tourlength (p)
weight [tourlength, $\left.p^{C}\right]=\left(2 c_{2}+(n-4) c_{4}+2 c_{6}\right)$ Sum $D+\left[c_{1}-2 c_{2}+2 c_{4}+c_{5}-2 c_{6}\right]$ tourlength (p),
where $\operatorname{Sum} D$ is the sum of all elements in the arbitrary symmetric zero-diagonal n by n distance matrix, and c_{i} is described in [1]. The neighborhood f-weight of p, denoted weight $\left[f, p^{C}\right]$, is the summed f values of p 's neighbors.

A conjugacy class of $S(n)$ consists of all permutation having a given cycle structure. Thus, the set of all two-cycles in $S(4)$ is the conjugacy class $C_{(x, x)} \equiv\{(1,2),(1,3),(1.4),(2,3),(2,4),(3,4)\}$, while the conjugacy class of three-cycles is $C_{(x, x, x)} \equiv\{(2,3,4),(2,4,3),(1,2,3),(1,2,4),(1,3,2)$, $(1,3,4),(1,4,2),(1,4,3)\}$. If p is a derangement in $S(n)$, i.e., a permutation that moves all n letters, then the neighborhood of p consisting of all possible two-letter swaps on p is given by $p^{C_{(x, x)}}$. Likewise, all possible three-letter swaps are given by $p^{C_{(x, r, x)}}$.

However, the set of all four-letter swaps is given by p^{C}, where $C=C_{(x, x, x, x)} \cup C_{(x, x)(x, x)}$. In general, p^{C} are all k-letter rearrangements on derangement p, where C is the union of all conjugacy classes whose cycle structures move k letters. Again, p^{C} may contain duplicates since each element in C creates a neighbor. Until otherwise stated, C henceforth denotes a single conjugacy class of $S(n)$.

When applied to the n-city 1 -STSP, equation (2) may be used to prove any C-rearrangement neighborhood satisfies equation (1), and so has no arbitrarily poor local optima. To see this, simply manipulate equation (1) to obtain

$$
\begin{equation*}
k=n-\frac{n}{\nu} \frac{\text { weight }\left[f, p^{C}\right]}{f(p)}>0 \tag{3}
\end{equation*}
$$

where $\nu=\left|p^{C}\right|=|C|$, a constant $\forall p \in S(n)$. Because equation (1) presumes k is constant, then so is

$$
\begin{equation*}
\rho=\frac{\text { weight }\left[f, p^{C}\right]}{f(p)}<\nu \tag{4}
\end{equation*}
$$

Since this argument can be reversed, it follows that a constant $\rho<\nu$ implies the 1-STSP C rearrangement neighborhood satisfies equation (1).

To show that any C-rearrangement neighborhood respects equation (1), we need only show its ρ value satisfies equation (4). First, it is well known that $\operatorname{SUM} D=(n-1) \mu$, and so

$$
\begin{align*}
\text { weight }\left[f, p^{C}\right]= & \text { weight }\left[\text { tourlength, } p^{C}\right]-|C| \mu=\left[2 c_{2}+(n-4) c_{4}+2 c_{6}\right](n-1) \mu \tag{5}\\
& +\left[c_{1}-2 c_{2}+2 c_{4}+c_{5}-2 c_{6}\right] \text { tourlength }(p)-|C| \mu
\end{align*}
$$

where as stated earlier

$$
\begin{equation*}
f(p)=\operatorname{tourlength}(p)-\mu \tag{6}
\end{equation*}
$$

For the reader's convenience, the arc transformation table from [1] is given in Table 1.

Table 1. Arc transformation table.

Transformed arc	τ	$\left[x, \neq x^{p}\right]$	$\left[\neq x, x^{p}\right]$	$\left[\notin\left\{x, x^{p}\right\}\right.$ $\left.\notin\left\{x, x^{p}\right\}\right]$	$\left[x^{p}, x\right]$	$\left[x^{p}, \neq x\right]$	$\left[\neq x^{p}, x\right]$
$\# C$-elements	c_{1}	c_{2}	$c_{3}\left(=c_{2}\right)$	c_{4}	c_{5}	c_{6}	$c_{7}\left(=c_{6}\right)$
Arc variates	1	$n-2$	$n-2$	$P(n-2,2)$	1	$n-2$	$n-2$

Table 1 presents the seven transformation of p-arc $\tau=\left[x, x^{p}\right]$ under conjugation by $C . c_{k}$ elements in C transform τ into a specific column header arc α, and the bottom row gives the number of variants of α. For example, if $\tau=[1,2]$, then c_{2} elements in C change τ into $\alpha=[1,3]$, one of the $n-2$ variants $\{[1,3],[1,4], \ldots,[1, n]\} . P(n, m)$ denotes the number of permutations on n choose m letters.
Thus, $|C|$ is the summed pairwise products of corresponding elements from the second and third rows of Table 1

$$
\begin{align*}
|C| & =1^{*} c_{1}+(n-2)^{*} c_{2}+(n-2)^{*} c_{3}+P(n-2,2)^{*} c_{4}+1^{*} c_{5}+(n-2)^{*} c_{6}+(n-2)^{*} c_{7} \\
& =c_{1}+2(n-2) c_{2}+(n-2)(n-3) c_{4}+c_{5}+2(n-2) c_{6} . \tag{7}
\end{align*}
$$

Substituting equations (5)-(7) into equation (4) and simplifying yields the constant

$$
\begin{equation*}
\rho=c_{1}-2 c_{2}+2 c_{4}+c_{5}-2 c_{6}<|C| . \tag{8}
\end{equation*}
$$

Thus, any 1-STSP C-rearrangement neighborhood satisfies equation (1) with an associated k coefficient

$$
\begin{equation*}
k=n\left[1+\frac{2\left(c_{2}-c_{4}+c_{6}\right)-c_{1}-c_{5}}{|C|}\right]>0 . \tag{9}
\end{equation*}
$$

In turn, this neighborhood has no arbitrarily poor local optima. Now, if C is the union of arbitrary conjugacy classes $\left\{C_{i}\right\}_{i \in I}$ in $S(n)$, then

$$
\begin{equation*}
\frac{\text { weight }\left[f, p^{C}\right]}{f(p)}=\sum_{i \in I} \frac{\text { weight }\left[f, p^{C_{i}}\right]}{f(p)} \tag{10}
\end{equation*}
$$

Since each summand in equation (10) is constant and less than its $\left|C_{i}\right|$, their sum must be constant and less than $|C|$, the sum of all the $\left|C_{i}\right|$. Thus, this C-rearrangement neighborhood satisfies equation (1) with k coefficient

$$
\begin{equation*}
k=n-n \frac{\text { weight }\left[f, p^{C}\right] / f(p)}{\sum_{i \in I}\left|C_{i}\right|}=n\left[1-\frac{\sum_{i \in I}\left(\text { weight }\left[f, p^{C_{i}}\right] / f(p)\right)}{\sum_{i \in I}\left|C_{i}\right|}\right] . \tag{11}
\end{equation*}
$$

This result generalizes upon and proves the (specific) conjecture of [4] that says the 1-STSP $\{2+\cdots+m\}$-letter rearrangement move satisfies equation (1).
In closing, results found here are subsumed by more general m-STSP results presented in [6]. For example, equation (2) holds for the m-STSP, i.e., p need not be an n-cycle (a solution to the 1-TSP). All other equations hold for any deranged m-STSP, i.e., p is any derangement (an n-cycle is a special type of derangement). The authors focused upon the more familiar 1-STSP because once understood, this paper's application to the m-STSP becomes clear.

REFERENCES

[^1]3. L. Grover, Local search and the local structure of NP-complete problems, Operations Research Letters 12 (4), 235-243 (1992).
4. B. Codenotti and L. Margara, Local properties of some NP-complete problems. TR-92-021, International Computer Science Institute, University of California at Berkeley (1992).
5. B. Codenotti and L. Margara, Traveling salesman problem and local search, Appl. Math. Lett. 5 (4), 69-71 (1992).
6. B. Colletti, Group Theory and Metaheuristics, Ph.D. Dissertation, The University of Texas at Austin, (1999).

[^0]: 0893-9659/00/\$ - see front matter (C) 2000 Elsevier Science Ltd. All rights reserved. Typeset by $\mathcal{A}_{\mathcal{M}} \mathcal{S}-\mathrm{T}_{\mathrm{E}} \mathrm{X}$ PII: S0893-9659(00)00120-8

[^1]: 1. B. Colletti and J.W. Barnes, Linearity in the traveling salesman problem, Appl. Math. Lett. 13 (3), 27-32 (2000).
 2. F. Glover and M. Laguna, Tabu Search, Kluwer Academic, Boston, MA, (1997).
