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Vanstone has shown a procedure, called r-complementation, to construct a regular pairwise
balanced design from an existing regular pairwise balanced design. In this paper, we give a
generalization of r-complementation, called balanced complementation. Necessary and
sufficient conditions for balanced complementation which gives a regular s-wise balanced design
from an existing regular t-wise balanced design are shown. We characterize those aspects of
designs which permit balanced complementation. Results obtained here will be applied to
construct regular z-wise balanced designs which are useful in Statistics.

1. Introduction

A t-wise balanced design (denoted by t-BD) is a pair (V, %), where V is a v-set
(called points) and 2 is a collection of subsets of V (called blocks), satisfying the
following condition:

For any t-subset T of V, the number of blocks containing T is 4,
which is independent of the ¢-subset T chosen.

If, for any s-subset S (s <¢), the number of blocks containing S is A, which is
independent of the s-subset S chosen, then the design is called a regular t-wise
balanced design. When t=2, the design is called a regular pairwise balanced
design (regular PBD) or an (r, A)-design (r = A,, A= A,).

Vanstone [4] has shown a procedure, called r-complementation, to construct a
regular PBD from an existing regular PBD. The r-complementation is the
procedure defined as follows:

Let (V, #B) be a regular PBD. For any point x € V, let %, be a collection of
blocks containing x. Consider

V*=V — {x}
and

*={V—-B:Be®B}U(B— B,).
Then the pair (V*, B*) is also a regular PBD with new parameters v*=v —1,
r*=2(r—A)and A*=r—A.

* The research of the second author was supported in part by Grant-in-Aid for Scientific Research
of the Ministry of Education, Science and Culture under Contract Number 403-8003-60740126.
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The r-complementation is useful to construct new (r, 1)-designs (see e.g. [3]).
In this paper, we give a generalization of r-compiementation in Sections 2 and
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PBD’s and in Section 3 for regular t-BD’s (t=3), respectively. Necessary and
sufficient conditions for balanced complementation which gives a regular ¢-BD
from an existing regular ¢-BD are shown in Section 2 for ¢t =2 and in Section 3 for
t=3, respectively. In Section 3 we characterize those aspects of designs which
permit balanced compiementation. Resuits obtained here will be applied to
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2. Balanced complementation for a regular PBD
We generalize r-complementation by the following theorem:

Theorem 2.1, Let (V. B) be a reoular PRD. Consider V* =V and RB* = {V —
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B:BeB'}YJU(B—B'), where B' = B. Then the pair (V*, B*) is also a regular

PBD if and only if each point of V is contained in exactly the same number of
blocks in B'.
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t
r+b' —2r' blocks in %*. For any pair {x. y} of V, let b, be the number of blocks
in B’ containing x and y and let b, be the number of blocks in %’ containing
neither x nor y, and let b; be the number of blocks in B — 3B’ containing x and y.
Then we have

bl+b3=l
and

by—b,=b'—2r

From these equations, we can show thai each pair of V* is contained in exactly

A+ b’ —2r' blocks in B*. Therefore, the above pair (V*, #*) is a regular PBD.
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et ¢, be th
nd let d, be the number of blocks in B — %' containing x.
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Since (V, %) i egular PBD, c, +d, is independent of the chosen x. The
number of blocks in %* containing x is b’ — ¢, + d,, which is also independent of
the chosen x, since (V*, #*) is a regular PBD. Hence, each point of V is
contained in exactly the same number of blocks in %’. O
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In this paper we call this nrm‘pdnrp balanced rnmnlpmpnmnnn A cnrpnd (nr

resclution class) of a PBD is a set of blocks, in whlch eaci: point appears in

exactly one block of the set. If the blocks of the design are partitioned into
spreads, then the partition is called a resolution and the design is said to be
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resolvable. There are many examples of resolvable designs. We can apply
Theorem 2.1 to designs with spreads.

Corollary 2.2. Let (V, B) be a regular PBD with m disjoint spreads. Then there
exists a regular PBD (V*, B*) with parameters v*=v, r*=r+b'—2m and
A*=A4+b'—2m, where b’ is the total number of blocks in the m spreads. (If
block size of the design is a constant k, then b' =mu/k.)

In a regular PBD (V, &), r— A is called order and denoted by n. From the
proof of Theorem 2.1, we have the following corollary:

Corollary 2.3. The order n=r—A is invariant under any balanced
complementatio.

3. Balanced complementation for a regular ¢+-BD

Let (V, 3B) be a pair, where V is a finite set (called points) and 3 is a ccllection
of subsets of V (called blocks). For subsets T and S of V such that Sc T, let
A(T, S) be the number of blocks in %8 which contain S but do not contain any
point of T — S. The following lemma is used throughout this section.

Lemma 3.1 (Basic Lemma). Let T and S be subsets of V such that S c T. Then,
forapointeof V—T, AT, S)=AMT U {e}, SU {e}) + A(T U {e}, S) holds.

Proof. Let 3B’ be a collection of blocks which contain S but do not contain any
point of T —S. A’ will be partitioned into %, and %,, where each block of %,
contains e and each of %, does not contain e. The number of blocks of %’ is
A(T, S), the number of blocks of B, is A(T U {e}, SU {e}) and the number of
blocks of B, is A(T U {e}, S). O

We consider two properties which will be useful in our study of balanced
complementation.

Definition. A pair (V, B) is said to have the property L(t, s) if for every ¢-subset
T and s-subset S of V with S = T, A(T, §) is independent of T and S. We denote
this constant by A, ;.

If a pair (V, ) has the properties L(i, i)’s for i <¢, then it is a regular ¢-BD.

The following lemma is an immediate consequence of the Basic Lemma.

Lemma 3.2. If two of the properties L(t,s), L(t+1,s+1) and L(t+1,5) are
satisfied, then the rest of the properties is also satisfied.
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Note that, from Lemma 3.2, if the properties L(i, i)’s are satisfied for every
i <t, then the properties L(i, j)’s are also satisfied for every j <i<t.

Definition. A pair (V, 3) is said to have the property M(t, s) if for every ¢-subset
T and s-subset S of V with S = T, A(T, §) — A(T, T — S) is independent of T and
S. We denote this constant by 6, ;.

If a pair (V, %) is a regular ¢-BD, then it has the properties M(i, j)’sforj<i=<t.
On the property M(¢, s), we will show some results.

Lemma 3.3. If two of the properties M(t,s), M(t+1,s + 1) and M(t+ 1, s) are
satisfied, then the rest of the properties is also satisfied.

Proof. This is clear from the Basic Lemma. O

Note that 6,;= 0,+15+1+ 0,415, When two of the properties M(t,s), M(t +
1, s + 1) and M(t + 1, 5) are satisfied.

Lemma 3.4. If the property M(t, s) is satisfied, then the property M(t, t — s) is also
satisfied.

Proof. This is also clear from the definition of the property M(¢,s). D
Note that 6, + 6,,_, =0, when the property M(t, s) is satisfied.

Lemma 3.5. If the properties M(i, i)’s are satisfied for every i <t, then 0,4 ,=0,
ford=0,1,...,[3t], where [a] denotes the largest integer <a.

Proof. Since the properties M(i, i)’s are satisfied for every i <¢, the properties
M(i, j)’s are also satisfied for every j<i<t, from Lemma 3.3. Then, from the
note of Lemma 3.4, we have 8,,,=0ford=<[t/2). O

Theorem 3.6. If the properties M(t — 1, j)’s are satisfied for every j<t—1 and t is
even, then the properties M(t, s)’s are also satisfied for every s <t.

Procf. Let Sy, S, . . ., S, be subsets of V such that Sy(=¢)c S, - - - c S, with
ISi1=4,j=0,1,...,¢t respectively. Define variables d; as
di=A(S;, ;) — A(S,, S, — S).

Since the properties M(t — 1, j)’s are satisfied for every j<t¢— 1, we have, from
the Basic Lemma,

dj +dj, = 6:-1,,',
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forj=0,1, t — 1. Since ¢ is even, from these equations, we have
-1
N _1Vs =d —d
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=2{MS,, ¢) — A(S., S0)}-

This implies that the property M(t, 0) is satisfied and &,0=13 {25 (—1)/6,_, ;.
Thus, from Lemma 3.3, the properties M(t, s)’s are satisfied for everys<r. O
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statement.

Lemma 3.7. If the property M(t, s) is satisfied and block size is k = 2v (=s), then

the propeny M\[ - 1, S — 1) is aiso sauspea

Proof. Let T and S be a (¢ — 1)-subset and an (s — 1)-subset of V, respectively,
such that S c T. Since M(t, s) is satisfied, we have

MT U {e}, SU{e}) - AT U{e}, T—S)=0,,
for any point e of V — T. Let B, and C. be a collection of blocks counted in the
first term and in the second term of the above equation, respectively. Since block

size is a constant k, we have |B — T| =k — (s — 1) for a block B which contains §
but does not contain any point of 7 —S. Such a block appears in exactly
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Ceis Ceys - - - » Ce, .- Thus we have

{k = (s = D)AT, S) - (v —k — (s — AT, T - S) = {v — (t 1)} 4,..
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{(v—t+1)d,, + (v —2k)A(T, T — S)}

k—s+1 )
So, if v =2k, then A(T, S)—A(T, T —S) is independent of the (¢ —1)-subset T
and the (s — 1)-subset S chosen. This implies that the property M(t—1,s —1) is
satisfied. O

AT, S)— MT, T—S)=

From Lemmas 3.3, 3.4 ana 3.7, we have the following theorem:

Theoram 2.8, If the property (¢t o\ ic catichied and block cize ic k =1y (=¢)
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then the properties M(i, j)’s are also satisfied for every j<i<t.

Now we consider balanced complementation for a regular ¢-BD.
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Theorem 3.9. Let (V, B) be a regular t-BD. Consider V*=V and B*={V —
B:Be B} U(B— B'), where B' = B. Then the pair (V*, B*) is also a regular
t-BD if and only if the pair (V, $B') has the properties M(t, s)'s for s <t.

Proof. Let 3,={V—B:Be®'} and B,=RB—RB'. For subsets T and S of V
such that S c T, let A®)(T, S) be the number of blocks in %; which contain S but
do not contain any point of T —S. Since (V, 3) is a regular ¢-BD, it has the
properties L(¢, s)’s; that is,

A(l)(T, T- S) + A(z)(T; S) = At.s:

for s <t, where t =|T| and s = |S].
If (V*, B*) is a regular ¢-BD, then it has the properties L(¢, 5)’s; that is,

AT, 8) +A°XT, S) = A,
say, for s <t. Therefore, we have
AT, T—8)—A(T, S)=A4,,— A},
for s <t. This implies that the pair (V, ') has the properties M(¢, s)’s for s <t.
If (V, #') has the properties M(t, s)’s for s <¢, then we have
AO(T, T - §) — AT, S) =61,
say, for s <i Therefore, we have
AT, §)+ AP(T, §)=A,,— 6,
for s <t. This implies that the pair (V*, 3*) has the properties L(¢, s)’s for s <¢

and it is a regular t-BD. 0O

It is easily seen, from the above proof, that A};=1,; — 6 for j<i=<t, when
(V*, B*) is a regular t-BD. Especially, from Lemma 3.5, we have A3, ;= 4, 4 for
d<[%]

From Theorems 3.6 and 3.9, we have the following theorem:

Theorem 3.10. If (V, B) is a regular t-BD with a subdesign which is a regular
(t—1)-BD (V, B'), B' = B, and t is even, then (V*, B*) is also a regular t-BD,
where (V*, B*) is defined in Theorem 3.9.

Let O(v) be the complete design of block size 4 with v points. Lindner [1] has
shown that O(4p) contains at least 3p mutually disjoint Steiner quadruple systems
as subdesigns, where p =2 or 4 (mod 6), p =8. Therefore, from Theorem 3.10,
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there exists a regular 4-BD with parameters

r=13(2p — 1)(4p — 1)(4p - 3) +3l(p — 2)(2p — 1)(4p - 1),
A=(2p —1)(dp -3) +3l(p —2)(2p - 1)(4p - 1),
As=4p —3+3il(p —2)(8p>—14p +9),
and
As=1+3I(p —2)(8p*—22p +17),

for 1<l=<3p.
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