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Abstract

Tait’s flyping conjecture, stating that two reduced, alternating, prime link diagramscanbeconnected
by a finite sequence of flypes, is extended to reduced, alternating, prime diagrams of 4-regular graphs
in S3. The proof of this version of the flyping conjecture is based on the fact that the equivalence
classes with respect to ambient isotopy and rigid vertex isotopy of graph embeddings are identical on
the class of diagrams considered.
© 2005 Elsevier Inc. All rights reserved.
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0. Introduction

Very early in the history of knot theory attention has been paid to alternating diagrams of
knots and links. At the end of the 19th century Tait [21] stated several famous conjectures
on alternating link diagrams that could not be verified for about a century. The conjectures
concerning minimal crossing numbers of reduced, alternating link diagrams [15, Theorems
A, B] have been proved independently byThistlethwaite [22],Murasugi [15], andKauffman
[6]. Tait’s flyping conjecture, claiming that two reduced, alternating, prime diagrams of a
given link can be connected by a finite sequence of so-calledflypes(see [4, p. 311] for
Tait’s original terminology), has been shown by Menasco and Thistlethwaite [14], and for
a special case, namely, for well-connected diagrams, also by Schrijver [20].
The present article, as well as [19], deals with generalizations of Tait’s conjectures to

embeddings of 4-regular (topological) graphs into 3-space. In [19] it has been shown that
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Fig. 1. Reidemeister moves.

a reduced, alternating graph diagramD has minimal crossing number. Furthermore, ifD

is prime in addition, then a non-alternating diagram that is equivalent toD cannot have the
same crossing number asD.
The purpose of this paper is to prove Tait’s flyping conjecture for reduced, alternating,

prime diagrams of 4-regular graphs in the 3-sphereS3. The result depends on a suitable
definition of primality, see Section3. Its proof is based on the fact that the equivalence
classes with respect to rigid vertex isotopy and ambient isotopy of graph diagrams are
identical on the class of diagrams under consideration.
Definitions of these two equivalence relations for graph diagrams are given in Section 1.

Then, in Section 2, the notion oftanglesis introduced to derive invariants of graph diagrams
and to give, via transformation tangles, a description of a sequence of ReidemeisterVmoves
(see Fig. 1) applied to a graph vertex. In Section 3 certain properties of graph diagrams are
discussed, and two important theorems on reduced, alternating diagrams are stated. After,
in Section 4, Tait’s flyping conjecture has been shown to be an immediate consequence of
the fact that the two equivalence classes mentioned above coincide for reduced, alternating,
prime graph diagrams, the latter statement is finally proved in Section 5.
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1. Diagrams of 4-regular graphs

Embedding graphs intoS3 extends, in a natural way, the classical knot theoretical prob-
lem of embedding one or more disjoint copies of the 1-sphereS1 into S3 where the
resulting images are calledknotsand links, respectively. Classical terminology of knot
theory can be found in[1] or [17], see [9,11,12,16] for more recent introductions to the
field.
A topological graphis a one-dimensional cell complex which is related to an abstract

graph in the obvious way. In the following, always 4-regular graphs, which are allowed
to have multiple edges or loops, are considered. Vertices of degree two may occur but are
neglected since they are uninteresting for a topological treatment.
If G is a topological graph, then agraphG in S3 is the image of an embedding ofG

into S3. Two graphsG1, G2 in S3 are calledequivalent with respect to ambient isotopy
or ambient isotopicif there exists an orientation preserving autohomeomorphism ofS3

which mapsG1 onto G2. Embeddings of topological graphs inS3 can be examined via
regular graph diagrams, i.e., images under regular projections to an appropriate sphere
equipped with over-under information at double points. Two graph diagramsD andD′
are calledequivalent with respect to ambient isotopyor ambient isotopicif one can be
transformed into the other by a finite sequence of Reidemeister moves I–V (see Fig. 1)
combined with orientation preserving homeomorphisms of the sphere to itself. Two graphs
in S3 are ambient isotopic if and only if they have diagrams that are ambient isotopic (see
[7] or [24]).
Soon after the discovery of polynomial link invariants which fulfil certain recurrence

formulas, such as the Jones polynomial and its generalizations, it had been tried to extend
these invariants to graphs in 3-space. Only quite recently such an invariant for arbitrary
topological graphs has been found byYokota [25] (see [19] for a different approach in the
case of 4-regular graphs). Yokota’s invariant manages the difficulty to be invariant under
Reidemeister move V which before had been the main obstacle for a full generalization of
combinatorial link invariants to knotted graphs.
Besides ambient isotopy there is a further equivalence relation for graph diagrams which

avoids Reidemeister moveV andwhich will be important for the purposes of this paper: two
graph diagramsD andD′ are calledequivalent with respect to rigid vertex isotopyor rigid
vertex isotopicif one can be transformed into the other by a finite sequence of Reidemeister
moves I–IV andVI (see Fig. 1) combined with orientation preserving homeomorphisms of
the sphere to itself. Rigid vertex isotopy corresponds to an equivalence relation on graphs in
S3 where a small neighbourhood of each graph vertex is contained inside a disk, and only
those orientation preserving autohomeomorphisms ofS3 are considered that respect these
disks (see [5,7,23]). Observe that Reidemeister moves I–V imply Reidemeister move VI,
thus rigid vertex isotopic graph diagrams are ambient isotopic. See Fig. 8 for two ambient
isotopic diagrams which are not rigid vertex isotopic.
For the sake of shortness, the phrasegraph diagramwill always mean (regular) diagram

of a 4-regular graph inS3 in the subsequent text, and throughout the article alink will
be considered as 4-regular graph inS3 without vertices of degree four. Of course, the
equivalence classes with respect to rigid vertex isotopy and ambient isotopy coincide for
links.
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Fig. 2. A tangle, and tangle operations.

2. Tangles, and invariants of graph diagrams

In this section, the notionrational tangleis introduced for two purposes: to define in-
variants of graph diagrams with respect to ambient isotopy, and to describe the effect of a
sequence of Reidemeister moves applied to a graph vertex. The definitions and notations
used here are due to Conway[2].
A tangle is a part of a link diagram in form of a disk with four arcs emerging from it,

see Fig. 2 (left), where the tangle’s position is indicated by an L-shaped symbol and its
emerging arcs are labeled with lettersa, b, c, d in a clockwise ordering (or simply one of
them with “a’’). Two tangles are said to beequivalent(with respect to ambient isotopy) if
one can be transformed into the other by a finite sequence of Reidemeister moves of type
I–III and autohomeomorphisms of the disk which keep the boundary fixed. In the following,
a notational difference between a tangle and the corresponding equivalence class will be
avoided. Some basic tangles are 0=�

�
, ∞ =)(, 1= , 1= −1= .

For tanglessandt , the operations+ and· are defined as depicted in Fig. 2. The tangles
0, n = 1+· · ·+1, andn = 1+· · ·+1 are calledinteger tangles. If a tanglet is of the form
t = a1 . . . an with integer tanglesa1, . . . , an or if t = ∞, thent is calledrational tangle.
LetK denote the set of all (equivalence classes of) rational tangles.
For a rational tanglea1 . . . an the evaluation of the continued fraction

an + 1

an−1 + · · · + 1
a2 + 1

a1

gives a number inQ ∪ {∞} where the obvious rules for handling “∞’’, such as 1∞ = 0,
are applied, if necessary, during the calculation. It is known that two rational tangles are
equivalent if and only if the values of the corresponding continued fractions are identical
(see[2,1] for classical proofs, and [3] for an elementary combinatorial proof). Therefore,
a rational tangler can be identified with this number, thus letr denote an element ofK
as well as the corresponding value inQ ∪ {∞}, and let|r| denote the tangle’scrossing
number, i.e., the minimal number of crossings in any diagram belonging to the equivalence
class represented byr. Furthermore, a rational tangle contained inK \ {0, ∞,1,1} can be
expressed in a uniquely determinednormal forma1 . . . an such that|a1|�2, a2 �= 0, …,
an−1 �= 0, and allai �0 or all ai �0. The normal forms of the remaining four tangles are
the obvious ones. Tangles in normal form have minimal number of crossings.
FromagivengraphdiagramD there canbeobtained linkdiagramsbysubstituting rational

tangles for the graph vertices (see [18]). To do this in a well-defined way, it is necessary to
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Fig. 3. Cutting open vertices.

give an ordering to thek�0 graph vertices, i.e., a bijection from the set{1, . . . , k} to the
set of graph vertices contained inD calledvertex-enumeration, and anorientationto each
vertex, i.e., labeling an edge incident to the vertex with the lettera. In the following, mainly
the rational tangles 0,∞, and 1 will be needed. Substituting 0 or∞ for graph vertices is
done as depicted in Fig.3, that is to say, vertices are cut open in one of the two possible ways
determined by the vertex-orientation. Substituting the tangle 1 corresponds to replacing a
graph vertex with a crossing with respect to the vertex-orientation given.
Replacing vertices of a graph diagram with all rational tangles, or, to be precise, with a

representative of each equivalence class (e.g., all rational tangles in normal form), gives an
invariant of diagrams with respect to ambient isotopy that consists of infinitely many link
diagrams (see [18]).
Getting invariants with respect to rigid vertex isotopy is much easier: just substiute one

or more arbitrary (but fixed) tangles for each vertex and get rid of the ambiguity arising
fromdifferent vertex-orientationsbyconsideringall choicesof suchorientations. It is readily
checked that this giveswell-defined invariants of graph diagrams under Reidemeistermoves
I–IV and VI. For example, the unordered tuple(D0,0, D0,∞, D∞,0, D∞,∞) defines a rigid
vertex invariant of the graph belonging to the diagramD depicted in Fig. 3. Observe that
the invariantC(G) defined in [7] and denoted byC(G) in [10] is a special version of this
type of invariants, induced by the tangles 0 and 1, where sets are used instead of—more
informative—unordered tuples.
Another point of view in considering ambient isotopic graph diagrams is to observe that

the Reidemeister moves of type V, applied to a vertex during a transformation of one graph
diagram into another, can be collected to a rational tangle. For example, the transformation
depicted in Fig. 4 can be described by the tanglet = 2 1 0∈ K.

Definition 1. LetD,D′ be ambient isotopic graph diagrams withk�1 vertices and given
vertex-enumerations and -orientations. IfD0,...,0 = D′

t1,...,tk
with tanglest1, . . . , tk thentj ,

for j ∈ {1, . . . , k}, is calledjth transformation tangleof the transformation fromD intoD′.
If r1, . . . , rk are rational tangles then letrj ∗tj denote the tangle intowhichrj is transformed
when replacing thejth vertex ofD with rj , that is to say,Dr1,...,rk = D′

r1∗t1,...,rk∗tk
.

Considering Reidemeister move VI, it may be assumed, without loss of generality, that
only theadmissibleReidemeister moves of type V depicted in Fig.5 have to be applied
during a transformation. Furthermore, if the orientation of a vertex is chosen appropriately,
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Fig. 4. Applying a sequence of Reidemeister V moves.
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Fig. 5. Admissible Reidemeister moves of type V.

Fig. 6. Replacing a graph vertex with 0 and∞.

the corresponding transformation tanglet can be written ast = b1 . . . bs �= ∞ with integer
tanglesb1, . . . , bs such thatb1 . . . bs is in normal form. A rational tangler = a1 . . . al is
transformedby the transformation tanglet into the tangler∗t = a1 . . . al−1(al+b1)b2 . . . bs .
Especially, the tangles 0 and∞ are transformed intot and into a tangle equivalent to
b2 . . . bs , respectively, see Fig.6.

Remark 2. It is not difficult to see that the inverse of a transformation described by a tangle
t = b1 . . . bs is given byt ′ = bs . . . b1, i.e., ifD0 = D′

t thenD
′
0 = Dt ′ for ambient isotopic

graph diagramsD andD′ in which corresponding vertices have been replaced.
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3. Properties of graph diagrams

A link diagram is said to bealternatingif over- and undercrossings are alternating with
each other while walking along any link component in the diagram. A link diagramD

is calledreducedif it contains noisthmus, i.e., a crossingp such thatD \ {p} has more
components thanD. A connected link diagram is said to beprime if it cannot be written as
connected sum of two link diagrams both of which having at least one crossing.

Definition 3. A graph diagramD is said to bealternating/reduced/primeif, corresponding
to an arbitrarily chosen vertex-enumeration and -orientation, the link diagramsDi1,...,ik are
alternating/reduced/prime for every choice ofi1, . . . , ik ∈ {0, ∞}.
An example of a graph diagram that is alternating, reduced, and prime is depicted in

Fig. 3.

Remark 4.

(1) The definition of primality for graph diagrams does not seem to be the natural one, but
it is the one that fits into the context (see the counterexample contained in the remark
at the end of the next section).

(2) In contrast to the case of link diagrams, a graph diagram that is not reduced may
be irreducible, i.e., the number of the diagram’s crossings is minimal. See[19] for
examples.

(3) A prime graph diagram which has more than one crossing is reduced.
(4) The definition of “alternating’’ for graph diagrams has been adapted to the definitions

of “prime’’ and “reduced’’. Of course, a graph diagramD is alternating if and only if
there is a choice of vertex-orientations such thatD1,...,1 is alternating.

It is remarkable that, after introducing an appropriate definition of primality (see[19]),
for a 4-regular graph inS3 which possesses a reduced, alternating diagram the property to
be prime can be deduced from the corresponding property of its diagram. A proof of this
fact for link diagrams is due to Menasco [13], and it can easily be extended to 4-regular
graphs inS3, see [19, Theorem 8]. The following statement is an immediate consequence.

Theorem 5. Let D andD′ be ambient isotopic graph diagrams that are alternating and
reduced. Then:

(a) D is connected if and only ifD′ is connected.
(b) D is prime if and only ifD′ is prime.

To proveTait’s flyping conjecture for graph diagrams, a generalization of aTait conjecture
concerning minimal crossing numbers, cited in the introduction, will be needed. A proof
can be found in[19, Theorem 9].

Theorem 6. LetG be a 4-regular graph inS3, and let D be a reduced, alternating, prime
diagram ofG with n crossings. Then there is no diagram ofG having less than n crossings,
and any non-alternating diagram ofG has more than n crossings.
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Fig. 7. A flype.

4. Tait’s flyping conjecture

The definition of a tangle as part of a link diagram can be extended to graph diagrams in
the obvious way, and appropriate equivalence relations can be introduced likewise. In the
following, always those generalized tangles are considered.

Definition 7. A flype is a local change in a graph diagram as depicted in Fig.7. Using
Conway’s notation [2], this corresponds to a transformation of the form 1+ t ↔ th + 1 or
1+ t ↔ th + 1.

In [14] Tait’s flyping conjecture is proved for diagrams of 4-regular rigid vertex graphs to
obtain the validity of Tait’s original conjecture. This result is stated in the following theorem
where, as well as in the subsequent text, the phrasesequence of flypesis an abbreviation
for sequence of flypes plus orientation preserving autohomeomorphisms of the sphere. It
should bementioned that the notion of primality for graph diagrams used in [14] is different
from the one used in the present text. Indeed, a graph diagram that is prime with respect to
the definition given above is prime in the sense of [14], too, and thus the result from [14]
can be adopted here.

Theorem 8. Let D andD′ be rigid vertex isotopic graph diagrams that are reduced,
alternating, and prime. Then there exists a finite sequence of flypes which transforms D
intoD′.

Considering ambient isotopy of graph diagrams, the desired extension of Tait’s flyping
conjecture to 4-regular graphs can be deduced immediately from the next theorem. The
proof of the theorem will be given in Section5.

Theorem 9. LetDandD′ begraphdiagrams that are reduced,alternating,andprime.Then
D andD′ are equivalent with respect to ambient isotopy if and only if they are equivalent
with respect to rigid vertex isotopy.

Corollary 10. Let D andD′ be ambient isotopic graph diagrams that are reduced,
alternating, and prime. Then there exists a finite sequence of flypes which transforms D
intoD′.

Remark 11. Theorem9 does not hold in general without assuming primality.A counterex-
ample is depicted in Fig. 8: the two (alternating and reduced) graph diagrams obviously are
equivalent with respect to ambient isotopy, but they are not rigid vertex isotopic because
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Fig. 8. Ambient isotopic diagrams that are not rigid vertex isotopic.

cutting open vertices in the two possible ways gives diagrams of 2- and 3-component links,
respectively, where the diagrams belonging to the 3-component link are equivalent, and
the diagrams belonging to the 2-component link correspond to different mirror images of a
chiral link.

5. Proof of Theorem 9

Theorem9 is proved by induction on the number of graph vertices. The main ingredient
for the induction step comes from the fact that transformation tangles which describe a
transformation between reduced, alternating, prime diagrams always are trivial, and thus
replacinga vertex in both diagramswith the same tangle, for corresponding verticesandwith
respect to appropriately chosen vertex-orientations, gives ambient isotopic graph diagrams
with one vertex less. As a main tool for showing this claim, properties of theKauffman
polynomial[8] of link diagrams and its relations to a diagram’s crossing number are used.

Definition 12. TheKauffman polynomial�D(a, z) ∈ Z[a±1, z±1] of a link diagramD is
defined by the following properties:

(i) �D(a, z) = 1 if D is a simple closed curve.
(ii) �D = a�D and�D = a−1�D ,
(iii) �D + �D = z(�D + �D ).

The highest exponent in the variablez is calledz-degreeof �D.

In the following, ann-bridge b in a link diagramD is an arc ofD that contains
only overcrossings or only undercrossings, and the number of these crossings isn, thelength
of b.
Thez-degree of the Kauffman polynomial heavily depends on the length of the longest

bridge contained in a diagram.A precise formulation of this fact is given in the next theorem,
for a proof see[22, Theorems 4, 5].

Theorem 13. Let D be a link diagram withn�1 crossings, and letb�1 be the length of
an arbitrary bridge contained in D. Then:

(a) z-degree(�D)�n − b�n − 1,
(b) z-degree(�D) = n − 1 if and only if D is reduced, alternating, prime.
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Now two technical lemmas onKauffman polynomials are statedwhich are needed to deduce
the crucial Lemma19. For a proof of the first lemma see [18, Lemmas 8, 10].

Lemma 14. Let D be a reduced, alternating, prime graph diagram withk�1 vertices and
n crossings, and letr be a rational tangle in normal form. Furthermore, let i1, . . . , ik−1 ∈
{0, ∞}.Then, corresponding to an arbitrarily chosen vertex-enumeration and -orientation,
the following holds for the link diagramD′ = Di1,...,ij ,r,ij+1,...,ik−1 with j ∈ {1, . . . , k}.

z-degree(�D′) =
{

n + |r| − 1 if D′ is alternating,
n + |r| − 2 if D′ is not alternating and|r| �= 1.

Definition 15. LetD be an alternating graph diagram withk�1 vertices andn crossings,
supplied with an arbitrarily chosen vertex-enumeration and a vertex-orientation such that
D1,...,1 is alternating. ThenD is calleddegree-reducingif z-degree(�Dε1,...,εk

)�n − 2 for
every choice ofε1, . . . , εk ∈ {0, ∞,1} with εj = 1 for at least one indexj ∈ {1, . . . , k}.

Lemma 16. Let D be a reduced, alternating, prime, degree-reducing graph diagram with
k�1vertices and n crossings,suppliedwith an arbitrarily chosen vertex-enumeration and a
vertex-orientation such thatD1,...,1 is alternating. If r1, . . . rk are rational tangles in normal
form having at least two crossings each, then

z-degree(�Dr1,...,rk
) = n + |r1| + . . . + |rk| − t+ − 1

holds, wheret+ denotes the number of indices j withrj > 0.

Proof. As a consequence of Lemma14, replacing a vertex ofD with a negative tangle
r yields a graph diagramD′ with k − 1 vertices andn + |r| crossings that is reduced,
alternating, prime (z-degree(�D′

ε1,...,εk−1
) = n + |r| − 1 with εi ∈ {0, ∞} can only be

fulfilled if D′ possesses all three properties). Thus it may be assumed thatt+ = k. In the
following, it is shown that

z-degree(�Dr1,...,rk
)

{ = n + |r1| + . . . + |rk| − k − 1 if rj �= 1 for all j,
�n + |r1| + . . . + |rk| − k − 2 otherwise,

holds for positive rational tanglesr1, . . . , rk having at least one crossing each. Since Lemma
14 and Theorem 13 (ifrk = 1) immediately give the result for the casek = 1, letk�2 for
the rest of the proof.
Let l denote the number of indicesj with rj = 1. The proof is done by induction on

k − l�0. If k − l = 0 thenr1 = . . . = rk = 1, and thereforez-degree(�Dr1,...,rk
)�n − 2

sinceD is degree-reducing. Thus letk − l�1. Thenrj �= 1 for at least one indexj ∈
{1, . . . , k}, and without loss of generality letrk = a1 . . . as �= 1.
At first consider the case thatrk = 2. Then the recurrence formula for the Kauffman

polynomial gives

�Dr1,...,rk−1,2 = �Dr1,...,rk−1,0 + z(a�Dr1,...,rk−1,∞ + �Dr1,...,rk−1,1).

Applying the induction hypothesis immediately yields the desired inequality ifl�1 and the
desired equality ifl = 0.
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Fig. 9. A reduced, alternating, prime, vertex-separating graph diagram.

If rk = a1 is integral then the claimed result can be verified inductively by considering
the corresponding recurrence formula, and a further induction onscompletes the proof.

�

An important class of degree-reducing diagrams is defined next.

Definition 17. An alternating graph diagramD with k�1 vertices is calledvertex-
separatingif there exist disjoint tanglest1, . . . , tk in D such that each tangleti contains
exactly one graph vertex and replacing this vertex with a crossing, corresponding to an
appropriately chosen vertex-orientation, yields a 3-bridge insideti .

An example of an alternating graph diagram that is vertex-separating is depicted in
Fig. 9.

Lemma 18. A vertex-separating graph diagram is degree-reducing.

Proof. Considering thenumerator formula for the Kauffman polynomialthat has been
deduced in[18, p. 733], it can easily be shown via induction onl that

z-degree(�Dε1,...,εk
)�n − l − 1�n − 2
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Fig. 10. Flyping a vertex.

holds for a vertex-separating graph diagramD with k vertices andn crossings where
ε1, . . . , εk ∈ {0, ∞,1} have been replaced for the vertices andl�1 denotes the number of
indicesj with εj = 1. �

Lemma 19. Let D andD′ be ambient isotopic graph diagrams withk�1 vertices, and
let t1, . . . , tk denote the transformation tangles belonging to a sequence of Reidemeister
moves which realizes the equivalence between D andD′, corresponding to chosen vertex-
enumerations and-orientations of the diagrams. If D andD′ both are reduced, alternating,
and prime then|t1| = · · · = |tk| = 0.

Proof. Obviously, a prime, reduced graph diagram withk�1 vertices has at least two
crossings, and, applyingTheorem6, it is clear thatD andD′ have identical crossing number
n�2.Without loss of generality, let vertex-enumerations be chosen such that thejth vertex
of D is mapped to thejth vertex ofD′ when the sequence of Reidemeister moves which
transformsD intoD′ is applied. For the sake of notational convenience, assume thatD1,...,1
andD′

1,...,1
are alternating.

Suppose that some of the transformation tangles, which may assumed to be in normal
form, have more than one crossing. Defineεi := ∞ if |ti | = 1 andεi := 0 if |ti | �= 1.
Then on the one hand,z-degree(�Dε1,...,εk

) = n − 1 sinceD is reduced, alternating, prime.
On the other hand,z-degree(�D′

ε1∗t1,...,εk∗tk
)�n, by Lemma 16, sinceεi ∗ ti = ∞ if |ti | = 1

(perform a Reidemeister move I) andD′
ε1∗t1,...,εk∗tk

can be thought to arise from a vertex-
separating graph diagram, namely, the diagram in which the verticesvi with |ti | �= 1
not have been replaced (if there is no 3-bridge after replacing one of these vertices by a
crossing then perform a flype as depicted in Fig. 10). This gives a contradiction because
Dε1,...,εk

= D′
ε1∗t1,...,εk∗tk

. Thus|ti |�1 for all indicesi.
Now suppose there is an indexj with |tj | = 1. Defineεj := 0 andεi := ∞ for

i �= j . Thenz-degree(�Dε1,...,εk
) = n − 1 as in the previous case, but it isεi ∗ ti = ∞ for

i �= j and therefore eitherz-degree(�D′
ε1∗t1,...,εk∗tk

)�n − 2 if tj = 1 because the diagram
contains a 3-bridge (otherwise there would be a contradiction to reduceness and primality
of the diagram), orz-degree(�D′

ε1∗t1,...,εk∗tk
) = n if tj = 1 because the diagram is reduced,

alternating, and prime. Again a contradiction in both cases, thus|ti | = 0 for all indicesi.
�

Lemma 19 shows that transformation tangles belonging to two ambient isotopic graph
diagrams always are trivial if both diagrams are reduced, alternating, and prime. Thus
replacing vertices of such diagrams with tangles gives an ambient isotopy invariant of
graph diagrams up to a choice of vertex-orientations. Especially:
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Fig. 11. Rigid vertex isotopic diagrams.

Corollary 20. LetD andD′ be ambient isotopic graph diagrams withk�1 vertices that
are reduced,alternating,andprime.LetD1,D′

1denotediagrams that arise fromsubstituting
the tangle 1 for corresponding vertices of D andD′, respectively,and let vertex-orientations
be chosen such thatD1 andD′

1 both are alternating. ThenD1 andD′
1 are equivalent with

respect to ambient isotopy.

Remark 21. Observe that it is not clear, at this stage, that the diagramsD1 andD′
1 of

Corollary20 are rigid vertex isotopic since the sequence of Reidemeister moves of type V
applied to a vertex leads to a transformation tangle which is equivalent to a trivial tangle
but not necessarily equal to it.

Lemma 22. The graph diagrams that are depicted in Fig. 11 are rigid vertex isotopic.

Proof. Perform the transformations depicted in Fig. 12, where “R.’’ is an abbreviation
for “Reidemeister’’, and observe that move 4 consists of pushing the diagram’s upper arc
upwards beyond “∞’’. �

Now letD andD′ be ambient isotopic diagramswhich fulfil the assumptions of Theorem
9. Of course, if the corresponding graph has no vertices then the statement follows from
Theorem 8.
For the induction step, an arbitrary graph vertex ofD and the corresponding vertex of

D′ are replaced with a crossing each such that the diagrams arising, which shall be denoted
by D1 andD′

1, respectively, are alternating. Then it follows from Corollary 20 and the
induction hypothesis thatD1 andD′

1 are rigid vertex isotopic and thus can be connected by
a finite sequence of flypes, by Theorem 8.
Considering the defining Fig. 7, there are three different types of flype that can be applied

toD1: either the substituted crossing lies outside the depicted part of the diagram, or it lies
inside the tanglet , or it is identical to the crossing next tot . Call the latter oneessential
flype. Because of the obvious one-to-one correspondence between the crossings before and
after applying a flype it is possible to keep track of the substituted crossing during the whole
sequence of flypes connectingD1 andD′

1. Obviously, if the sequence contains no essential
flypes then it gives rise to a sequence of flypes that can be applied to the diagramD and
hasD′ as final diagram, and the induction step is done.
Now assume that the flyping sequence contains an essential flype. SinceD is prime,

cutting open the substituted crossing in either way must yield a prime graph diagram, and
therefore an essential flype can, essentially, only be applied toD1 as depicted in the first two
pictures of Fig. 13, i.e., thewhole diagram is involved in the flypingmove.Applying Lemma
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Fig. 12. 1= R. II; 2 = flype; 3= R. VI; 4 = planar isotopy; 5= R. II.

Fig. 13. 1= flype; 2= rotation around dashed axis.

22 twice shows that there arise rigid vertex isotopic diagrams from re-inserting vertices for
crossings in first and last diagram of Fig. 13. Therefore an essential flype applied toD1
is related to a rigid vertex isotopy of the diagramD, and an induction on the number of
essential flypes in the flyping sequence completes the proof of Theorem 9.
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