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We investigate the convergence rates for total variation regularization of the problem
of identifying (i) the coefficient q in the Neumann problem for the elliptic equation
−div(q∇u) = f in Ω , q∂u/∂n = g on ∂Ω , (ii) the coefficient a in the Neumann problem
for the elliptic equation −�u + au = f in Ω , ∂u/∂n = g on ∂Ω , Ω ⊂ R

d , d � 1, when u is
imprecisely given by zδ ∈ H1(Ω), ‖u − zδ‖H1(Ω) � δ, δ > 0. We regularize these problems
by correspondingly minimizing the strictly convex functionals
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∣∣∇(
U (a) − zδ

)∣∣2
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over admissible sets, where U (q) (U (a)) is the solution of the first (second) Neumann
boundary value problem, ρ > 0 is the regularization parameter. Taking the solutions of
these optimization problems as the regularized solutions to the corresponding identification
problems, we obtain the convergence rates of them to the solution of the inverse problem
in the sense of the Bregman distance and in the L2-norm under relatively simple source
conditions without the smallness requirement on the source functions.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω be an open bounded connected domain in Rd,d � 1 with Lipschitz boundary ∂Ω , f ∈ L2(Ω) and g ∈ L2(∂Ω)

be given. In this work we continue the paper [19] on the investigation of total variation regularization for the problem of
identifying the coefficient q in the Neumann problem for the elliptic equation

−div(q∇u) = f in Ω, (1.1)

q
∂u

∂n
= g on ∂Ω (1.2)

or the coefficient a in the Neumann problem for the elliptic equation
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−�u + au = f in Ω, (1.3)
∂u

∂n
= g on ∂Ω (1.4)

from the observations zδ ∈ H1(Ω) of the exact solution ū of (1.1)–(1.2) (or (1.3)–(1.4)) with∥∥ū − zδ
∥∥

H1(Ω)
� δ, (1.5)

δ > 0 being given, while f and g are prescribed. For practical models and surveys on these problems we refer the reader to
our recent papers [18–20] and the references therein.

We note that in our setting we assume to have observations zδ ∈ L2(Ω), ∇zδ ∈ (L2(Ω))d for the solution u and its
gradient, respectively. In [20] we have discussed about this assumption and also about the ill-posedness of the above
identification problems in the L2 and L∞ norms (see, more details in [2,6,8,26,32]). Recently, in [24] Knowles and LaRussa
have shown that these problems are well-posed but in the weak L2 topology on the recovered coefficients. Such a similar
property in the H−1(Ω) topology has also been noted by Kohn and Lowe in [26].

As the above identification problems are ill-posed in the L2 and L∞ norms, several authors applied Tikhonov regular-
ization to stabilize them. However, as noted in [18,19], previously only Engl, Kunisch and Neubauer [12,11] considered the
convergence rates of the method. In fact, these authors directly applied their theory of nonlinear ill-posed problems to the
above inverse problems; and to obtain a convergence rate they have to require some smallness condition of the source func-
tions which is very hard to verify. Recently, in [18,20], based on another approach, we got convergence rates for Tikhonov
regularization with L2-stabilization of the above inverse problems under rather simple source conditions without requiring
a smallness condition of the source functions.

To ease the exposition, suppose that the coefficient q in (1.1)–(1.2) is given so that we can determine the unique solution
u and thus define a nonlinear coefficient-to-solution map from q to the solution u = u(q) := U (q). Then the inverse problem
has the form: solve the nonlinear equation

U (q) = ū for q with ū being given. (1.6)

To estimate a possible discontinuous or highly oscillating coefficient q, some authors used the output least-squares
method with total variation regularization (see, e.g., [5,17,30]). Their technique led to the non-convex optimization problem

min
q∈Q

∫
Ω

(
U (q) − zδ

)2
dx + ρ

∫
Ω

|∇q|. (1.7)

Here ρ > 0 is a regularization parameter, Q is some admissible set of the coefficients, zδ is the observed data of the exact
data ū and

∫
Ω

|∇q| is the total variation of the function q. However, these authors did not consider the convergence rate of
the method. Furthermore, there are some difficulties with the least squares approach to (1.6). First, since the cost function
appeared in (1.7) is not convex, it is difficult to find global minimizers. Second, it appeared that obtaining convergence
rates for Tikhonov regularization (1.7) is still an open problem [29]. To overcome these, in [19] we apply the total variation
regularization method to new convex energy functionals (see Lemmas 2.4 and 3.2 in [19]) for identifying q in (1.1)–(1.2) and a
in (1.3)–(1.4), and obtain convergence rates for this approach. Namely, for identifying q in (1.1)–(1.2), we consider the convex
minimization problem (see Lemmas 2.4 and 3.2 in [19])

min
q∈Q ad

1

2

∫
Ω

q
∣∣∇(

U (q) − zδ
)∣∣2

dx + ρ

∫
Ω

|∇q|, (1.8)

and for identifying a in (1.3)–(1.4) the convex minimization problem

min
a∈Aad

1

2

∫
Ω

∣∣∇(
U (a) − zδ

)∣∣2
dx + 1

2

∫
Ω

a
(
U (a) − zδ

)2
dx + ρ

∫
Ω

|∇a|. (1.9)

Here, U (q) and U (a) are the coefficient-to-solution nonlinear maps for (1.1)–(1.2) and (1.3)–(1.4) with Q ad and Aad being the
admissible sets, respectively. In [19], we obtain convergence rates of regularized solutions to the solution of the coefficient
identification problems under source conditions which are easy to check (see Theorems 2.9 and 3.6 of [19]). However, our
convergence rates in this approach are just in the sense of the Bregman distance which is in general not a metric. To
enhance these results, in this paper we add an additional L2-stabilization to the convex energy functionals (1.8) and (1.9) for
respectively identifying q in (1.1)–(1.2) and a in (1.3)–(1.4), and obtain convergence rates not only in sense of the Bregman
distance but also in the L2(Ω)-norm. That is, for identifying q in (1.1)–(1.2), we consider the strictly convex minimization
problem

min
q∈Q ad

1

2

∫
q
∣∣∇(

U (q) − zδ
)∣∣2

dx + ρ

(
1

2
‖q‖2

L2(Ω)
+

∫
|∇q|

)
, (1.10)
Ω Ω
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and for identifying a in (1.3)–(1.4) the strictly convex minimization problem

min
a∈Aad

1

2

∫
Ω

∣∣∇(
U (a) − zδ

)∣∣2
dx + 1

2

∫
Ω

a
(
U (a) − zδ

)2
dx + ρ

(
1

2
‖a‖2

L2(Ω)
+

∫
Ω

|∇a|
)

. (1.11)

To present our results, we briefly summarize the space of functions with bounded total variation and the notion of the
Bregman distance; for more details, the reader may consult Attouch, Buttazzo and Michaille [1], Evans and Gariepy [13],
Guisti [14], Burger and Osher [4], Resmerita and Scherzer [29] and the references therein.

A function q ∈ L1(Ω) is said to be of bounded total variation if

T V (q) :=
∫
Ω

|∇q| := sup

{∫
Ω

q div g dx
∣∣∣ g ∈ C1

c (Ω)d,
∣∣g(x)

∣∣∞ � 1, x ∈ Ω

}
< ∞. (1.12)

Here | · |∞ denotes the �∞-norm on Rd defined by |x|∞ = max1�i�d |xi |. The space of all functions in L1(Ω) with bounded
total variation is denoted by

B V (Ω) =
{

q ∈ L1(Ω)

∣∣∣ ∫
Ω

|∇q| < ∞
}
.

It is the Banach space under the norm

‖q‖B V (Ω) := ‖q‖L1(Ω) +
∫
Ω

|∇q|.

Further, if Ω is an open bounded set in Rd (d � 1) with Lipschitz boundary, then W 1,1(Ω) � B V (Ω) (Giusti [14, pp. 3–4]).
Let H be a Banach space with H∗ being the dual space of it, R : H → (−∞,+∞] is a proper convex functional and

∂ R(q) stands for the subdifferential of R at q ∈ DomR := {q ∈ H | R(q) < +∞} 	= ∅ defined by

∂ R(q) := {
q∗ ∈ H∗ ∣∣ R(p) � R(q) + 〈

q∗, p − q
〉
(H∗,H)

for all p ∈ H
}
.

The set ∂ R(q) may be empty; however, if R is continuous at q, then it is nonempty. Further, ∂ R(q) is convex and weak*
compact (see, [10], Propositions 5.1, 5.2, pp. 21–22). In case ∂ R(q) 	= ∅, for any fixed p ∈ H we denote by

D R(p,q) := {
R(p) − R(q) + 〈

q∗, p − q
〉
(H∗,H)

∣∣ q∗ ∈ ∂ R(q)
}
.

Then for a fixed element q∗ ∈ ∂ R(q),

Dq∗
R (p,q) := R(p) − R(q) + 〈

q∗, p − q
〉
(H∗,H)

(1.13)

is called the Bregman distance with respect to R and q∗ of two elements p,q ∈ H.
The notion of Bregman distance was first given by Bregman [3] along with an iterative algorithm for minimizing (1.13)

for Fréchet differentiable R and it was generalized by Kiwiel [21] to nonsmooth but strictly convex R . Burger and Osher
[4] further generalized this notion for R being neither smooth, nor strictly convex. In general, the Bregman distance is not
a metric on H. However, for each q∗ ∈ ∂ R(q) the Dq∗

R (p,q) � 0 for any p ∈ H and Dq∗
R (q,q) = 0. Further, in case R is a

strictly convex function, Dq∗
R (p,q) = 0 if and only if p = q. In recent years, this notion was proved to be useful in getting

the convergence rates of regularization methods in Banach spaces (see, e.g., [4,16,28,29] and the references therein).
Now we formulate our convergence results as follows.
Set R(·) = 1

2 ‖ · ‖2
L2(Ω)

+ ∫
Ω

|∇(·)|. Denote by qδ
ρ the solution of (1.10), q† the R-minimizing norm solution of the problem

of identifying q in (1.1)–(1.2) (see Section 2.1). Assume that there exists a functional w∗ ∈ H1�(Ω)
∗

(see page 596 for the
definition of H1�(Ω)) such that

U ′(q†)∗
w∗ = q† + � ∈ ∂ R

(
q†)

for some element � in ∂(
∫
Ω

|∇(·)|)(q†). Here U ′(q†)∗ is the adjoint to the Fréchet derivative of U (q†). Then, we have the
convergence rates∥∥qδ

ρ − q†
∥∥2

L2(Ω)
+ D�

T V

(
qδ
ρ,q†) = O(δ) and

∥∥U
(
qδ
ρ

) − zδ
∥∥

H1(Ω)
= O(δ)

as δ → 0 and ρ ∼ δ.
Similarly, set T (·) := 1

2 ‖ · ‖2
L2(Ω)

+ ∫
Ω

|∇(·)|. Denote by aδ
ρ the solution of (1.11), a† the T -minimizing norm solution of

the problem of identifying a in problem (1.3)–(1.4) (see Section 3.1). Assume that there exists a function w∗ ∈ H1(Ω)
∗

such
that

U ′(a†)∗
w∗ = a† + λ ∈ ∂T

(
a†)
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for some element λ in ∂(
∫
Ω

|∇(·)|)(a†). Here, U ′(a†)∗ is the adjoint to the Fréchet derivative of U (a†). Then, we have the
convergence rates∥∥aδ

ρ − a†
∥∥2

L2(Ω)
+ Dλ

T V

(
aδ
ρ,a†) = O(δ) and

∥∥U
(
aδ
ρ

) − zδ
∥∥

H1(Ω)
= O(δ)

as δ → 0 and ρ ∼ δ.
Our above source conditions are easy to check and much weaker than the related ones, since we remove the so-called

small enough condition on the source functions which is popularized and very hard to check in the theory of regularization
of nonlinear ill-posed problems [12,29]. We also note that, to our knowledge, up to now there is only the paper by Chavent
and Kunisch [7] devoted to convergence rates for such a total variation regularization of a certain linear ill-posed problem.
Besides, the use of the convex energy functionals in our identification problems is dated back to Knowles [25,22,23] and
Zou [34].

This paper is organized as follows. In Section 2 we will prove our result on convergence rates for total variation reg-
ularization combining with additional L2-stabilization of the diffusion coefficient identification problem (1.1)–(1.2) and in
Section 3 the related result for the reaction coefficient identification problem (1.3)–(1.4). In Section 4 we present the related
result for identifying the diffusion coefficient in problems with Dirichlet or mixed boundary conditions. The discussion on
our source conditions is given at the end of each section.

In the whole paper we assume that Ω is an open bounded connected domain in Rd,d � 1 with Lipschitz boundary ∂Ω ,
f ∈ L2(Ω) in (1.1) and (1.3), and g ∈ L2(∂Ω) in (1.2) and (1.4) are given. We use the standard notion of Sobolev spaces
H1(Ω), H1

0(Ω), H1
0(Ω ∪ Γ ) and W 1,∞(Ω) from the books [27,31]. Moreover, for the simplicity of notation, as there will be

no ambiguity, we write
∫
Ω

· · · instead of
∫
Ω

· · ·dx.

2. The diffusion coefficient identification problem

In this section we investigate the following coefficient identification problem in the Neumann problem for elliptic partial
differential equations.

Find the coefficient q in the problem (1.1)–(1.2) subject to the constraints

q ∈ Q := {
q ∈ L∞(Ω)

∣∣ 0 < q � q(x) � q̄ a.e. on Ω
}

(2.1)

with q and q̄ being given positive constants, when the solution u is imprecisely given in Ω .

2.1. Problem setting and regularization

We consider the problem (1.1)–(1.2) assuming that the functions f and g satisfy the compatibility condition∫
Ω

f +
∫

∂Ω

g = 0.

Then a function u in H1�(Ω), the closed subspace of H1(Ω) consisting all the functions u ∈ H1(Ω) with mean-zero:

H1�(Ω) :=
{

u ∈ H1(Ω)

∣∣∣ ∫
Ω

u dx = 0

}
,

is said to be a weak solution of the problem (1.1)–(1.2), if∫
Ω

q∇u∇v =
∫
Ω

f v +
∫

∂Ω

gv, ∀v ∈ H1�(Ω). (2.2)

By the aid of the Poincaré–Friedrichs inequality in H1�(Ω), we obtain that there exists a positive constant α depending only
on q and the domain Ω such that the following coercivity condition is fulfilled∫

Ω

q|∇u|2 � α‖u‖2
H1(Ω)

for all u ∈ H1�(Ω) and q ∈ Q . (2.3)

Here,

α := qCΩ

1 + CΩ

> 0 (2.4)

with CΩ being the positive constant, depending only on Ω , appeared in the Poincaré–Friedrichs inequality:
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CΩ

∫
Ω

v2 �
∫
Ω

|∇v|2 for all v ∈ H1�(Ω).

It follows from the inequality (2.3) and the Lax–Milgram lemma that for all q ∈ Q , there is a unique weak solution in H1�(Ω)

of (1.1)–(1.2) which satisfies the inequality

‖u‖H1(Ω) � Λα

(‖ f ‖L2(Ω) + ‖g‖L2(∂Ω)

)
,

where Λα is a positive constant depending only on α.
Thus, in the direct problem we defined the nonlinear coefficient-to-solution operator U : Q ⊂ L∞(Ω) → H1�(Ω) which

maps the coefficient q ∈ Q to the solution U (q) ∈ H1�(Ω) of the problem (1.1)–(1.2). The inverse problem is stated as follows:
given ū := U (q) ∈ H1�(Ω) find q ∈ Q .

Now we assume that ū is the exact solution of (1.1)–(1.2). It means that there exists some q ∈ Q such that ū = U (q). We
assume that instead of the exact ū we have only its observations zδ ∈ H1�(Ω) such that∥∥ū − zδ

∥∥
H1(Ω)

� δ (2.5)

with δ > 0. Our problem is to reconstruct q from zδ . For solving this ill-posed problem we minimize the strictly convex
functional

min
q∈Q ad

J zδ (q) + ρ

(
1

2
‖q‖2

L2(Ω)
+

∫
Ω

|∇q|
)

, (P q
ρ,δ)

where Q ad := Q ∩ B V (Ω) is the admissible set, ρ > 0 is the regularization parameter and

J zδ (q) := 1

2

∫
Ω

q
∣∣∇(

U (q) − zδ
)∣∣2

, q ∈ Q . (2.6)

In the following we will see that the problem (P q
ρ,δ) has a unique solution qδ

ρ on the nonempty, convex, bounded and

closed in the L2(Ω)-norm set Q ad , which is called regularized solution to our inverse problem (see Theorem 2.7). Due to the
nonempty convexity, closedness and boundedness in the L2(Ω)-norm of the set

ΠQ ad (ū) := {
q ∈ Q ad

∣∣ U (q) = ū
}

(2.7)

(see Lemma 2.5), we can conclude that there is a unique solution q† of the problem

min
q∈ΠQad

(ū)

(
1

2
‖q‖2

L2(Ω)
+

∫
Ω

|∇q|
)

, (Πq)

which we call R-minimizing norm solution to our inverse problem, where R(·) := 1
2 ‖ · ‖2

L2(Ω)
+ ∫

Ω
|∇(·)|.

Our aim in this section is to investigate convergence rates of qδ
ρ to the R-minimizing norm solution q† of the equation

U (q) = ū.
The following results are useful.

Lemma 2.1. (See [14, pp. 7–17].) (i) Let (qn) be a bounded sequence in the B V (Ω)-norm. Then, there exist a subsequence (qkn ) of it
and an element q ∈ B V (Ω) such that (qkn ) converges to q in the L1(Ω)-norm.

(ii) Let (qn) be a sequence in B V (Ω) which converges to q in the L1(Ω)-norm. Then, q ∈ B V (Ω) and∫
Ω

|∇q| � lim inf
n

∫
Ω

|∇qn|.

Lemma 2.2. (See [19, Lemma 2.2].) The total variation is continuous on B V (Ω), i.e., if (qn) ⊂ B V (Ω) converges to q ∈ B V (Ω), then

lim
n

∫
Ω

|∇qn| =
∫
Ω

|∇q|.

Lemma 2.3. (See [15, Theorem 2.4], [19, Lemma 2.3].) The coefficient-to-solution operator U : Q ⊂ L∞(Ω) → H1�(Ω) is continuously
Fréchet differentiable on the set Q . For each q ∈ Q , the Fréchet derivative U ′(q) of U (q) has the property that the differential η :=
U ′(q)h with h ∈ L∞(Ω) is the (unique) weak solution in H1�(Ω) of the Neumann problem

−div(q∇η) = div
(
h∇U (q)

)
in Ω, q

∂η = −h
∂U (q)

on ∂Ω

∂n ∂n
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in the sense that it satisfies the equation∫
Ω

q∇η∇v = −
∫
Ω

h∇U (q)∇v (2.8)

for all v ∈ H1�(Ω). Moreover,

‖η‖H1(Ω) � Λα

α

(‖ f ‖L2(Ω) + ‖g‖L2(∂Ω)

)‖h‖L∞(Ω)

for all h ∈ L∞(Ω).

Lemma 2.4. The functional J zδ (·) defined by (2.6) is continuous and convex on the convex set Q ad with respect to the L2(Ω)-norm.

Proof. Suppose that the sequence (qn) ⊂ Q ad converges to q in the L2(Ω)-norm. It follows from Lemma 2.1 that q ∈ Q ad . By
the same reasonings as in the proof of Theorem 2.1 in [18], we conclude that J zδ (qn) → J zδ (q) as n → ∞. Besides, the proof
of the fact that J zδ (·) is convex on the set Q ad is based on the similar reasonings as in [15, § 3.1] and [18], Lemma 2.3. We
note that in [15] Gockenbach and Khan proved a similar result but for the L∞-norm. �
Lemma 2.5. The set ΠQ ad (ū) in (2.7) is nonempty, convex, closed and bounded in the L2(Ω)-norm.

Proof. The proof of this lemma is based on the same reasonings of Lemma 2.1 in [18]. �
Lemma 2.6. Let Q̂ ⊂ B V (Ω) be nonempty, convex, closed and bounded in the L2(Ω)-norm. Suppose that Ξ is a non-negative, strictly
convex and continuous function on Q̂ in the L2(Ω)-norm. Then, the problem

min
q∈Q̂

Ξ(q) +
∫
Ω

|∇q| (2.9)

has a unique solution.

Proof. Let (qn) be a sequence in Q̂ such that

lim
n

(
Ξ(qn) +

∫
Ω

|∇qn|
)

= inf
q∈Q̂

(
Ξ(q) +

∫
Ω

|∇q|
)

.

It follows that the set (
∫
Ω

|∇qn|)n∈N is bounded. Since (qn) is bounded in the L2(Ω)-norm and mes(Ω) < ∞, it is bounded
in the L1(Ω)-norm. Hence (qn) is bounded in the B V (Ω)-norm. By Lemma 2.1, we conclude that there exist a subsequence
(q1n ) of (qn) and an element q̂ ∈ Q̂ such that (q1n ) converges to q̂ in the L1(Ω)-norm, weakly in L2(Ω) and

∫
Ω

|∇q̂| �
lim infn

∫
Ω

|∇q1n |. Since Ξ is convex and continuous on Q̂ in the L2(Ω)-norm, it is weakly lower semicontinuous in L2(Ω).
Therefore,

Ξ(q̂) +
∫
Ω

|∇q̂| � lim inf
n

(
Ξ(q1n ) +

∫
Ω

|∇q1n |
)

= inf
q∈Q̂

(
Ξ(q) +

∫
Ω

|∇q|
)

.

This means that q̂ is the (unique) solution of the problem (2.9). �
Theorem 2.7. (i) There exists a unique solution qδ

ρ of the problem (P q
ρ,δ).

(ii) There exists a unique solution q† of the problem (Πq).

Proof. The proposition of the theorem directly follows from Lemmas 2.4–2.6. �
In the following we denote by

X := L∞(Ω) ∩ B V (Ω).

Then, X is a Banach space with the norm

‖q‖X := ‖q‖L∞(Ω) + ‖q‖B V (Ω).

Further,

L∞(Ω)
∗ ⊂ X∗ and B V (Ω)∗ ⊂ X∗.
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On the other hand, we will write XB V (Ω) := (X,‖ · ‖B V (Ω)) (XL∞(Ω) := (X,‖ · ‖L∞(Ω))) to denote the space X with respect
to the B V (Ω)-norm (L∞(Ω)-norm).

The functional J zδ (·) in (2.6) is Fréchet differentiable on Q in the L∞(Ω)-norm and for each q ∈ Q

J ′
zδ (q)h = 〈

J ′
zδ (q),h

〉
(L∞(Ω)∗,L∞(Ω))

= 〈
J ′

zδ (q),h
〉
(X∗,X)

, ∀h ∈ X. (2.10)

Furthermore, for any � ∈ X∗
B V (Ω)

〈�,h〉(X∗
B V (Ω)

,XB V (Ω)) = 〈�,h〉(X∗,X), ∀h ∈ X. (2.11)

Besides, for each q ∈ Q and any h ∈ X, since∣∣〈q,h〉L2(Ω)

∣∣ � ‖q‖L∞(Ω)‖h‖L1(Ω) � ‖q‖L∞(Ω)‖h‖XB V (Ω)
� ‖q‖L∞(Ω)‖h‖X,

we get

〈q,h〉L2(Ω) = 〈q,h〉(L1(Ω)
∗
,L1(Ω)) = 〈q,h〉(X∗

B V (Ω)
,XB V (Ω)) = 〈q,h〉(X∗,X). (2.12)

Using the same arguments as in the proof of Lemma 2.6 of [19] we get the necessary and sufficient optimality condition for
the problems (P q

ρ,δ) and (Πq).

Lemma 2.8. (i) Let qδ
ρ ∈ Q ad. Then qδ

ρ is a (unique) solution of (P q
ρ,δ) if and only if for all � ∈ ∂(

∫
Ω

|∇(·)|)(qδ
ρ), the inequality

J ′
zδ

(
qδ
ρ

)(
q − qδ

ρ

) + ρ
〈
qδ
ρ,q − qδ

ρ

〉
L2(Ω)

+ ρ
〈
�,q − qδ

ρ

〉
(X∗

B V (Ω)
,XB V (Ω))

� 0 (2.13)

is satisfied for all q in Q ad.
(ii) Let q† ∈ ΠQ ad (ū). Then q† is a (unique) solution of (Πq) if and only if for all � ∈ ∂(

∫
Ω

|∇(·)|)(q†), the inequality〈
q†,q − q†〉

L2(Ω)
+ 〈

�,q − q†〉
(X∗

B V (Ω)
,XB V (Ω))

� 0

holds for all q in ΠQ ad (ū).

Now, we state and briefly prove stability results for total variation regularization method combining with additional
L2-stabilization of the diffusion coefficient identification problem.

Theorem 2.9. For a fixed regularization parameter ρ > 0, let (zδn ) be a sequence in H1�(Ω) which converges to zδ in the H1(Ω)-norm

and (qδn
ρ ) be the unique minimizers of the problems

min
q∈Q ad

1

2

∫
Ω

q
∣∣∇(

U (q) − zδn
)∣∣2 + ρ

(
1

2
‖q‖2

L2(Ω)
+

∫
Ω

|∇q|
)

.

Then, (qδn
ρ ) converges to the unique solution qδ

ρ of (P q
ρ,δ) in the L2(Ω)-norm. Further,

lim
n

∫
Ω

∣∣∇qδn
ρ

∣∣ =
∫
Ω

∣∣∇qδ
ρ

∣∣. (2.14)

Theorem 2.10. For any positive sequence (δn) → 0, let ρn := ρ(δn) be such that

ρn → 0 and
δ2

n

ρn
→ 0 as n → ∞.

Moreover, let (zδn ) be a sequence in H1�(Ω) satisfying ‖ū − zδn ‖H1(Ω) � δn and (qδn
ρn ) be the unique minimizers of the problems

min
q∈Q ad

1

2

∫
Ω

q
∣∣∇(

U (q) − zδn
)∣∣2 + ρn

(
1

2
‖q‖2

L2(Ω)
+

∫
Ω

|∇q|
)

.

Then, (qδn
ρn ) converges to the unique solution q† of the problem (Πq) in the L2(Ω)-norm. Further,

lim
n

∫
Ω

∣∣∇qδn
ρn

∣∣ =
∫
Ω

∣∣∇q†
∣∣ and lim

n
D�

T V

(
qδn
ρn

,q†) = 0

for all � ∈ ∂(
∫ |∇(·)|)(q†).

Ω
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To prove these results we remark that if F is a normed linear space and ( fn) is a sequence in F such that for each
subsequence ( f1n ) of ( fn) there exist a subsequence ( f2n ) of ( f1n ) which converges to a fixed element f0 ∈ F, then the
whole sequence ( fn) also converges to f0.

Proof of Theorem 2.9. For all n ∈ N and q ∈ Q ad , by the definition of qδn
ρ , we have

J zδn

(
qδn
ρ

) + ρ

(
1

2

∥∥qδn
ρ

∥∥2
L2(Ω)

+
∫
Ω

∣∣∇qδn
ρ

∣∣) � J zδn (q) + ρ

(
1

2
‖q‖2

L2(Ω)
+

∫
Ω

|∇q|
)

. (2.15)

It follows from the last inequality that (qδn
ρ ) is bounded in the L2(Ω)-norm (and so in the L1(Ω)-norm, since mes(Ω) < ∞)

and the sequence (
∫
Ω

|∇qδn
ρ |) is bounded, too. By Lemma 2.1, there exist a subsequence (q

δ1n
ρ ) of (qδn

ρ ) and qδ
ρ ∈ Q ad such

that (
q
δ1n
ρ

)
converges to qδ

ρ in L1(Ω), (2.16)(
q
δ1n
ρ

)
weakly converges to qδ

ρ in L2(Ω), and (2.17)∫
Ω

∣∣∇qδ
ρ

∣∣ � lim inf
n

∫
Ω

∣∣∇q
δ1n
ρ

∣∣. (2.18)

By (2.16), we see that there exists a subsequence (q
δ2n
ρ ) of (q

δ1n
ρ ) such that U (q

δ2n
ρ ) weakly converges to U (qδ

ρ) in H1(Ω)

(see the proof of Theorem 2.1 in [18]). This and the hypothesis that (zδn ) converges to zδ in the H1(Ω)-norm lead to

lim
n

J zδ2n

(
q
δ2n
ρ

) = J zδ

(
qδ
ρ

)
. (2.19)

On the other hand, it follows from (2.17) that∥∥qδ
ρ

∥∥2
L2(Ω)

� lim inf
n

∥∥q
δ2n
ρ

∥∥2
L2(Ω)

. (2.20)

Therefore, by (2.18)–(2.20) and (2.15),

J zδ

(
qδ
ρ

) + ρ

(
1

2

∥∥qδ
ρ

∥∥2
L2(Ω)

+
∫
Ω

∣∣∇qδ
ρ

∣∣) � lim inf
n

(
J zδ2n

(
q
δ2n
ρ

) + ρ

2

∥∥q
δ2n
ρ

∥∥2
L2(Ω)

+ ρ

∫
Ω

∣∣∇q
δ2n
ρ

∣∣)

� lim sup
n

(
J zδ2n

(
q
δ2n
ρ

) + ρ

2

∥∥q
δ2n
ρ

∥∥2
L2(Ω)

+ ρ

∫
Ω

∣∣∇q
δ2n
ρ

∣∣)

� lim sup
n

(
J zδ2n (q) + ρ

2
‖q‖2

L2(Ω)
+ ρ

∫
Ω

|∇q|
)

= J zδ (q) + ρ

2
‖q‖2

L2(Ω)
+ ρ

∫
Ω

|∇q| (2.21)

for all q ∈ Q ad . This means that qδ
ρ is a (unique) solution to (P q

ρ,δ).

By contradiction we show that (q
δ2n
ρ ) converges to qδ

ρ in the L2(Ω)-norm. In fact, assume that (q
δ2n
ρ ) � qδ

ρ in the L2(Ω)-
norm. This and (2.20) follow that

ε := lim sup
n

∥∥q
δ2n
ρ

∥∥2
L2(Ω)

>
∥∥qδ

ρ

∥∥2
L2(Ω)

. (2.22)

Therefore, there exists a subsequence (q
δ3n
ρ ) of (q

δ2n
ρ ) such that

q
δ3n
ρ → qδ

ρ weakly in L2(Ω), and
∥∥q

δ3n
ρ

∥∥2
L2(Ω)

→ ε. (2.23)

Choosing q = qδ
ρ in (2.21), we get

lim
n

(
J zδ2n

(
q
δ2n
ρ

) + ρ

2

∥∥q
δ2n
ρ

∥∥2
L2(Ω)

+ ρ

∫
Ω

∣∣∇q
δ2n
ρ

∣∣) = J zδ

(
qδ
ρ

) + ρ

2

∥∥qδ
ρ

∥∥2
L2(Ω)

+ ρ

∫
Ω

∣∣∇qδ
ρ

∣∣. (2.24)

It follows from (2.22), (2.23) and (2.19) that
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J zδ

(
qδ
ρ

) + ρ

2

∥∥qδ
ρ

∥∥2
L2(Ω)

+ ρ lim sup
n

∫
Ω

∣∣∇q
δ3n
ρ

∣∣ < J zδ

(
qδ
ρ

) + ρ

2
ε + ρ lim sup

n

∫
Ω

∣∣∇q
δ3n
ρ

∣∣
= lim

n
J zδ3n

(
q
δ3n
ρ

) + ρ

2
lim

n

∥∥q
δ3n
ρ

∥∥2
L2(Ω)

+ ρ lim sup
n

∫
Ω

∣∣∇q
δ3n
ρ

∣∣
= lim sup

n

(
J zδ3n

(
q
δ3n
ρ

) + ρ

2

∥∥q
δ3n
ρ

∥∥2
L2(Ω)

+ ρ

∫
Ω

∣∣∇q
δ3n
ρ

∣∣).

By (2.24), the last inequality leads to

lim sup
n

∫
Ω

∣∣∇q
δ3n
ρ

∣∣ <

∫
Ω

∣∣∇qδ
ρ

∣∣ � lim inf
n

∫
Ω

∣∣∇q
δ1n
ρ

∣∣ (
by (2.18)

)
� lim inf

n

∫
Ω

∣∣∇q
δ3n
ρ

∣∣,
which is a contradiction. Thus, (q

δ2n
ρ ) converges to qδ

ρ in the L2(Ω)-norm. Hence the whole sequence (qδn
ρ ) also converges

to qδ
ρ in the L2(Ω)-norm.

Now, from this and (2.15) it follows that

J zδ

(
qδ
ρ

) + ρ

2

∥∥qδ
ρ

∥∥2
L2(Ω)

+ ρ lim sup
n

∫
Ω

∣∣∇q
δ2n
ρ

∣∣
= lim sup

n

(
J zδ2n

(
q
δ2n
ρ

) + ρ

2

∥∥q
δ2n
ρ

∥∥2
L2(Ω)

+ ρ

∫
Ω

∣∣∇q
δ2n
ρ

∣∣)

� lim sup
n

(
J zδ2n

(
qδ
ρ

) + ρ

2

∥∥qδ
ρ

∥∥2
L2(Ω)

+ ρ

∫
Ω

∣∣∇qδ
ρ

∣∣)

= J zδ

(
qδ
ρ

) + ρ

2

∥∥qδ
ρ

∥∥2
L2(Ω)

+ ρ

∫
Ω

∣∣∇qδ
ρ

∣∣.
By (2.18), it follows from the last estimate that limn

∫
Ω

|∇q
δ2n
ρ | = ∫

Ω
|∇qδ

ρ | and so (2.14) holds. The proof of Theorem 2.9 is
now completed. �
Proof of Theorem 2.10. For all n ∈ N, by the definition of qδn

ρn , we have

J zδn

(
qδn
ρn

) + ρn

(
1

2

∥∥qδn
ρn

∥∥2
L2(Ω)

+
∫
Ω

∣∣∇qδn
ρn

∣∣) � J zδn

(
q†) + ρn

(
1

2

∥∥q†
∥∥2

L2(Ω)
+

∫
Ω

∣∣∇q†
∣∣)

� q̄

2
δ2

n + ρn

(
1

2

∥∥q†
∥∥2

L2(Ω)
+

∫
Ω

∣∣∇q†
∣∣). (2.25)

By the assumption δ2
n/ρn → 0, the last inequality yields

lim sup
n

(
1

2

∥∥qδn
ρn

∥∥2
L2(Ω)

+
∫
Ω

∣∣∇qδn
ρn

∣∣) � 1

2

∥∥q†
∥∥2

L2(Ω)
+

∫
Ω

∣∣∇q†
∣∣. (2.26)

Thus, since mes(Ω) < +∞,

sup
n∈N

∥∥qδn
ρn

∥∥2
L2(Ω)

< +∞ and sup
n∈N

(∥∥qδn
ρn

∥∥
L1(Ω)

+
∫
Ω

∣∣∇qδn
ρn

∣∣) < +∞.

It follows from the last estimates that there exist a subsequence (q
δ1n
ρ1n

) of (qδn
ρn ) and q̂ ∈ Q ad such that(

q
δ1n
ρ1n

)
converges to q̂ in L1(Ω), (2.27)(

q
δ1n
ρ1n

)
weakly converges to q̂ in L2(Ω), and (2.28)∫

|∇q̂| � lim inf
n

∫ ∣∣∇q
δ1n
ρ1n

∣∣. (2.29)
Ω Ω
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On the other hand, since ‖ · ‖L2(Ω) and J ū(·) are weakly lower semicontinuous, it follows from (2.28) that

‖q̂‖2
L2(Ω)

� lim inf
n

∥∥q
δ1n
ρ1n

∥∥2
L2(Ω)

(2.30)

and

J ū(q̂) � lim inf
n

J ū
(
q
δ1n
ρ1n

)
.

In virtue of the Poincaré–Friedrichs inequality, the last estimate follows that

α

2

∥∥U (q̂) − ū
∥∥2

H1(Ω)
� J ū(q̂) � lim inf

n
J ū

(
q
δ1n
ρ1n

)
(2.31)

with the positive constant α defined by (2.4). Now, we have

J ū
(
q
δ1n
ρ1n

) = 1

2

∫
Ω

q
δ1n
ρ1n

∣∣∇(
U

(
q
δ1n
ρ1n

) − zδ1n
) + ∇(

zδ1n − ū
)∣∣2

= 1

2

∫
Ω

q
δ1n
ρ1n

∣∣∇(
zδ1n − ū

)∣∣2 +
∫
Ω

q
δ1n
ρ1n

∇(
U

(
q
δ1n
ρ1n

) − zδ1n
) · ∇(

zδ1n − ū
)

+ 1

2

∫
Ω

q
δ1n
ρ1n

∣∣∇(
U

(
q
δ1n
ρ1n

) − zδ1n
)∣∣2

. (2.32)

The first two terms in the right-hand side of (2.32) tend to zero as n → ∞, since zδ1n converging to ū in the H1(Ω)-norm.
Thus,

lim inf
n

J ū
(
q
δ1n
ρ1n

) = lim inf
n

1

2

∫
Ω

q
δ1n
ρ1n

∣∣∇(
U

(
q
δ1n
ρ1n

) − zδ1n
)∣∣2

= lim inf
n

J zδ1n

(
q
δ1n
ρ1n

)
� lim inf

n

(
q̄

2
δ2

1n
+ ρ1n

2

∥∥q†
∥∥2

L2(Ω)
+ ρ1n

∫
Ω

∣∣∇q†
∣∣) (

by (2.25)
)

= 0. (2.33)

It follows from the inequalities (2.31)–(2.33) that U (q̂) = ū. Therefore, replacing q† in (2.25) by q̂, we also get

lim sup
n

(
1

2

∥∥qδn
ρn

∥∥2
L2(Ω)

+
∫
Ω

∣∣∇qδn
ρn

∣∣) � 1

2
‖q̂‖2

L2(Ω)
+

∫
Ω

|∇q̂|. (2.34)

Now, we have

lim sup
n

∫
Ω

∣∣∇q
δ1n
ρ1n

∣∣ � lim sup
n

(
1

2

∥∥q
δ1n
ρ1n

− q̂
∥∥2

L2(Ω)
+

∫
Ω

∣∣∇q
δ1n
ρ1n

∣∣)

= lim sup
n

(
1

2

∥∥q
δ1n
ρ1n

∥∥2
L2(Ω)

+
∫
Ω

∣∣∇q
δ1n
ρ1n

∣∣ + 1

2
‖q̂‖2

L2(Ω)
− 〈

q
δ1n
ρ1n

, q̂
〉
L2(Ω)

)

� lim sup
n

(
1

2

∥∥q
δ1n
ρ1n

∥∥2
L2(Ω)

+
∫
Ω

∣∣∇q
δ1n
ρ1n

∣∣) + lim sup
n

(
1

2
‖q̂‖2

L2(Ω)
− 〈

q
δ1n
ρ1n

, q̂
〉
L2(Ω)

)
.

It follows from the last inequality, (2.34) and (2.28) that

lim sup
n

∫
Ω

∣∣∇q
δ1n
ρ1n

∣∣ � 1

2
‖q̂‖2

L2(Ω)
+

∫
Ω

|∇q̂| + 1

2
‖q̂‖2

L2(Ω)
− 〈q̂, q̂〉L2(Ω) =

∫
Ω

|∇q̂|.

This and (2.29) yield

lim
n

∫ ∣∣∇q
δ1n
ρ1n

∣∣ =
∫

|∇q̂|. (2.35)
Ω Ω
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It follows from the last inequality and (2.34) that

lim sup
n

1

2

∥∥q
δ1n
ρ1n

− q̂
∥∥2

L2(Ω)
= lim sup

n

1

2

∥∥q
δ1n
ρ1n

− q̂
∥∥2

L2(Ω)
+ lim

n

(∫
Ω

∣∣∇q
δ1n
ρ1n

∣∣ −
∫
Ω

|∇q̂|
)

= lim sup
n

(
1

2

∥∥q
δ1n
ρ1n

∥∥2
L2(Ω)

+
∫
Ω

∣∣∇q
δ1n
ρ1n

∣∣) + lim
n

(
1

2
‖q̂‖2

L2(Ω)
−

∫
Ω

|∇q̂| − 〈
q
δ1n
ρ1n

, q̂
〉
L2(Ω)

)

= 0. (2.36)

Now, by the definition of q† and (2.35)–(2.36), we obtain that

1

2

∥∥q†
∥∥2

L2(Ω)
+

∫
Ω

∣∣∇q†
∣∣ � 1

2
‖q̂‖2

L2(Ω)
+

∫
Ω

|∇q̂|

= lim
n

(
1

2

∥∥q
δ1n
ρ1n

∥∥2
L2(Ω)

+
∫
Ω

∣∣∇q
δ1n
ρ1n

∣∣)

� 1

2

∥∥q†
∥∥2

L2(Ω)
+

∫
Ω

∣∣∇q†
∣∣ (

by (2.26)
)
.

Hence 1
2 ‖q†‖2

L2(Ω)
+ ∫

Ω
|∇q†| = 1

2 ‖q̂‖2
L2(Ω)

+ ∫
Ω

|∇q̂| or q† = q̂, by the uniqueness of q†.

Finally, again using (2.35)–(2.36), we see that the sequence (q
δ1n
ρ1n

) weakly converges to q† in B V (Ω) (see [1], Proposi-

tion 10.1.2, p. 374). Thus, for all � ∈ ∂(
∫
Ω

|∇(·)|)(q†) we conclude that

lim
n

D�
T V

(
q
δ1n
ρ1n

,q†) = lim
n

(∫
Ω

∣∣∇q
δ1n
ρ1n

∣∣ −
∫
Ω

∣∣∇q†
∣∣ − 〈

�,q
δ1n
ρ1n

− q†〉
(X∗

B V (Ω)
,XB V (Ω))

)
= 0.

The theorem is proved. �
2.2. Convergence rates

For any fixed q ∈ Q the mapping

U ′(q) : L∞(Ω) → H1�(Ω)

is a continuous linear operator (see Lemma 2.3) with the dual operator

U ′(q)
∗ : H1�(Ω)

∗ → L∞(Ω)
∗
.

Then 〈
w∗, U ′(q)h

〉
(H1�(Ω)

∗
,H1�(Ω))

= 〈
U ′(q)

∗w∗,h
〉
(L∞(Ω)∗,L∞(Ω))

= 〈
U ′(q)

∗w∗,h
〉
(X∗,X)

(2.37)

for all w∗ ∈ H1�(Ω)
∗

and h ∈ X.
In the following, for the simplicity of notation, we denote by

R(q) := 1

2
‖q‖2

L2(Ω)
+

∫
Ω

|∇q|, q ∈ Q ad

and note that

∂ R
(
q†) = q† + ∂

(∫
Ω

∣∣∇(·)∣∣)(
q†) ⊂ X∗.

Now we state the main result of this section.

Theorem 2.11. Assume that there exists a functional w∗ ∈ H1�(Ω)
∗

such that

U ′(q†)∗
w∗ = q† + � ∈ ∂ R

(
q†) (2.38)
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for some element � in ∂(
∫
Ω

|∇(·)|)(q†). Then,∥∥qδ
ρ − q†

∥∥2
L2(Ω)

+ D�
T V

(
qδ
ρ,q†) = O(δ) and

∥∥U
(
qδ
ρ

) − zδ
∥∥

H1(Ω)
= O(δ)

as δ → 0 and ρ ∼ δ. Moreover, if � ∈ X∗ can be identified with an element of L2(Ω), then the following convergence rate is obtained∣∣∣∣
∫
Ω

∣∣∇q†
∣∣ −

∫
Ω

∣∣∇qδ
ρ

∣∣∣∣∣∣ = O(
√

δ) as δ → 0 and ρ ∼ δ. (2.39)

To proving this result we need the following auxiliary results, the proofs of which are based on the convexity of the
functional J zδ (·).

Lemma 2.12. (See [19, Lemma 2.10].) The estimate

CΩ

∥∥U (q) − zδ
∥∥2

H1(Ω)
� 2

q
(1 + CΩ) J zδ (q)

holds for all q belonging to Q .

Lemma 2.13. The estimate

−ρ
〈
�,q† − qδ

ρ

〉
(X∗

B V (Ω)
,XB V (Ω))

� q̄

2
δ2 + q̄

∥∥qδ
ρ − q†

∥∥
L2(Ω)

ρ (2.40)

holds for qδ
ρ being the solution of the problem (P q

ρ,δ) and all � ∈ ∂(
∫
Ω

|∇(·)|)(qδ
ρ).

Proof. By (2.13), for � ∈ ∂(
∫
Ω

|∇(·)|)(qδ
ρ), we get

−ρ
〈
�,q† − qδ

ρ

〉
(X∗

B V (Ω)
,XB V (Ω))

� J ′
zδ

(
qδ
ρ

)(
q† − qδ

ρ

) + ρ
〈
qδ
ρ,q† − qδ

ρ

〉
L2(Ω)

� J ′
zδ

(
qδ
ρ

)(
q† − qδ

ρ

) + q̄
∥∥qδ

ρ − q†
∥∥

L2(Ω)
ρ. (2.41)

Since the function J zδ (·) is convex, we obtain that

J ′
zδ

(
qδ
ρ

)(
q† − qδ

ρ

)
� J zδ

(
q†) − J zδ

(
qδ
ρ

)
� J zδ

(
q†) � q̄

2
δ2. (2.42)

From the inequalities (2.41) and (2.42) we arrive at (2.40). �
Proof of Theorem 2.11. By the definition of qδ

ρ , we have

J zδ

(
qδ
ρ

) + ρ

(
1

2

∥∥qδ
ρ

∥∥2
L2(Ω)

+
∫
Ω

∣∣∇qδ
ρ

∣∣) � J zδ

(
q†) + ρ

(
1

2

∥∥q†
∥∥2

L2(Ω)
+

∫
Ω

∣∣∇q†
∣∣). (2.43)

Then,

J zδ

(
qδ
ρ

) + ρ

2

∥∥qδ
ρ − q†

∥∥2
L2(Ω)

� J zδ

(
q†) + ρ

2

(∥∥q†
∥∥2

L2(Ω)
− ∥∥qδ

ρ

∥∥2
L2(Ω)

+ ∥∥qδ
ρ − q†

∥∥2
L2(Ω)

) + ρ

(∫
Ω

∣∣∇q†
∣∣ −

∫
Ω

∣∣∇qδ
ρ

∣∣)

= J zδ

(
q†) + ρ

(〈
q†,q† − qδ

ρ

〉
L2(Ω)

+
∫
Ω

∣∣∇q†
∣∣ −

∫
Ω

∣∣∇qδ
ρ

∣∣).

By (2.5), for any � ∈ ∂(
∫
Ω

|∇(·)|)(q†) the last inequality leads to

J zδ

(
qδ
ρ

) + ρ

2

∥∥qδ
ρ − q†

∥∥2
L2(Ω)

+ ρD�
T V

(
qδ
ρ,q†)

� 1

2
q̄δ2 + ρ

(〈
q†,q† − qδ

ρ

〉
L2(Ω)

+
∫
Ω

∣∣∇q†
∣∣ −

∫
Ω

∣∣∇qδ
ρ

∣∣) + ρ

(∫
Ω

∣∣∇qδ
ρ

∣∣ −
∫
Ω

∣∣∇q†
∣∣ − 〈

�,qδ
ρ − q†〉

(X∗
B V (Ω)

,XB V (Ω))

)

= 1

2
q̄δ2 + ρ

(〈
q†,q† − qδ

ρ

〉
L2(Ω)

+ 〈
�,q† − qδ

ρ

〉
(X∗

B V (Ω)
,XB V (Ω))

)
. (2.44)

By (2.11) and (2.12), we get that
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〈
q†,q† − qδ

ρ

〉
L2(Ω)

= 〈
q†,q† − qδ

ρ

〉
(X∗,X)

and

〈
�,q† − qδ

ρ

〉
(X∗

B V (Ω)
,XB V (Ω))

= 〈
�,q† − qδ

ρ

〉
(X∗,X)

.

Hence, by the source condition (2.38), we have

〈
q†,q† − qδ

ρ

〉
L2(Ω)

+ 〈
�,q† − qδ

ρ

〉
(X∗

B V (Ω)
,XB V (Ω))

= 〈
U ′(q†)∗

w∗,q† − qδ
ρ

〉
(X∗,X)

.

It follows from the last equality and (2.37) that

〈
q†,q† − qδ

ρ

〉
L2(Ω)

+ 〈
�,q† − qδ

ρ

〉
(X∗

B V (Ω)
,XB V (Ω))

= 〈
U ′(q†)∗

w∗,q† − qδ
ρ

〉
(L∞(Ω)∗,L∞(Ω))

= 〈
w∗, U ′(q†)(q† − qδ

ρ

)〉
(H1�(Ω)

∗
,H1�(Ω))

. (2.45)

By the Riesz representation theorem, there exists an element w ∈ H1�(Ω) such that

〈
w∗, U ′(q†)(q† − qδ

ρ

)〉
(H1�(Ω)

∗
,H1�(Ω))

= 〈
w, U ′(q†)(q† − qδ

ρ

)〉
H1�(Ω)

. (2.46)

By the similar reasonings as in the proof of Theorem 2.9 in [19], we get the following estimate

〈
w, U ′(q†)(q† − qδ

ρ

)〉
H1�(Ω)

� q̄δ

(∫
Ω

|∇ ŵ|2
)1/2

+ q̄ρ

∫
Ω

|∇ ŵ|2 + 1

2ρ
J zδ

(
qδ
ρ

)
(2.47)

for some ŵ ∈ H1�(Ω). It follows from (2.44)–(2.47) that

1

2
J zδ

(
qδ
ρ

) + ρ

2

∥∥qδ
ρ − q†

∥∥2
L2(Ω)

+ ρD�
T V

(
qδ
ρ,q†) � 1

2
q̄δ2 + q̄δρ

(∫
Ω

|∇ ŵ|2
)1/2

+ q̄ρ2
∫
Ω

|∇ ŵ|2. (2.48)

By Lemma 2.12, the last inequality leads to the following convergence rates∥∥qδ
ρ − q†

∥∥2
L2(Ω)

+ D�
T V

(
qδ
ρ,q†) = O(δ) and

∥∥U
(
qδ
ρ

) − zδ
∥∥

H1(Ω)
= O(δ) (2.49)

as δ → 0 and ρ ∼ δ.
It remains to establish the convergence rate (2.39). Take � ∈ ∂(

∫
Ω

|∇(·)|)(qδ
ρ), from Lemma 2.13, we get

∫
Ω

∣∣∇qδ
ρ

∣∣ −
∫
Ω

∣∣∇q†
∣∣ � −〈

�,q† − qδ
ρ

〉
(X∗

B V (Ω)
,XB V (Ω))

� q̄δ2

2ρ
+ q̄

∥∥qδ
ρ − q†

∥∥
L2(Ω)

. (2.50)

On the other hand, for � ∈ ∂(
∫
Ω

|∇(·)|)(q†), we have∫
Ω

∣∣∇q†
∣∣ −

∫
Ω

∣∣∇qδ
ρ

∣∣ � −〈
�,qδ

ρ − q†〉
(X∗

B V (Ω)
,XB V (Ω))

= −〈
�,qδ

ρ − q†〉
(X∗,X)

. (2.51)

By the assumption that � ∈ X∗ can be identified with an element of L2(Ω), there exists an element of L2(Ω) denoted by
the same symbol such that

〈
�,qδ

ρ − q†〉
(X∗,X)

= 〈
�,qδ

ρ − q†〉
L2(Ω)

.

The last equality and (2.51) yield∫
Ω

∣∣∇q†
∣∣ −

∫
Ω

∣∣∇qδ
ρ

∣∣ � −〈
�,qδ

ρ − q†〉
L2(Ω)

� ‖�‖L2(Ω)

∥∥qδ
ρ − q†

∥∥
L2(Ω)

. (2.52)

Since (2.49), it follows that ‖qδ
ρ − q†‖L2(Ω) = O(

√
δ) as δ → 0 and ρ ∼ δ. Hence the inequalities (2.50) and (2.52) yield

(2.39). The theorem is proved. �
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2.3. Discussion of the source condition

Now we discuss the source condition (2.38), which ensures the convergence rate∥∥qδ
ρ − q†

∥∥2
L2(Ω)

+ D�
T V

(
qδ
ρ,q†) = O(δ) (2.53)

of the regularized solutions qδ
ρ to the R-minimizing norm solution q† of our inverse problem, where � ∈ ∂(

∫
Ω

|∇(·)|)(q†).

We remark that this source condition does not require any the regularity on q† and the smallness of the source functions
which is hard to check in the general convergence theory for nonlinear ill-posed problems [11,12,29]. Further, condition
(2.38) is fulfilled if and only if there exists a function w∗ ∈ H1�(Ω)

∗
such that

1

2
‖q‖2

L2(Ω)
+

∫
Ω

|∇q| − 1

2

∥∥q†
∥∥2

L2(Ω)
−

∫
Ω

∣∣∇q†
∣∣ − 〈

U ′(q†)∗
w∗,q − q†〉

(X∗
B V (Ω)

,XB V (Ω))
� 0 (2.54)

for all q ∈ X. To further analyze this condition we assume that the sought coefficient belongs to H1(Ω). Therefore, the
admissible set of sought coefficients is restricted to

ˆQ ad = Q ∩ H1(Ω) ⊂ Q ∩ B V (Ω).

Moreover, if � can be identified with an element of L2(Ω), i.e., there exists an element �̃ in L2(Ω) such that

〈�,q〉(X∗
B V (Ω)

,XB V (Ω)) = 〈�̃,q〉L2(Ω) (2.55)

for all q in X, then the convergence rate∣∣∣∣
∫
Ω

∣∣∇qδ
ρ

∣∣ −
∫
Ω

∣∣∇q†
∣∣∣∣∣∣ = O(

√
δ) (2.56)

is also established.
We remark that, since H1(Ω) ⊂ B V (Ω), any � in the dual space of B V (Ω) can be considered as an element of H1(Ω)

in the sense that there is a unique element in H1(Ω), denoted by the same symbol such that

〈�,q〉(B V (Ω)∗,B V (Ω)) = 〈�,q〉H1(Ω), ∀q ∈ H1(Ω).

In fact, since � ∈ B V (Ω)∗ , there exists a positive constant C such that for all q ∈ H1(Ω),∣∣〈�,q〉(B V (Ω)∗,B V (Ω))

∣∣ � C‖q‖B V (Ω)

� C
√

2mes(Ω)‖q‖H1(Ω).

This means that � belongs to H1(Ω)
∗

. Hence, by the Riesz representation theorem, there is a unique element �̃ ∈ H1(Ω)

such that 〈�,q〉(B V (Ω)∗,B V (Ω)) = 〈�̃,q〉H1(Ω) for all q ∈ H1(Ω).

Lemma 2.14. (See [19, Lemma 2.12].) Denote by

B = {
� ∈ B V (Ω)∗

∣∣ ∃�̂ ∈ H1(Ω): 〈�,q〉(B V (Ω)∗,B V (Ω)) = 〈�̂,q〉L2(Ω), ∀q ∈ H1(Ω)
}
.

If the dimension d � 4 and the boundary ∂Ω is of class C1 , then

B̄ = H1(Ω),

where the bar denotes the closure in H1(Ω).

Theorem 2.15. Let the boundary ∂Ω be of class C1 and the dimension d � 4. Assume that q† has the property that there is an element
� ∈ ∂(

∫
Ω

|∇(·)|)(q†) such that 〈�,q〉(X∗
B V (Ω)

,XB V (Ω)) = 〈�̂,q〉L2(Ω) for all q ∈ L∞(Ω) ∩ H1(Ω), where �̂ is some element of H1(Ω).

Further, suppose that the exact ū = U (q†) ∈ W 2,∞(Ω), |∇ū| � ε a.e. on Ω with ε being a positive constant. Then, the convergence
rates (2.53) and (2.56) are obtained.

Note that as the dimension d � 4, the requirement on q† of the theorem is fulfilled at least on a set which is everywhere
dense on H1(Ω) (see Lemma 2.14).

We need the following auxiliary result, which is generalization of that in [26] and [33].
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Lemma 2.16. (See [19, Lemma 2.15].) Assume that the boundary ∂Ω is of class C1 , u ∈ W 2,∞(Ω) and |∇u| � γ a.e. on Ω , where γ
is a positive constant. Then, for any element p ∈ H1(Ω) there exists v ∈ H1(Ω) satisfying

∇u · ∇v = p. (2.57)

Proof of Theorem 2.15. Due to Lemma 2.16, there exists ψ ∈ H1(Ω) satisfying

∇U
(
q†) · ∇ψ = q† + �̂.

Set

ψ̂ :=
∫
Ω

v

mes(Ω)
− ψ.

Then,

−∇U
(
q†) · ∇ψ̂ = q† + �̂ and ψ̂ ∈ H1�(Ω).

By (2.12), for all q ∈ L∞(Ω) ∩ H1(Ω) we have〈
� + q†,q

〉
(X∗

B V (Ω)
,XB V (Ω))

= 〈�,q〉(X∗
B V (Ω)

,XB V (Ω)) + 〈
q†,q

〉
(X∗

B V (Ω)
,XB V (Ω))

= 〈�̂,q〉L2(Ω) + 〈
q†,q

〉
L2(Ω)

= 〈
q† + �̂,q

〉
L2(Ω)

= −
∫
Ω

q∇U
(
q†)∇ψ̂.

In virtue of (2.8), the last equality leads to

〈
� + q†,q

〉
(X∗

B V (Ω)
,XB V (Ω))

=
∫
Ω

q†∇U ′(q†)(q)∇ψ̂, ∀q ∈ L∞(Ω) ∩ H1(Ω).

Using the equivalent scalar product on H1�(Ω), we obtain that there exist an element ŵ ∈ H1�(Ω) independent of q ∈
L∞(Ω) ∩ H1(Ω) such that〈

� + q†,q
〉
(X∗

B V (Ω)
,XB V (Ω))

= 〈
ŵ, U ′(q†)(q)

〉
H1�(Ω)

, ∀q ∈ L∞(Ω) ∩ H1(Ω).

Thus, there exists a function w∗ ∈ H1�(Ω)
∗

such that〈
� + q†,q

〉
(X∗

B V (Ω)
,XB V (Ω))

= 〈
w∗, U ′(q†)(q)

〉
(H1�(Ω)

∗
,H1�(Ω))

= 〈
U ′(q†)∗

w∗,q
〉
(L∞(Ω)∗,L∞(Ω))

. (2.58)

Since 〈
U ′(q†)∗

w∗,q
〉
(L∞(Ω)∗,L∞(Ω))

= 〈
q† + �̂,q

〉
L2(Ω)

with q†, �̂ ∈ H1(Ω), the boundary ∂Ω being of class C1 and the dimension d � 4 and by the Sobolev embedding theorem,
it follows that U ′(q†)

∗
w∗ is linear and continuous on L∞(Ω) ∩ H1(Ω) equipped with the B V (Ω)-norm and〈

U ′(q†)∗
w∗,q

〉
(L∞(Ω)∗,L∞(Ω))

= 〈
U ′(q†)∗

w∗,q
〉
(X∗

B V (Ω)
,XB V (Ω))

, ∀q ∈ L∞(Ω) ∩ H1(Ω)

(see the proof of Theorem 2.13 in [19]). Since q† + � ∈ ∂( 1
2 ‖ · ‖2

L2(Ω)
+ ∫

Ω
|∇(·)|)(q†), it follows from the last equality and

(2.58) that

1

2
‖q‖2

L2(Ω)
+

∫
Ω

|∇q| − 1

2

∥∥q†
∥∥2

L2(Ω)
−

∫
Ω

∣∣∇q†
∣∣ − 〈

U ′(q†)∗
w∗,q − q†〉

(X∗
B V (Ω)

,XB V (Ω))

= 1

2
‖q‖2

L2(Ω)
+

∫
Ω

|∇q| − 1

2

∥∥q†
∥∥2

L2(Ω)
−

∫
Ω

∣∣∇q†
∣∣ − 〈

q† + �,q − q†〉
(X∗

B V (Ω)
,XB V (Ω))

� 0

for all q ∈ L∞(Ω) ∩ H1(Ω). The theorem is proved. �
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3. The reaction coefficient identification problem

In this section we investigate the following coefficient identification problem.

Find the coefficient a in the problem (1.3)–(1.4) subject to the constraints

a ∈ A := {
a ∈ L∞(Ω)

∣∣ 0 < a � a(x) � ā a.e. on Ω
}

(3.1)

with a and ā being given positive constants, when the solution u is imprecisely given in Ω .

3.1. Problem setting and regularization

A function u ∈ H1(Ω) is said to be a weak solution of (1.3)–(1.4), if it satisfies the equality∫
Ω

∇u∇v +
∫
Ω

auv =
∫
Ω

f v +
∫

∂Ω

gv, ∀v ∈ H1(Ω). (3.2)

For all u ∈ H1(Ω) and a ∈ A the following coercivity condition∫
Ω

|∇u|2 +
∫
Ω

au2 � β‖u‖2
H1(Ω)

(3.3)

holds. Here,

β := min{1,a} > 0. (3.4)

In virtue of the Lax–Milgram lemma, for each a ∈ A there exists a unique weak solution of (1.3)–(1.4) which satisfies
inequality

‖u‖H1(Ω) � Λβ

(‖ f ‖L2(Ω) + ‖g‖L2(∂Ω)

)
, (3.5)

where Λβ is a positive constant depending only on β .
Therefore, we can define the nonlinear coefficient-to-solution mapping U : A ⊂ L∞(Ω) → H1(Ω) which maps each a ∈ A

to the unique solution U (a) ∈ H1(Ω) of (1.3)–(1.4). Thus, our inverse problem in this section is that of the form: given
ū = U (a) ∈ H1(Ω) find a ∈ A.

Now we suppose that ū is the exact solution of (1.3)–(1.4), i.e., there exists some a ∈ A such that ū = U (a), where the
set A is defined by (3.1) and U (a) is the coefficient-to-solution mapping. We assume that instead of the exact ū we have
only its observations zδ ∈ H1(Ω) such that∥∥ū − zδ

∥∥
H1(Ω)

� δ, (3.6)

where δ > 0. Our problem is to reconstruct a from zδ . For solving this ill-posed problem we minimize the strictly convex
functional (see Lemma 3.2 below)

min
a∈Aad

Gzδ (a) + ρ

(
1

2
‖a‖2

L2(Ω)
+

∫
Ω

|∇a|
)

, (P a
ρ,δ)

where Aad := A ∩ B V (Ω) is the admissible set and ρ > 0 is the regularization parameter and

Gzδ (a) := 1

2

∫
Ω

∣∣∇(
U (a) − zδ

)∣∣2 + 1

2

∫
Ω

a
(
U (a) − zδ

)2
, a ∈ A. (3.7)

We remark that the problem (P a
ρ,δ) has a unique solution aδ

ρ on the nonempty, convex, bounded and closed in the

L2(Ω)-norm set Aad , which is called regularized solution to our inverse problem. On the other hand, due to the nonempty
convexity, closedness and boundedness in the L2(Ω)-norm of the set

ΠAad (ū) := {
a ∈ Aad

∣∣ U (a) = ū
}

we can conclude that there is a unique solution a† of the problem

min
a∈ΠAad

(ū)

1

2
‖a‖2

L2(Ω)
+

∫
|∇a|, (Πa)
Ω
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which we call T -minimizing norm solution to our inverse problem, where

T (·) := 1

2
‖ · ‖2

L2(Ω)
+

∫
Ω

∣∣∇(·)∣∣.
In this section we investigate the convergence rates of aδ

ρ to the solution a† of the equation U (a) = ū.
We note that the functional Gzδ (·) is convex and Fréchet differentiable. The Fréchet differential of it is defined by

G ′
zδ (a)h = −1

2

∫
Ω

h
(
U (a) − zδ

)(
U (a) + zδ

)

for a ∈ A and h ∈ L∞(Ω).

Lemma 3.1. (See [19, Lemma 3.1].) The mapping U : A ⊂ L∞(Ω) → H1(Ω) is continuously Fréchet differentiable with the derivative
U ′(a). For each h in L∞(Ω), the differential η := U ′(a)h ∈ H1(Ω) is the unique solution of the problem

−�η + aη = −hU (a) in Ω,
∂η

∂n
= 0 on ∂Ω,

in the sense that it satisfies the equation∫
Ω

∇η∇v +
∫
Ω

aηv = −
∫
Ω

hU (a)v (3.8)

for all v ∈ H1(Ω). Furthermore, the estimate

‖η‖H1(Ω) � Λβ

β

(‖ f ‖L2(Ω) + ‖g‖L2(∂Ω)

)‖h‖L∞(Ω)

holds for all h ∈ L∞(Ω).

Lemma 3.2. (See [19, Lemma 3.2].) The functional Gzδ (·) defined by (3.7) is convex on the convex set A.

Similar to the previous section we can prove the following results.

Theorem 3.3. (i) There exists a unique solution of the problem (P a
ρ,δ). Further, an element aδ

ρ in Aad is a solution to (P a
ρ,δ) if and only

if for any λ ∈ ∂(
∫
Ω

|∇(·)|)(qδ
ρ), the inequality

G ′
zδ

(
aδ
ρ

)(
a − aδ

ρ

) + ρ
〈
aδ
ρ,a − aδ

ρ

〉
L2(Ω)

+ ρ
〈
λ,a − aδ

ρ

〉
(X∗

B V (Ω)
,XB V (Ω))

� 0 (3.9)

holds for all a in Aad.
(ii) There exists a unique solution of the problem (Πa). Further, an element a† in ΠAad (ū) is a solution of the problem (Πa) if and

only if for any λ ∈ ∂(
∫
Ω

|∇(·)|)(a†), the inequality〈
a†,a − a†〉

L2(Ω)
+ 〈

λ,a − a†〉
(X∗

B V (Ω)
,XB V (Ω))

� 0

holds for all a in ΠAad (ū).

Theorem 3.4. For a fixed regularization parameter ρ > 0, let (zδn ) be a sequence in H1(Ω) which converges to zδ in H1(Ω) and (aδn
ρ )

be the unique minimizers of the problems

min
a∈Aad

1

2

∫
Ω

∣∣∇(
U (a) − zδn

)∣∣2 + 1

2

∫
Ω

a
(
U (a) − zδn

)2 + ρ

(
1

2
‖a‖2

L2(Ω)
+

∫
Ω

|∇a|
)

.

Then, (aδn
ρ ) converges to the unique solution aδ

ρ of (P a
ρ,δ) in the L2(Ω)-norm. Further,

lim
n

∫
Ω

∣∣∇aδn
ρ

∣∣ =
∫
Ω

∣∣∇aδ
ρ

∣∣.
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Theorem 3.5. For any positive sequence (δn) → 0, let ρn := ρ(δn) be such that

ρn → 0 and
δ2

n

ρn
→ 0 as n → ∞.

Moreover, let (zδn ) be a sequence in H1(Ω) satisfying ‖ū − zδn ‖H1(Ω) � δn and (aδn
ρn ) be the unique minimizers of the problems

min
a∈Aad

1

2

∫
Ω

∣∣∇(
U (a) − zδn

)∣∣2 + 1

2

∫
Ω

a
(
U (a) − zδn

)2 + ρn

(
1

2
‖a‖2

L2(Ω)
+

∫
Ω

|∇a|
)

.

Then, (aδn
ρn ) converges to the unique solution a† of the problem (Πa) in the L2(Ω)-norm. Further,

lim
n

∫
Ω

∣∣∇aδn
ρn

∣∣ =
∫
Ω

∣∣∇a†
∣∣ and lim

n
D�

T V

(
aδn
ρn

,a†) = 0

for all � ∈ ∂(
∫
Ω

|∇(·)|)(a†).

3.2. Convergence rates

We now state and briefly prove the result on the convergence rates of regularization solutions aδ
ρ to the solution a† of

the equation U (a) = ū.

Theorem 3.6. Assume that there exists a function w∗ ∈ H1(Ω)
∗

such that

U ′(a†)∗
w∗ = a† + λ ∈ ∂T

(
a†) (3.10)

for some element λ in ∂(
∫
Ω

|∇(·)|)(a†). Then,∥∥aδ
ρ − a†

∥∥2
L2(Ω)

+ Dλ
T V

(
aδ
ρ,a†) = O(δ) and

∥∥U
(
aδ
ρ

) − zδ
∥∥

H1(Ω)
= O(δ)

as δ → 0 and ρ ∼ δ. Further, if λ ∈ X∗ can be identified with an element of L2(Ω), then the convergence rate∣∣∣∣
∫
Ω

∣∣∇a†
∣∣ −

∫
Ω

∣∣∇aδ
ρ

∣∣∣∣∣∣ = O(
√

δ) as δ → 0 and ρ ∼ δ, (3.11)

is also established.

We need the following lemmas.

Lemma 3.7. (See [19, Lemma 3.7].) The estimate

∥∥U (a) − zδ
∥∥2

H1(Ω)
� 2

β
Gzδ (a)

holds for all a belonging to A.

Lemma 3.8. The following estimate

−ρ
〈
λ,a† − aδ

ρ

〉
(X∗

B V (Ω)
,XB V (Ω))

� 1

2
max{ā,1}δ2 + ā

∥∥aδ
ρ − a†

∥∥
L2(Ω)

ρ (3.12)

holds for all aδ
ρ being the solutions of the problems (P a

ρ,δ) and λ ∈ ∂(
∫
Ω

|∇(·)|)(aδ
ρ).

Proof. Using the convexity of the function Gzδ (·) and the inequality (3.9) we obtain that

−ρ
〈
λ,a† − aδ

ρ

〉
(X∗

B V (Ω)
,XB V (Ω))

� G ′
zδ

(
aδ
ρ

)(
a† − aδ

ρ

) + ρ
〈
aδ
ρ,a† − aδ

ρ

〉
L2(Ω)

� Gzδ

(
a†) − Gzδ

(
aδ
ρ

) + ρ
〈
aδ
ρ,a† − aδ

ρ

〉
L2(Ω)

� Gzδ

(
a†) + ā

∥∥aδ
ρ − a†

∥∥
L2(Ω)

ρ.

Since Gzδ (a†) � 1 max{ā,1}δ2, the last inequality yields (3.12). The lemma is proved. �
2
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Proof of Theorem 3.6. Using the definition of aδ
ρ we have

Gzδ

(
aδ
ρ

) + ρ

(
1

2

∥∥aδ
ρ

∥∥2
L2(Ω)

+
∫
Ω

∣∣∇aδ
ρ

∣∣) � Gzδ

(
a†) + ρ

(
1

2

∥∥a†
∥∥2

L2(Ω)
+

∫
Ω

∣∣∇a†
∣∣)

� 1

2
max{ā,1}δ2 + ρ

(
1

2

∥∥a†
∥∥2

L2(Ω)
+

∫
Ω

∣∣∇a†
∣∣). (3.13)

Take λ ∈ ∂(
∫
Ω

|∇(·)|)(a†) such that U ′(a†)
∗

w∗ = a† + λ. Then,

Gzδ

(
aδ
ρ

) + ρ

2

∥∥aδ
ρ − a†

∥∥2
L2(Ω)

+ ρDλ
T V

(
aδ
ρ,a†)

� 1

2
max{ā,1}δ2 + ρ

(〈
a†,a† − aδ

ρ

〉
L2(Ω)

+ 〈
λ,a† − aδ

ρ

〉
(X∗

B V (Ω)
,XB V (Ω))

)
. (3.14)

Now we have〈
a†,a† − aδ

ρ

〉
L2(Ω)

+ 〈
λ,a† − aδ

ρ

〉
(X∗

B V (Ω)
,XB V (Ω))

= 〈
a†,a† − aδ

ρ

〉
(X∗,X)

+ 〈
λ,a† − aδ

ρ

〉
(X∗,X)

= 〈
a† + λ,a† − aδ

ρ

〉
(X∗,X)

= 〈
U ′(a†)∗

w∗,a† − aδ
ρ

〉
(X∗,X)

= 〈
U ′(a†)∗

w∗,a† − aδ
ρ

〉
(L∞(Ω)∗,L∞(Ω))

= 〈
w∗, U ′(a†)(a† − aδ

ρ

)〉
(H1(Ω)

∗
,H1(Ω))

.

By the Riesz representation theorem, the last equation follows that there exists an element w ∈ H1(Ω) such that〈
a†,a† − aδ

ρ

〉
L2(Ω)

+ 〈
λ,a† − aδ

ρ

〉
(X∗

B V (Ω)
,XB V (Ω))

= 〈
w, U ′(a†)(a† − aδ

ρ

)〉
H1(Ω)

. (3.15)

By the similar reasonings as in the proof of Theorem 3.6 in [19] we get the following estimate

〈
w, U ′(a†)(a† − aδ

ρ

)〉
H1(Ω)

� δā

(∫
Ω

ŵ2
)1/2

+ ρā

∫
Ω

ŵ2 + 1

4ρ

∫
Ω

aδ
ρ

(
zδ − U

(
aδ
ρ

))2

+ δ

(∫
Ω

|∇ ŵ|2
)1/2

+ ρ

∫
Ω

|∇ ŵ|2 + 1

4ρ

∫
Ω

∣∣∇(
zδ − U

(
aδ
ρ

))∣∣2

for some ŵ ∈ H1(Ω). Thus,

ρ
〈
w, U ′(a†)(a† − aδ

ρ

)〉
H1(Ω)

� δρā

(∫
Ω

ŵ2
)1/2

+ ρ2ā

∫
Ω

ŵ2 + δρ

(∫
Ω

|∇ ŵ|2
)1/2

+ ρ2
∫
Ω

|∇ ŵ|2 + 1

2
Gzδ

(
aδ
ρ

)
.

(3.16)

It follows from the inequalities (3.14), (3.15) and (3.16) that

1

2
Gzδ

(
aδ
ρ

) + ρ

2

∥∥aδ
ρ − a†

∥∥2
L2(Ω)

+ ρDλ
T V

(
aδ
ρ,a†)

� 1

2
max{ā,1}δ2 + δρā

(∫
Ω

ŵ2
)1/2

+ ρ2ā

∫
Ω

ŵ2 + δρ

(∫
Ω

|∇ ŵ|2
)1/2

+ ρ2
∫
Ω

|∇ ŵ|2.

Using Lemma 3.7, we obtain the following convergence rates∥∥aδ
ρ − a†

∥∥2
L2(Ω)

+ Dλ
T V

(
aδ
ρ,a†) = O(δ) and

∥∥U
(
aδ
ρ

) − zδ
∥∥

H1(Ω)
= O(δ)

as δ → 0 and ρ ∼ δ.
It remains to prove the convergence rate (3.11). Take λ ∈ ∂(

∫
Ω

|∇(·)|)(qδ
ρ), we get from Lemma 3.8 that∫ ∣∣∇aδ

ρ

∣∣ −
∫ ∣∣∇a†

∣∣ � −〈
λ,a† − aδ

ρ

〉
(X∗

B V (Ω)
,XB V (Ω))

� 1

2
max{ā,1}δ

2

ρ
+ ā

∥∥aδ
ρ − a†

∥∥
L2(Ω)

. (3.17)
Ω Ω
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On the other hand, since λ ∈ ∂(
∫
Ω

|∇(·)|)(q†), by the assumption that λ ∈ X∗ can be identified with an element of L2(Ω)

which is denoted by the same symbol, we get∫
Ω

∣∣∇a†
∣∣ −

∫
Ω

∣∣∇aδ
ρ

∣∣ � −〈
λ,aδ

ρ − a†〉
(X∗

B V (Ω)
,XB V (Ω))

= −〈
λ,aδ

ρ − a†〉
(X∗,X)

= −〈
λ,aδ

ρ − a†〉
L2(Ω)

.

The last inequality yields∫
Ω

∣∣∇a†
∣∣ −

∫
Ω

∣∣∇aδ
ρ

∣∣ � ‖λ‖L2(Ω)

∥∥aδ
ρ − a†

∥∥
L2(Ω)

. (3.18)

From the inequalities (3.17) and (3.18), and the fact that ‖aδ
ρ − a†‖L2(Ω) = O(

√
δ) we arrive at (3.11). The theorem is

proved. �
3.3. Discussion of the source condition

Now we discuss the source condition (3.10) which is equivalent to the following one: there exists a function w∗ ∈
H1(Ω)

∗
such that

1

2
‖a‖2

L2(Ω)
+

∫
Ω

|∇a| − 1

2

∥∥a†
∥∥2

L2(Ω)
−

∫
Ω

∣∣∇a†
∣∣ − 〈

U ′(a†)∗
w∗,a − a†〉

(X∗
B V (Ω)

,XB V (Ω))
� 0 (3.19)

for all a ∈ X. To further analyze this condition we assume that the admissible set of coefficients is restricted to

ˆAad = A ∩ H1(Ω) ⊂ A ∩ B V (Ω).

Theorem 3.9. Let the boundary ∂Ω be of class C1 and the dimension d � 4. Suppose that a† has the property that there is an element
λ ∈ ∂(

∫
Ω

|∇(·)|)(a†) such that 〈λ,a〉(X∗
B V (Ω)

,XB V (Ω)) = 〈λ̂,a〉L2(Ω) for all a ∈ L∞(Ω) ∩ H1(Ω), where λ̂ is some element of H1(Ω).

Further, assume that there exists a constant ε > 0 such that |U (a†)| � ε a.e. on Ω . Then, the condition (3.19) is fulfilled and hence
convergence rates

∥∥aδ
ρ − a†

∥∥2
L2(Ω)

+ Dλ
T V

(
aδ
ρ,a†) = O(δ) and

∣∣∣∣
∫
Ω

∣∣∇a†
∣∣ −

∫
Ω

∣∣∇aδ
ρ

∣∣∣∣∣∣ = O(
√

δ)

are obtained.

Proof. For any a ∈ L∞(Ω) ∩ H1(Ω) we have〈
a† + λ,a

〉
(X∗

B V (Ω)
,XB V (Ω))

= 〈
a†,a

〉
(X∗

B V (Ω)
,XB V (Ω))

+ 〈λ,a〉(X∗
B V (Ω)

,XB V (Ω))

= 〈
a†,a

〉
L2(Ω)

+ 〈λ,a〉(X∗
B V (Ω)

,XB V (Ω))

= 〈
a† + λ̂,a

〉
L2(Ω)

. (3.20)

Since a† + λ̂ ∈ H1(Ω) and |U (a†)| � ε > 0, we have ψ := − a†+λ̂

U (a†)
∈ H1(Ω). Hence

−
∫
Ω

aU
(
a†)ψ = 〈

a† + λ̂,a
〉
L2(Ω)

(3.21)

for all a ∈ L∞(Ω) ∩ H1(Ω). It follows from (3.20), (3.21) and (3.8) that

〈
a† + λ,a

〉
(X̂∗

B V (Ω)
,XB V (Ω))

=
∫
Ω

∇U ′(a†)(a)∇ψ +
∫
Ω

a†U ′(a†)(a)ψ = 〈
ŵ, U ′(a†)(a)

〉
H1(Ω)

for some ŵ ∈ H1(Ω) independent of a ∈ L∞(Ω) ∩ H1(Ω). Therefore, there exists an element w∗ ∈ H1(Ω)
∗

such that〈
a† + λ,a

〉
(X∗

B V (Ω)
,XB V (Ω))

= 〈
w∗, U ′(a†)(a)

〉
(H1(Ω)

∗
,H1(Ω))

= 〈
U ′(a†)∗

w∗,a
〉
(L∞(Ω)∗,L∞(Ω))

.

Since 〈U ′(a†)
∗

w∗,a〉(L∞(Ω)∗,L∞(Ω)) = 〈a† + λ̂,a〉L2(Ω) with a† + λ̂ ∈ H1(Ω), we obtain that U ′(a†)
∗

w∗ is linear and continuous
on L∞(Ω) ∩ H1(Ω) equipped with the B V (Ω)-norm and
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〈
U ′(a†)∗

w∗,a
〉
(L∞(Ω)∗,L∞(Ω))

= 〈
U ′(a†)∗

w∗,a
〉
(X∗

B V (Ω)
,XB V (Ω))

, ∀a ∈ L∞(Ω) ∩ H1(Ω).

Therefore, since a† + λ ∈ ∂( 1
2 ‖ · ‖2

L2(Ω)
+ ∫

Ω
|∇(·)|)(a†), we conclude that there exists a functional w∗ ∈ H1(Ω)

∗
such that

1

2
‖a‖2

L2(Ω)
+

∫
Ω

|∇a| − 1

2

∥∥a†
∥∥2

L2(Ω)
−

∫
Ω

∣∣∇a†
∣∣ − 〈

U ′(a†)∗
w∗,a − a†〉

(X∗
B V (Ω)

,XB V (Ω))

= 1

2
‖a‖2

L2(Ω)
+

∫
Ω

|∇a| − 1

2

∥∥a†
∥∥2

L2(Ω)
−

∫
Ω

∣∣∇a†
∣∣ − 〈

a† + λ,a − a†〉
(X∗

B V (Ω)
,XB V (Ω))

� 0

for all a ∈ L∞(Ω) ∩ H1(Ω). The theorem is proved. �
4. Related inverse problems

Let Γ be an open piece of ∂Ω , Γ � ∂Ω . In this section, we extend the above results to problems with Dirichlet or mixed
boundary conditions

−div(q∇u) + au = f in Ω, (4.1)

q
∂u

∂n
= g on Γ, (4.2)

u = 0 on ∂Ω \ Γ (4.3)

from imprecise values of u in the domain Ω . Here, the functions

a ∈ A := {
a ∈ L∞(Ω)

∣∣ 0 � a(x) � ā a.e. on Ω
}

with ā being a given positive constant, f ∈ L2(Ω) and g in L2(Γ ) are given.

Problem: Find the coefficient q ∈ Q defined by (2.1) in the problem (4.1)–(4.3).

We see that problem (4.1)–(4.3) is of the mixed type, if neither Γ nor ∂Ω \ Γ is empty; of the Dirichlet type, if Γ = ∅;
of the Neumann type if ∂Ω \ Γ = ∅. We note that the solution space of the Neumann problem (4.1)–(4.3) with a � a > 0
is H1(Ω), while that of this problem with a = 0 is H1�(Ω). On the other hand, the solution space of the Dirichlet and
mixed problem (4.1)–(4.3) are H1

0(Ω) and H1
0(Ω ∪ Γ ), respectively, indifferently of a. This is a reason why we choose the

identification problem in the Neumann problem to present in detail. Indeed, all results that stating for the inverse problem
in the Neumann problem remain valid for that in the Dirichlet and mixed problems. The definition of the space H1

0(Ω ∪ Γ )

can be found in [31], p. 67. We also note that if Γ = ∅, then H1
0(Ω ∪ Γ ) = H1

0(Ω). Therefore, in the following we only state
results for the inverse problem of identifying the coefficient q in the mixed boundary value problem for elliptic equations
(4.1)–(4.3), in fact, these results are valid also for the Dirichlet problem as Γ = ∅.

We recall that a function u ∈ H1
0(Ω ∪ Γ ) is said to be a weak solution of (4.1)–(4.3) if∫

Ω

q∇u∇v +
∫
Ω

auv =
∫
Ω

f v +
∫
Γ

gv, ∀v ∈ H1
0(Ω ∪ Γ ).

Since the Poincaré–Friedrichs inequality remains valid on the H1
0(Ω ∪ Γ ) space (see, [31], p. 69 and p. 81), there exists a

positive constant κ depending only on q and Ω such that the coercivity condition
∫
Ω

q|∇u|2 + ∫
Ω

au2 � κ‖u‖2
H1(Ω)

holds

for all u in H1
0(Ω ∪ Γ ). Then, by the Lax–Milgram lemma, we conclude that there exists a unique solution u of (4.1)–(4.3)

satisfying the inequality ‖u‖H1(Ω) � Λ(‖ f ‖L2(Ω) + ‖g‖L2(Γ )), where Λ is a positive constant depending only on q and Ω .
Thus, we can define the nonlinear coefficient-to-solution mapping

Ũ : Q ⊂ L∞(Ω) → H1
0(Ω ∪ Γ )

which maps each q ∈ Q to the unique solution Ũ (q) of (4.1)–(4.3). The inverse problem is then set as follows: given
ū = Ũ (q) ∈ H1

0(Ω ∪ Γ ) find q ∈ Q .
We remark that the mapping Ũ : Q ⊂ L∞(Ω) → H1

0(Ω ∪Γ ) is continuously Fréchet differentiable on the set Q . For each
q ∈ Q , the Fréchet derivative Ũ ′(q) of Ũ (q) has the property that the differential η := Ũ ′(q)h with h ∈ L∞(Ω) is the (unique)
solution in H1

0(Ω ∪ Γ ) of the mixed boundary value problem

−div(q∇η) + aη = div
(
h∇Ũ (q)

)
in Ω, q

∂η = −h
∂ Ũ (q)

on Γ, η = 0 on ∂Ω \ Γ,

∂n ∂n
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in the sense that Ũ ′(q)h in H1
0(Ω ∪ Γ ) solves the variational equation∫

Ω

q∇η∇v +
∫
Ω

aηv = −
∫
Ω

h∇Ũ (q)∇v

for all v in H1
0(Ω ∪ Γ ) and satisfies the estimate ‖η‖H1(Ω) � Λ

κ (‖ f ‖L2(Ω) + ‖g‖L2(Γ ))‖h‖L∞(Ω) (the proof of this fact is
similar to that of Lemma 2.2 in [18]).

Now we assume that instead of the exact ū ∈ H1
0(Ω ∪ Γ ) we have only its observations zδ ∈ H1

0(Ω ∪ Γ ) such that
‖ū − zδ‖H1(Ω) � δ, where δ > 0. Our problem is to reconstruct q ∈ Q from zδ .

4.1. Pure total variation regularization and convergence rates

For regularizing the identification problem we solve the convex minimization problem

min
q∈Q ad

J̃ zδ (q) + ρ

∫
Ω

|∇q|, ( P̃ q
ρ,δ)

where Q ad := Q ∩ B V (Ω) is the admissible set, ρ > 0 is the regularization parameter and

J̃ zδ (q) := 1

2

∫
Ω

q
∣∣∇(

Ũ (q) − zδ
)∣∣2 + 1

2

∫
Ω

a
(
Ũ (q) − zδ

)2
, q ∈ Q (4.4)

is convex functional (the proof of this fact is similar to that of Lemma 2.3 in [18]).
Similar to the proof of Lemma 2.1 in [9] we conclude that the problem ( P̃ q

ρ,δ) has a solution qδ
ρ . Further, the problem

min
q∈Π̃Qad

(ū)

∫
Ω

|∇q| (Π̃q)

also has a solution (see Theorem 2.5 in [19]) which is called the total variation-minimizing solution of the equation
Ũ (q) = ū, where

Π̃Q ad (ū) := {
q ∈ Q ad

∣∣ Ũ (q) = ū
}
. (4.5)

Our aim is to investigate the convergence rates of regularized solutions qδ
ρ to the total variation-minimizing solution q†

of the equation Ũ (q) = ū.
Similar to Theorems 2.7–2.9 in [19] we can prove the following results.

Theorem 4.1. For a fixed regularization parameter ρ > 0, let (zδn ) be a sequence in H1
0(Ω ∪ Γ ) which converges to zδ in the H1(Ω)-

norm and (qδn
ρ ) be minimizers of the problems

min
q∈Q ad

1

2

∫
Ω

q
∣∣∇(

Ũ (q) − zδn
)∣∣2 + 1

2

∫
Ω

a
(
Ũ (q) − zδn

)2 + ρ

∫
Ω

|∇q|.

Then, there exists a subsequence (q
δkn
ρ ) of (qδn

ρ ) and qδ
ρ ∈ Q ad such that (q

δkn
ρ ) converges to qδ

ρ in the L1(Ω)-norm and

limn
∫
Ω

|∇q
δkn
ρ | = ∫

Ω
|∇qδ

ρ |. Further, qδ
ρ is a solution to ( P̃ q

ρ,δ).

Theorem 4.2. For any positive sequence (δn) → 0, let ρn := ρ(δn) be such that ρn → 0 and δ2
n/ρn → 0 as n → ∞. Moreover, let (zδn )

be a sequence in H1
0(Ω ∪ Γ ) satisfying ‖ū − zδn ‖H1(Ω) � δn and (qδn

ρn ) be minimizers of the problems

min
q∈Q ad

1

2

∫
Ω

q
∣∣∇(

Ũ (q) − zδn
)∣∣2 + 1

2

∫
Ω

a
(
Ũ (q) − zδn

)2 + ρn

∫
Ω

|∇q|.

Then, there exists a subsequence (q
δkn
ρkn

) of (qδn
ρn ) and an element q† ∈ Q ad such that

lim
n

∥∥q
δkn
ρkn

− q†
∥∥

L1(Ω)
= 0 and lim

n

∫
Ω

∣∣∇q
δkn
ρkn

∣∣ =
∫
Ω

∣∣∇q†
∣∣.

Further, q† is the solution to the problem (Π̃q) and limn D�
T V (q

δkn
ρkn

,q†) = 0, for each element � ∈ ∂(
∫
Ω

|∇(·)|)(q†).
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Theorem 4.3. Assume that there exists a function w∗ ∈ H1
0(Ω ∪ Γ )

∗
such that

Ũ ′(q†)∗
w∗ ∈ ∂

(∫
Ω

∣∣∇(·)∣∣)(
q†). (4.6)

Then,

DŨ ′(q†)
∗

w∗
T V

(
qδ
ρ,q†) = O(δ),

∣∣∣∣
∫
Ω

∣∣∇q†
∣∣ −

∫
Ω

∣∣∇qδ
ρ

∣∣∣∣∣∣ = O(δ) and
∥∥Ũ

(
qδ
ρ

) − zδ
∥∥

H1(Ω)
= O(δ)

as δ → 0 and ρ ∼ δ.

4.2. Total variation plus L2-norm regularization and convergence rates

For solving the problem of identifying the coefficient q in the problem (4.1)–(4.3) in this subsection we solve the strictly
convex minimization problem

min
q∈Q ad

J̃ zδ (q) + ρ

(
1

2
‖q‖2

L2(Ω)
+

∫
Ω

|∇q|
)

, ( P̂ q
ρ,δ)

where Q ad := Q ∩ B V (Ω) is the admissible set, ρ > 0 is the regularization parameter and J̃ zδ (·) is the convex functional
defined by (4.4).

We remark that the problem ( P̂ q
ρ,δ) has a unique solution qδ

ρ . Further, the problem

min
q∈Π̃Qad

(ū)
R(q) with R(·) := 1

2
‖ · ‖L2(Ω) +

∫
Ω

∣∣∇(·)∣∣ (Π̂q)

also has a solution (see Theorem 2.4), which is called the R-minimizing solution of equation Ũ (q) = ū, where the set
Π̃Q ad (ū) defined by (4.5).

Similar to Theorems 2.9–2.11 we can prove the following results.

Theorem 4.4. For a fixed regularization parameter ρ > 0, let (zδn ) be a sequence in H1
0(Ω ∪ Γ ) which converges to zδ in the H1(Ω)-

norm and (qδn
ρ ) be the unique minimizers of the problems

min
q∈Q ad

1

2

∫
Ω

q
∣∣∇(

Ũ (q) − zδn
)∣∣2 + 1

2

∫
Ω

a
(
Ũ (q) − zδn

)2 + ρ

(
1

2
‖q‖2

L2(Ω)
+

∫
Ω

|∇q|
)

.

Then, (qδn
ρ ) converges to the unique solution qδ

ρ of ( P̂ q
ρ,δ) in the L2(Ω)-norm. Further,

lim
n

∫
Ω

∣∣∇qδn
ρ

∣∣ =
∫
Ω

∣∣∇qδ
ρ

∣∣.
Theorem 4.5. For any positive sequence (δn) → 0, let ρn := ρ(δn) be such that ρn → 0 and δ2

n/ρn → 0 as n → ∞. Moreover, let (zδn )

be a sequence in H1
0(Ω ∪ Γ ) satisfying ‖ū − zδn ‖H1(Ω) � δn and (qδn

ρn ) be unique minimizers of the problems

min
q∈Q ad

1

2

∫
Ω

q
∣∣∇(

Ũ (q) − zδn
)∣∣2 + 1

2

∫
Ω

a
(
Ũ (q) − zδn

)2 + ρn

(
1

2
‖q‖2

L2(Ω)
+

∫
Ω

|∇q|
)

.

Then, (qδn
ρn ) converges to the unique solution q† of the problem (Π̂q) in the L2(Ω)-norm. Further, limn

∫
Ω

|∇qδn
ρn | = ∫

Ω
|∇q†| and

limn D�
T V (qδn

ρn ,q†) = 0 for each element � ∈ ∂(
∫
Ω

|∇(·)|)(q†).

Theorem 4.6. Assume that there exists a function w∗ ∈ H1
0(Ω ∪ Γ )

∗
such that

Ũ ′(q†)∗
w∗ = q† + � ∈ ∂ R

(
q†) (4.7)

for some element � in ∂(
∫
Ω

|∇(·)|)(q†). Then,∥∥qδ
ρ − q†

∥∥2
2 + D�

(
qδ
ρ,q†) = O(δ) and

∥∥Ũ
(
qδ
ρ

) − zδ
∥∥

1 = O(δ)
L (Ω) T V H (Ω)
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as δ → 0 and ρ ∼ δ. Moreover, if � ∈ X∗ can be identified with an element of L2(Ω), then the convergence rate∣∣∣∣
∫
Ω

∣∣∇q†
∣∣ −

∫
Ω

∣∣∇qδ
ρ

∣∣∣∣∣∣ = O(
√

δ) as δ → 0 and ρ ∼ δ

is also established.

Acknowledgments

The authors thank the two referees and the associate editor for their constructive comments. This work is supported by Viet Nam NAFOSTED Grant
101.01.22.09.

References

[1] H. Attouch, G. Buttazzo, G. Michaille, Variational Analysis in Sobolev and BV Space, SIAM Mathematical Programming Society, Philadelphia, 2006.
[2] J. Baumeister, K. Kunisch, Identifiability and stability of a two-parameter estimation problem, Appl. Anal. 40 (4) (1991) 263–279.
[3] L.M. Bregman, The relaxation of finding the common points of convex sets and its application to the solution of problems in convex programming,

U.S.S.R. Comput. Math. Math. Phys. 7 (1967) 200–217.
[4] M. Burger, S. Osher, Convergence rates of convex variational regularization, Inverse Problems 20 (2004) 1411–1421.
[5] T.F. Chan, X.C. Tai, Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients, J. Comput. Phys. 193 (2003)

40–66.
[6] G. Chavent, Nonlinear Least Squares for Inverse Problems. Theoretical Foundations and Step-by-Step Guide for Applications, Springer, New York, 2009.
[7] G. Chavent, K. Kunisch, Regularization of linear least squares problems by total bounded variation, ESAIM Control Optim. Calc. Var. 2 (1997) 359–376.
[8] G. Chavent, K. Kunisch, The output least squares identifiability of the diffusion coefficient from an H1-observation in a 2-D elliptic equation, ESAIM

Control Optim. Calc. Var. 8 (2002) 423–440.
[9] Z. Chen, J. Zou, An augmented Lagrangian method for identifying discontinuous parameters in elliptic systems, SIAM J. Control Optim. 37 (3) (1999)

892–910.
[10] I. Ekeland, R. Temam, Convex Analysis and Variational Problems, American Elsevier Publishing Company, Inc., New York, 1976.
[11] H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, Math. Appl., vol. 375, Kluwer Academic Publishers Group, Dordrecht, 1996.
[12] H.W. Engl, K. Kunisch, A. Neubauer, Convergence rates for Tikhonov regularization of nonlinear ill-posed problems, Inverse Problems 5 (1989) 523–540.
[13] L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, 1992.
[14] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, vol. 80, Birkhäuser, Boston, 1984.
[15] M.S. Gockenbach, A.A. Khan, An abstract framework for elliptic inverse problems. I. An output least-squares approach, Math. Mech. Solids 12 (3) (2007)

259–276.
[16] M. Grasmair, Generalized Bregman distances and convergence rates for non-convex regularization methods, Inverse Problems 26 (11) (2010) 115014.
[17] S. Gutman, Identification of discontinuous parameters in flow equations, SIAM J. Control Optim. 28 (1990) 1049–1060.
[18] D.N. Hào, T.N.T. Quyen, Convergence rates for Tikhonov regularization of coefficient identification problems in Laplace-type equations, Inverse Prob-

lems 26 (2010) 125014.
[19] D.N. Hào, T.N.T. Quyen, Convergence rates for total variation regularization of coefficient identification problems in elliptic equations I, Inverse Prob-

lems 27 (2011) 075008.
[20] D.N. Hào, T.N.T. Quyen, Convergence rates for Tikhonov regularization of a two-coefficient identification problem in an elliptic boundary value equation,

Numer. Math., doi:10.1007/s00211-011-0406-z, in press.
[21] K.C. Kiwiel, Proximal minimization methods with generalized Bregman functions, SIAM J. Control Optim. 35 (1997) 1142–1168.
[22] I. Knowles, Parameter identification for elliptic problems, J. Comput. Appl. Math. 131 (2001) 175–194.
[23] I. Knowles, Uniqueness for an elliptic inverse problem, SIAM J. Appl. Math. 59 (1999) 1356–1370.
[24] I. Knowles, M. LaRussa, Conditional well-posedness for an elliptic inverse problem, SIAM J. Appl. Math. 71 (2011) 952–971.
[25] I. Knowles, R. Wallace, A variational method for numerical differentiation, Numer. Math. 70 (1) (1995) 91–110.
[26] R.V. Kohn, B.D. Lowe, A variational method for parameter identification, RAIRO Modél. Math. Anal. Numér. 22 (1) (1988) 119–158.
[27] O.A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Springer Verlag, New York, Berlin, Heidelberg, Tokyo, 1984.
[28] D.A. Lorenz, Convergence rates and source conditions for Tikhonov regularization with sparsity constraints, J. Inverse Ill-Posed Probl. 16 (5) (2008)

463–478.
[29] E. Resmerita, O. Scherzer, Error estimates for non-quadratic regularization and the relation to enhancement, Inverse Problems 22 (2006) 801–814.
[30] X.C. Tai, H. Li, A piecewise constant level set method for elliptic inverse problems, Appl. Numer. Math. 57 (2007) 686–696.
[31] G.M. Troianiello, Elliptic Differential Equations and Obstacle Problems, Plenum, New York, 1987.
[32] G. Vainikko, On the discretization and regularization of ill-posed problems with noncompact operators, Numer. Funct. Anal. Optim. 13 (1992) 381–396.
[33] H. Beirão da Veiga, On a stationary transport equation, Ann. Univ. Ferrara Sez. VII Sci. Math. 32 (1986) 79–91.
[34] J. Zou, Numerical methods for elliptic inverse problems, Int. J. Comput. Math. 70 (1998) 211–232.

http://dx.doi.org/10.1007/s00211-011-0406-z

	Convergence rates for total variation regularization of coefﬁcient identiﬁcation problems in elliptic equations II
	1 Introduction
	2 The diffusion coefﬁcient identiﬁcation problem
	2.1 Problem setting and regularization
	2.2 Convergence rates
	2.3 Discussion of the source condition

	3 The reaction coefﬁcient identiﬁcation problem
	3.1 Problem setting and regularization
	3.2 Convergence rates
	3.3 Discussion of the source condition

	4 Related inverse problems
	4.1 Pure total variation regularization and convergence rates
	4.2 Total variation plus L2-norm regularization and convergence rates

	Acknowledgments
	References


