ON BALANCED COMPLEMENTATION FOR REGULAR t-WISE BALANCED DESIGNS*

R. FUJI-HARÂ \dagger, S. KURIKI \ddagger and M. JIMBO \dagger
\dagger Inst. of Socio Economic Planning, Univ. of Tsukuba, Tsukuba, Ibaraki, Japan 305
\ddagger Dept. of Applied Mathematics, Science Univ. of Tokyo, Shinjuku-ku, Tokyo, Japan 162

Received 28 April 1986
Revised 14 August 1987

Abstract

Vanstone has shown a procedure, called r-complementation, to construct a regular pairwise balanced design from an existing regular pairwise balanced design. In this paper, we give a generalization of r-complementation, called balanced complementation. Necessary and sufficient conditions for balanced complementation which gives a regular t-wise balanced design from an existing regular t-wise balanced design are shown. We characterize those aspects of designs which permit balanced complementation. Results obtained here will be applied to construct regular t-wise balanced designs which are useful in Statistics.

1. Introduction

A t-wise balanced design (denoted by t-BD) is a pair (V, \mathscr{B}), where V is a \boldsymbol{v}-set (called points) and \mathscr{B} is a collection of subsets of V (called blocks), satisfying the following condition:

For any t-subset T of V, the number of blocks containing T is λ_{t} which is independent of the t-subset T chosen.

If, for any s-subset $S(s \leqslant t)$, the number of blocks containing S is λ_{s} which is independent of the s-subset S chosen, then the design is called a regular t-wise balanced design. When $t=2$, the design is called a regular pairwise balanced design (regular PBD) or an (r, λ)-design ($r=\lambda_{1}, \lambda=\lambda_{2}$).
Vanstone [4] has shown a procedure, called r-complementation, to construct a regular $P B D$ from an existing regular $P B D$. The r-complementation is the procedure defined as follows:

Let (V, \mathscr{B}) be a regular $P B D$. For any point $x \in V$, let \mathscr{B}_{x} be a collection of blocks containing x. Consider

$$
V^{*}=V-\{x\}
$$

and

$$
\mathscr{3}^{*}=\left\{V-B: B \in \mathscr{B}_{x}\right\} \cup\left(\mathscr{B}-\mathscr{B}_{x}\right) .
$$

Then the pair $\left(V^{*}, \mathscr{B}^{*}\right)$ is also a regular $P B D$ with new parameters $v^{*}=v-1$, $r^{*}=2(r-\lambda)$ and $\lambda^{*}=r-\lambda$.

[^0]The r-complementation is useful to construct new (r, λ)-designs (see e.g. [3]).
In this paper, we give a generalization of r-complementation in Sections 2 and 3, called balanced complementation. Its definition is given in Section 2 for regular $P B D ' s$ and in Section 3 for regular t-BD's $(t \geqslant 3$), respectively. Necessary and sufficient conditions for balanced complementation which gives a regular $\boldsymbol{t} \boldsymbol{B D}$ from an existing regular $t-B D$ are shown in Section 2 for $t=2$ and in Section 3 for $t \geqslant 3$, respectively. In Section 3 we characterize those aspects of designs which permit balanced complementation. Results obtained here will be applied to construct regular \boldsymbol{t}-BD's which are useful in Statistics (see e.g. [2]).

2. Balanced complementation for a regular PBD

We generalize r-complementation by the following theorem:
Theorem 2.1. Let (V, \mathscr{B}) be a regular PBD. Consider $V^{*}=V$ and $\mathscr{B}^{*}=\{V-$ $\left.B: B \in \mathscr{B}^{\prime}\right\} \cup\left(\mathscr{B}-\mathscr{B}^{\prime}\right)$, where $\mathscr{B}^{\prime} \subset \mathscr{B}$. Then the pair $\left(V^{*}, \mathscr{B}^{*}\right)$ is also a regular PBD if and only if each point of V is contained in exactly the same number of blocks in \mathscr{B}^{\prime}.

Proof. Assume that each point of V is contained in exactly r^{\prime} blocks in \mathscr{B}^{\prime}. Let $\left|\mathscr{B}^{\prime}\right|=b^{\prime}$. It is easy to see that each point of V^{*} is contained in exactly $r+b^{\prime}-2 r^{\prime}$ blocks in \mathscr{B}^{*}. For any pair $\{x, y\}$ of V, let b_{1} be the number of blocks in \mathscr{B}^{\prime} containing x and y and let b_{2} be the number of blocks in \mathscr{B}^{\prime} containing neither x nor y, and let b_{3} be the number of blocks in $\mathscr{B}-\mathscr{B}$ containing x and y. Then we have

$$
b_{1}+b_{3}=\lambda
$$

and

$$
b_{2}-b_{1}=b^{\prime}-2 r^{\prime}
$$

From these equations, we can show that each pair of V^{*} is contained in exactly $\lambda+b^{\prime}-2 r^{\prime}$ blocks in \mathscr{B}^{*}. Therefore, the above pair $\left(V^{*}, \mathscr{B}^{*}\right)$ is a regular PBD.

Let (V^{*}, \mathscr{B}^{*}) be a regalar $P B D$. For some $x \in V$, let c_{x} be the number of blocks in \mathscr{B} ' containing x and let d_{x} be the number of blocks in $\mathscr{B}-\mathscr{B}$ containing x. Since (V, \mathscr{B}) is a regular PBD, $c_{x}+d_{x}$ is independent of the chosen x. The number of blocks in \mathscr{B}^{*} containing x is $b^{\prime}-c_{x}+d_{x}$, which is also independent of the chosen x, since $\left(V^{*}, \mathscr{B}^{*}\right)$ is a regular PBD. Hence, each point of V is contained in exactly the same number of blocks in \mathscr{B} '.

In this paper we call this procedure balanced complementation. A spread (or resolution class) of a PBD is a set of blocks, in which eaci: point appears in exactly one block of the set. If the blocks of the design are partitioned into spreads, then the partition is called a resolution and the design is said to be
resolvable. There are many examples of resolvable designs. We can apply Theorem 2.1 to designs with spreads.

Corollary 2.2. Let (V, \mathscr{B}) be a regular PBD with m disjoint spreads. Then there exists a regular PBD $\left(V^{*}, \mathscr{B}^{*}\right)$ with parameters $v^{*}=\vartheta, r^{*}=r+b^{\prime}-2 m$ and $\lambda^{*}=\lambda+b^{\prime}-2 m$, where b^{\prime} is the total number of blocks in the m spreads. (If block size of the design is a constant k, then $b^{\prime}=m v / k$.)

In a regular $\operatorname{PBD}(V, \mathscr{B}), r-\lambda$ is called order and denoted by n. From the proof of Theorem 2.1, we have the following corollary:

Corollary 2.3. The order $n=r-\lambda$ is invariant under any balanced complementatio?.

3. Balanced complementation for a regular $\boldsymbol{t}-\boldsymbol{B D}$

Let (V, \mathscr{B}) be a pair, where V is a finite set (called points) and \mathscr{B} is a collection of subsets of V (called blocks). For subsets T and S of V such that $S \subseteq T$, let $\lambda(T, S)$ be the number of blocks in \mathscr{B} which contain S but do not contain any point of $T-S$. The following lemma is used throughout this section.

Lemma 3.1 (Basic Lemma). Let T and S be subsets of V such that $S \subseteq T$. Then, for a point e of $V-T, \lambda(T, S)=\lambda(T \cup\{e\}, S \cup\{e\})+\lambda(T \cup\{e\}, S)$ holds.

Proof. Let \mathscr{B} ' be a collection of blocks which contain S but do not contain any point of $T-S$. \mathscr{B}^{\prime} will be partitioned into \mathscr{B}_{1} and \mathscr{B}_{2}, where each block of \mathscr{B}_{1} contains e and each of \mathscr{B}_{2} does not contain e. The number of blocks of \mathscr{B}^{\prime} is $\lambda(T, S)$, the number of blocks of \mathscr{B}_{1} is $\lambda(T \cup\{e\}, S \cup\{e\})$ and the number of blocks of \mathscr{B}_{2} is $\lambda(T \cup\{e\}, S)$.

We consider two properties which will be useful in our study of balanced complementation.

Definition. A pair (V, \mathscr{B}) is said to have the property $L(t, s)$ if for every t-subset T and s-subset S of V with $S \subseteq T, \lambda(T, S)$ is independent of T and S. We denote this constant by $\lambda_{t, s}$.

If a pair (V, \mathscr{B}) has the properties $L(i, i)$'s for $i \leqslant t$, then it is a regular $t-B D$.
The following lemma is an immediate consequence of the Basic Lemma.
Lemma 3.2. If two of the properties $L(t, s), L(t+1, s+1)$ and $L(t+1, s)$ are satisfied, then the rest of the properties is also satisfied.

Note that, from Lemma 3.2, if the properties $L(i, i$'s are satisfied for every $i \leqslant t$, then the properties $L(i, j$)'s are also satisfied for every $j \leqslant i \leqslant t$.

Definition. A pair (V, \mathscr{B}) is said to have the property $M(t, s)$ if for every t-subset T and s-subset S of V with $S \subseteq T, \lambda(T, S)-\lambda(T, T-S)$ is independent of T and S. We denote this constant by $\delta_{t, s}$.

If a pair (V, \mathscr{B}) is a regular $t-B D$, then it has the properties $M(i, j)$'s for $j \leqslant i \leqslant t$.
On the property $M(t, s)$, we will show some results.
Lemma 3.3. If two of the properties $M(t, s), M(t+1, s+1)$ and $M(t+1, s)$ are satisfied, then the rest of the properties is also satisfied.

Proof. This is clear from the Basic Lemma.
Note that $\delta_{t, s}=\delta_{t+1, s+1}+\delta_{t+1, s}$, when two of the properties $M(t, s), M(t+$ $1, s+1)$ and $M(t+1, s)$ are satisfied.

Lemma 3.4. If the property $M(t, s)$ is satisfied, then the property $M(t, t-s)$ is also satisfied.

Proof. This is also clear from the definition of the property $M(t, s)$.
Note that $\delta_{t, s}+\delta_{t, t-s}=0$, when the property $M(t, s)$ is satisfied.
Lemma 3.5. If the properties $M(i, i)$'s are satisfied for every $i \leqslant t$, then $\delta_{2 d, d}=0$, for $d=0,1, \ldots,\left[\frac{1}{2} t\right]$, where $[a]$ denotes the largest integer $\leqslant a$.

Proof. Since the properties $M(i, i)$'s are satisfied for every $i \leqslant t$, the properties $M(i, j)$'s are also satisfied for every $j \leqslant i \leqslant t$, from Lemma 3.3. Then, from the note of Lemma 3.4, we have $\delta_{2 d, d}=0$ for $d \leqslant[t / 2]$.

Theorem 3.6. If the properties $M(t-1, j)$'s are satisfied for every $j \leqslant t-1$ and t is even, then the properties $M(t, s)$'s are also satisfied for every $s \leqslant t$.

Proof. Let $S_{0}, S_{1}, \ldots, S_{t}$ be subsets of V such that $S_{0}(=\phi) \subset S_{1} \subset \cdots \subset S_{t}$ with $\left|S_{j}\right|=j, j=0,1, \ldots, t$, respectively. Define variables d_{j} as

$$
d_{j}=\lambda\left(S_{t}, S_{j}\right)-\lambda\left(S_{t}, S_{t}-S_{j}\right) .
$$

Since the properties $M(t-1, j)$'s are satisfied for every $j \leqslant t-1$, we have, from the Basic Lemma,

$$
d_{j}+d_{j+1}=\delta_{t-1, j}
$$

for $j=0,1, \ldots, t-1$. Since t is even, from these equations, we have

$$
\begin{aligned}
\sum_{j=0}^{t-1}(-1)^{j} \delta_{t-1, j} & =d_{0}-d_{t} \\
& =2\left\{\lambda\left(S_{t}, \phi\right)-\lambda\left(S_{t}, S_{t}\right)\right\} .
\end{aligned}
$$

This implies that the property $M(t, 0)$ is satisfied and $\delta_{t, 0}=\frac{1}{2} \sum_{j=0}^{t-1}(-1)^{i} \delta_{t-1, j}$. Thus, from Lemma 3.3, the properties $M(t, s)$'s are satisfied for every $s \leqslant t$. \quad

When block size is constant, it is well known that, if the property $L(t, t)$ is satisfied, then the properties $L(i, j)$'s are also satisfied for every $j \leqslant i \leqslant t$. But, for the property $\boldsymbol{M}(i, j)$, such a result is unknown. We can only make the following statement.

Lemma 3.7. If the property $M(t, s)$ is satisfied and block size is $k=\frac{1}{2} v(\geqslant s)$, then the property $M(t-1, s-1)$ is also satisfied.

Proof. Let T and S be a $(t-1)$-subset and an ($s-1$)-subset of V, respectively, such that $S \subseteq T$. Since $M(t, s)$ is satisfied, we have

$$
\lambda(T \cup\{e\}, S \cup\{e\})-\lambda(T \cup\{e\}, T-S)=\delta_{t, s},
$$

for any point e of $V-T$. Let \mathbb{B}_{e} and \mathbb{C}_{e} be a collection of blocks counted in the first term and in the second term of the above equation, respectively. Since block size is a constant k, we have $|B-T|=k-(s-1)$ for a block B which contains S but does not contain any point of $T-S$. Such a block appears in exactly $k-(s-1) \quad$ collections of $\quad \mathbb{B}_{e_{1}}, \quad \mathbb{B}_{e_{2}}, \ldots, \quad \mathbb{B}_{e_{v}-(-1)}, \quad$ where $\quad V-T=$ $\left\{e_{1}, e_{2}, \ldots, e_{v-(t-1)}\right\}$. Similarly, if a block B appears in one of the collections $\mathbb{C}_{e_{1}}, \mathbb{C}_{e_{2}}, \ldots, \mathbb{C}_{e_{v}((-1))}$, then B is contained in exactly $v-k-(s-1)$ collections of $\mathbb{C}_{e_{1}}, \mathbb{C}_{e_{2}}, \ldots, \mathbb{C}_{e_{v-(-1)}}$. Thus we have

$$
\{k-(s-1)\} \lambda(T, S)-\{v-k-(s-1)\} \lambda(T, T-S)=\{v-(t-1)\} \delta_{t, s} .
$$

Substituting the equation into $\lambda(T, S)-\lambda(T, T-S)$, we have

$$
\lambda(T, S)-\lambda(T, T-S)=\frac{\left\{(v-t+1) \delta_{t, s}+(v-2 k) \lambda(T, T-S)\right\}}{k-s+1} .
$$

So, if $v=2 k$, then $\lambda(T, S)-\lambda(T, T-S)$ is independent of the $(t-1)$-subset T and the ($s-1$)-subset S chosen. This implies that the property $M(t-1, s-1)$ is satisfied.

From Lemmas 3.3, 3.4 and 3.7, we have the following theorem:
Theorem 3.8. If the property $M(t, s)$ is satisfied and block size is $k=\frac{1}{2} v(\geqslant s)$, then the properties $M(i, j)$'s are also satisfied for every $j \leqslant i \leqslant t$.

Now we consider balanced complementation for a regular $\boldsymbol{t}-B D$.

Theorem 3.9. Let (V, \mathscr{B}) be a regular t-BD. Consider $V^{*}=V$ and $\mathscr{B}^{*}=\{V-$ $\left.B: B \in \mathscr{B}^{\prime}\right\} \cup\left(\mathscr{B}-\mathscr{B}^{\prime}\right)$, where $\mathscr{B}^{\prime} \subset \mathscr{B}$. Then the pair $\left(V^{*}, \mathscr{B}^{*}\right)$ is also a regular $t-B D$ if and only if the pair $\left(V, \mathscr{B}^{\prime}\right)$ has the properties $M(t, s)$'s for $s \leqslant t$.

Proof. Let $\mathscr{B}_{1}=\left\{V-B: B \in \mathscr{B}^{\prime}\right\}$ and $\mathscr{B}_{2}=\mathscr{B}-\mathscr{B}^{\prime}$. For subsets T and S of V such that $S \subseteq T$, let $\lambda^{(i)}(T, S)$ be the number of blocks in \mathscr{B}_{i} which contain S but do not contain any point of $T-S$. Since (V, \mathscr{B}) is a regular $t-B D$, it has the properties $L(t, s)$'s; that is,

$$
\lambda^{(1)}(T, T-S)+\lambda^{(2)}(T, S)=\lambda_{t, s},
$$

for $s \leqslant t$, where $t=|T|$ and $s=|S|$.
If $\left(V^{*}, \mathscr{B}^{*}\right)$ is a regular $t-B D$, then it has the properties $L(t, s)^{\prime}$; that is,

$$
\lambda^{(1)}(T, S)+\lambda^{(2)}(T, S)=\lambda_{t, s}^{*},
$$

say, for $s \leqslant t$. Therefore, we have

$$
\lambda^{(1)}(T, T-S)-\lambda^{(1)}(T, S)=\lambda_{t, s}-\lambda_{t, s,}^{*}
$$

for $s \leqslant t$. This implies that the pair (V, \mathscr{B}) has the properties $M(t, s)$'s for $s \leqslant t$.
If (V, \mathscr{B}^{\prime}) has the properties $M(t, s)$'s for $s \leqslant t$, then we have

$$
\lambda^{(1)}(T, T-S)-\lambda^{(1)}(T, S)=\delta_{i, s}^{(1)},
$$

say, for $s \leqslant i$. Therefore, we have

$$
\lambda^{(1)}(T, S)+\lambda^{(2)}(T, S)=\lambda_{t, s}-\delta_{t, s}^{(1)},
$$

for $s \leqslant t$. This implies that the pair $\left(V^{*}, \mathscr{B}^{*}\right)$ has the properties $L(t, s)$'s for $s \leqslant t$ and it is a regular \boldsymbol{t}-BD.

It is easily seen, from the above proof, that $\lambda_{i, j}^{*}=\lambda_{i, j}-\delta_{i, j}^{(1)}$ for $j \leqslant i \leqslant t$, when (V^{*}, \mathscr{B}^{*}) is a regular \boldsymbol{t}-BD. Especially, from Lemma 3.5, we have $\lambda_{2 d, d}^{*}=\lambda_{2 d, d}$ for $d \leqslant\left[\frac{1}{2} t\right]$.

From Theorems 3.6 and 3.9, we have the following theorem:
Theorem 3.10. If (V, \mathscr{B}) is a regular $t-B D$ with a subdesign which is a regular $(t-1)-B D\left(V, \mathscr{B}^{\prime}\right), \mathscr{B}^{\prime} \subset \mathscr{B}$, and t is even, then $\left(V^{*}, \mathscr{B}^{*}\right)$ is also a regular $t-B D$, where $\left(V^{*}, \mathscr{B}^{*}\right)$ is defined in Theorem 3.9.

Let $Q(v)$ be the complete design of block size 4 with v points. Lindner [1] has shown that $Q(4 p)$ contains at least $3 p$ mutually disjoint Steiner quadruple systems as subdesigns, where $p \equiv 2$ or $4(\bmod 6), p \geqslant 8$. Therefore, from Theorem 3.10,
there exists a regular 4-BD with parameters

$$
\begin{aligned}
r & =\frac{1}{3}(2 p-1)(4 p-1)(4 p-3)+\frac{1}{3} l(p-2)(2 p-1)(4 p-1), \\
\lambda_{2} & =(2 p-1)(4 p-3)+\frac{1}{3} l(p-2)(2 p-1)(4 p-1), \\
\lambda_{3} & =4 p-3+\frac{1}{3} l(p-2)\left(8 p^{2}-14 p+9\right),
\end{aligned}
$$

and

$$
\lambda_{4}=1+\frac{1}{3} l(p-2)\left(8 p^{2}-22 p+17\right),
$$

for $1 \leqslant l \leqslant 3 p$.

References

[1] C.C. Lindner, On the construction of pairwise disjoint Steiner quadruple systems, Ars Combinatoria 19 (1985) 153-156.
[2] B.L. Raktoe, A. Hedayat and W.T. Federer, Factorial Designs (John Wiley \& Sons, 1981).
[3] D.R. Stinson and G.H.J. van Rees, The equivalence of certain equidistant binary codes and symmetric BIBDs, Combinatorica 4(4) (1984) 357-362.
[4] S.A. Vanstone, A bound for $v_{0}(r, \lambda)$, Proc. Fifth Southeastern Conference on Combinatorics, Graph Theory, and Computing (1974) 661-673.

[^0]: * The research of the second author was supported in part by Grant-in-Aid for Scientific Research of the Ministry of Education, Science and Culture under Contract Number 403-8003-60740126.

