
File: 571J 134601 . By:CV . Date:13:07:07 . Time:15:45 LOP8M. V8.0. Page 01:01
Codes: 6372 Signs: 4254 . Length: 60 pic 11 pts, 257 mm

Journal of Computer and System Sciences � SS1346

journal of computer and system sciences 52, 201�213 (1996)

Learning Sparse Multivariate Polynomials over a Field
with Queries and Counterexamples

Robert E. Schapire*

AT 6 T Bell Laboratories, Murray Hill, New Jersey 07974

and

Linda M. Sellie
-

University of Chicago, Chicago, Illinois 60637

Received October 20, 1993; revised March 11, 1994

We consider the problem of learning a polynomial over an arbitrary
field F defined on a set of boolean variables. We present the first
provably effective algorithm for exactly identifying such polynomials
using membership and equivalence queries. Our algorithm runs in time
polynomial in n, the number of variables, and t, the number of nonzero
terms appearing in the polynomial. The algorithm makes at most nt+2
equivalence queries, and at most (nt+1)(t2+3t)�2 membership
queries. Our algorithm is equally effective for learning a generalized
type of polynomial defined on certain kinds of semilattices. We also
present an extension of our algorithm for learning multilinear polyno-
mials when the domain of each variable is the entire field F.] 1996

Academic Press, Inc.

1. INTRODUCTION

We consider the problem of learning a polynomial f over
an arbitrary field F defined on a set of boolean variables.
Thus, we are interested in the learnability of multivariate
polynomials over a field F when the domain of each variable
xi has been restricted to the values 0 and 1 (the additive and
multiplicative identity elements of F). This problem models
a learning situation in which examples are most naturally
described by vectors of boolean attributes, but in which the
behavior of the function to be learned is most easily
described by a polynomial in the boolean values.

We consider the learnability of such polynomials in a
model introduced by Angluin [1] in which the learning
algorithm has two forms of access to the unknown target
polynomial: The first of these is a so-called membership
oracle which evaluates the target polynomial f on any
variable-setting a of the learner's choosing and returns the

result f (a). The second form of access is a so-called equiv-
alence oracle which accepts as input a hypothesis polyno-
mial h conjectured by the learner to be equivalent to the
target polynomial. If h and f are functionally equivalent,
then the equivalence oracle replies ``equivalent'' (in which
case we say that the target has been exactly identified);
otherwise, the equivalence oracle provides a counter-
example, a setting a of the variables on which the hypothesis
and target polynomials evaluate to different values, i.e., for
which h(a){ f (a).

The main result of this paper is a provably correct algo-
rithm for exactly identifying polynomials on a set of boolean
variables over an arbitrary field F using equivalence and
membership queries. Our algorithm runs in time polyno-
mial in n, the total number of variables, and t, the number
of nonzero coefficients of terms in f (called the sparcity of f).
The algorithm makes no more than nt+2 equivalence
queries and roughly nt3�2 membership queries. This is the
first provably efficient algorithm for this problem.

As an added feature, our algorithm uses only equivalence
queries that are ``proper'' in the sense that each conjectured
hypothesis is itself a t-sparse polynomial.

By applying a technique of Angluin [1], our result can be
extended to Valiant's so-called probably approximately
correct (PAC) learning model [20]. Specifically, Angluin
shows that an equivalence oracle can always be replaced by
a source of random examples, in which case the learning
algorithm will successfully find a hypothesis that is a good
approximation of the target polynomial with respect to the
distribution on the random examples. Thus, our result
implies that polynomials on the boolean domain over any
field F can be learned in the PAC model with membership
queries.

Of particular interest is the case in which F is taken to be
GF(2), the finite field of integers modulo two. Such poly-

article no. 0017

201 0022-0000�96 �18.00

Copyright � 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.

* E-mail: schapire�research.att.com.
- Currently visiting AT6T Bell Laboratories. E-mail: sellie�research.

att.com.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82164899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

File: 571J 134602 . By:CV . Date:13:07:07 . Time:15:45 LOP8M. V8.0. Page 01:01
Codes: 6439 Signs: 5848 . Length: 56 pic 0 pts, 236 mm

nomials can be viewed equivalently as depth-two boolean
formulas consisting of the xor of several monotone
monomials (i.e., conjunctions of unnegated variables).

The class of polynomials on the boolean domain includes
a wide variety of functions. For instance, we show that
logarithmic-depth decision trees can be computed by such
polynomials.

One natural extension of our problem is to allow the
domain of each variable to be the entire field F, rather than
the restricted domain [0, 1]. We show that our algorithm
can be used as a subroutine to learn a polynomial f : F n � F.
provided that f is multilinear (so that each variable has
degree at most 1). It is an open problem whether non-
multilinear polynomials are generally learnable in this
model, for an arbitrary field F.

The proof of the correctness of our algorithm relies on
certain lattice-theoretic properties of the boolean domain
[0, 1]n, suggesting a natural extension of the domain of the
target function. Specifically, we prove that our algorithm
can learn a function f : X � F, where F is a field and X is a
meet-semilattice with no infinite chains, and where f is
represented by a generalized type of ``polynomial'' on X.

Previous Work. The problem of learning or inferring a
polynomial from examples has an extensive history. For
certain ``large'' fields, such as R, efficient algorithms are
known for identifying a polynomial from sample points of
the learner's choosing. However, these algorithms typically
require that it be possible to assign each variable many
different values (hence the need for the field to be ``large'').
Thus, such algorithms are essentially useless if the domain
of the function is the boolean domain since in this case each
variable can only be assigned one of two values. Indeed, for
small fields such as GF(2), most of the previous work has
demonstrated that polynomials are hard to learn in various
models, except in special cases

In the PAC model (in the absence of membership and
equivalence queries), Blum and Singh [5] and Fischer and
Simon [11] show that it is computationally hard to learn
t-sparse polynomials over GF(2) for any fixed t�2 (assum-
ing RP{NP, and also assuming that the hypothesis must
be expressed as a t-sparse polynomial). Their result also
implies that it is hard to learn t-sparse GF(2)-polynomials
using a ``proper'' equivalence oracle. Their proofs can be
extended to show that t-sparse polynomials over any field F
cannot be learned in either of these learning models, for any
fixed t�2, even if the domain is limited to [0, 1]n.

On the other hand, Blum and Singh show that t-sparse
GF(2)-polynomials can be efficiently approximated in the
PAC model using a DNF-representation in time poly(nt).
Also, Fischer and Simon give an efficient algorithm for the
special case in which each term of the target polynomial has
size at most k, where k is a constant. (Although proved for
GF(2), this algorithm generalizes easily to any field F.)

Their algorithm uses linear-algebraic techniques to learn
such polynomials in time poly(nk), either in the PAC model,
or using equivalence queries only.

As mentioned above, much previous work has also
focused on the problem of ``interpolating'' a polynomial, i.e.,
on the problem of exactly identifying a polynomial using
membership queries only. As noted above, most of this
work has dealt with large fields, such as the real numbers.
For instance, Zippel [22, 23], Ben-Or and Tiwari [3], and
Mansour [18] give efficient algorithms for interpolating
sparse multivariate polynomials over such fields.

Grigoriev, Karpinski and Singers [13] and Clausen et al.
[8] consider the problem of interpolating a sparse poly-
nomial over various finite fields (see also the related work of
Dress and Grabmeier [9] and Du� r and Grabmeier [10]).
However, for small fields (such as GF(p), where p is a small
prime), their algorithms are efficient only if queries can be
made over a larger extension field. For the field GF(2),
when no such extension is made, Clausen et al. show that
t-sparse, n-variable polynomials can be efficiently inter-
polated using poly(nlog t) queries and that the number of
queries required is essentially optimal. These bounds are
also proved by Roth and Benedek [19], and are refined by
Hellerstein and Warmuth [15], who show that poly(nlog k)
queries suffice, where k is the maximum number of terms in
which any variable appears.

The lower bound results mentioned above can easily be
extended to show that interpolation of a t-sparse poly-
nomial over any field F requires at least n0(log t) boolean
membership queries. Thus, for our problem, in which the
goal is an inference of an F-valued function on the boolean
domain, membership queries alone cannot suffice for poly-
nomial-time identification.

Thus, in sum, the previous research has demonstrated
that it is hard or impossible to learn a sparse polynomial
over any field on a set of boolean variables in polynomial
time using membership queries only, random examples
only, or proper equivalence queries only. In contrast, our
result demonstrates the tractability of the learning problem
if both membership queries and equivalence queries (or
random examples) are available to the learner.

In Section 2, we describe our representation of poly-
nomials and their generalization to arbitrary semilattices.
Our learning algorithm is described in Section 3. Although
the algorithm is appealingly simple, its analysis is quite
involved and relies on certain combinatorial facts proved in
Section 4. We apply these combinatorial results to give a full
analysis of the algorithm in Section 5 and present extensions
and applications of the main algorithm in Section 6.

2. POLYNOMIALS AND SEMILATTICES

Let f be a multivariate polynomial over a field F defined
on n boolean variables. Then f is a function mapping the

202 SCHAPIRE AND SELLIE

File: 571J 134603 . By:CV . Date:13:07:07 . Time:15:45 LOP8M. V8.0. Page 01:01
Codes: 5927 Signs: 4564 . Length: 56 pic 0 pts, 236 mm

boolean domain [0, 1]n into the field F. where 0 and 1 are
the additive and multiplicative identity elements of F. The
sparcity of f is the number of nonzero coefficients appearing
in f; if f has sparcity at most t, then f is said to be t-sparse.

Since x2=x for x # [0, 1], we can assume without loss of
generality that f is multilinear, i.e., that no variable has
exponent greater than one in f. It then becomes natural to
associate with each monomial the characteristic vector of
indices of variables that appear in that monomial. For
instance, if n=5 then the monomial x1x3 x4 is associated
with the vector 10110. Conversely, every vector a # [0, 1]n

is associated with a monomial which we denote by xa (for
example, the monomial x2x4 could also be written x01010).

Using this notation, every t-sparse polynomial can be
written in the form

f (x)= :
t

i=1

ci xt i (1)

for some ci # F and ti # [0, 1]n.
Our algorithm depends crucially on the lattice properties

of the boolean domain [0, 1]n. To make this dependence
explicit, we will prove our results using an extended notion
of ``polynomial'' for more general domains. Specifically, we
will show that such polynomials can be learned if the
domain is a meet-semilattice with no infinite chains (defined
below).

Let X be a set partially ordered by �. We say that an ele-
ment c # X is the meet of a and b if for all d # X, d�c if and
only if d�a and d�b. Thus, the meet of a and b, written
a7 b, can be viewed as the greatest lower bound of a and b.
If the meet exists for every pair of elements a and b in X, then
X is said to be a meet-semilattice (henceforth called simply
a semilattice).

On the boolean domain [0, 1]n, it is natural to define a
partial order in which a�b if and only if ai�bi for
i=1, ..., n (and where we define the usual ordering on [0, 1]
with 0<1). With respect to this ordering, [0, 1]n is clearly
a semilattice. The meet a 7 b is the vector c, where ci=aibi

for each i. (For instance, 01101 7 10101=00101.) Note also
that the monomial xa is satisfied by b (i.e., is equal to 1) if
and only if a�b.

For a semilattice X, and for any point a # X, we define a
function ?a : X � [0, 1] by the rule

?a(b)={1
0

if a�b
otherwise.

Analogous to the case where X is the boolean domain, we
define a polynomial over F on semilattice X to be a function
f : X � F of the form

f (x)= :
t

i=1

ci ? t i (x), (2)

where ci # F and t i # X. As noted above, for the boolean
domain, xa=?a (x) for any a # [0, 1]n; thus, the definitions
given in Eqs. (1) and (2) are equivalent for this domain.
Also, consistent with our earlier notion of sparcity, we say
that a polynomial of the form given in Eq. (2) is t-sparse,
and, if each ci is nonzero, that the polynomial has sparcity t.

For a function f, we will use the notation f� (a) to denote
the coefficient (possibly zero) of ?a (x). Thus,

f (x)= :
a # X

f� (a) ?a(x). (3)

(If f is a polynomial, then it has a finite number of nonzero
coefficients, so this sum will be well defined even if X is
infinite.) Equivalently, by the definition of ?a ,

f (x)= :

a�x
a # X

f� (a).

As an aside, we note that if X is finite, then every function
f : X � F can be written uniquely in the form of Eq. (3). This
is because the collection of functions [?a : a # X] forms a
linearly independent basis for the |X|-dimensional space of
all functions mapping X into F.

If X has any minimal element, then this element must be
unique, and it must be smaller than every other element of
X. Such an element, if it exists, is called a bottom element,
and it is denoted =.

Two elements a, b # X are comparable if a�b or b�a.
A subset C�X is a chain if every pair of elements in C are
comparable. The length of such a chain is |C|&1. Thus,
a length-n chain can be viewed as a sequenced a0<
a1< } } } <an .

If = exists, then the height of a point a # X, denoted &a&,
is defined to be the length of the longest chain starting at =

and ending at a. The height of X is then the maximum height
of any element in X, or equivalently, it is the length of the
longest chain in X. Thus, semilattice X has finite height if it
contains no infinite chains.

On the boolean domain [0, 1]n, the bottom element is 0,
the vector whose every component is 0. The height of any
vector a is equal to the number of 1's in the vector a, and the
height of the entire domain is n.

3. THE ALGORITHM

This section describes our algorithm for learning poly-
nomials with queries. In later sections, we will show that this
algorithm can infer any polynomial over a field F on a finite-
height semilattice X in time polynomial in the sparcity t of
the target polynomial f, and in the height n of the semi-
lattice X.

203SPARSE MULTIVARIATE POLYNOMIALS

File: 571J 134604 . By:MC . Date:16:01:96 . Time:11:00 LOP8M. V8.0. Page 01:01
Codes: 5403 Signs: 4087 . Length: 56 pic 0 pts, 236 mm

We assume throughout that there exist efficient proce-
dures for computing a 7b, &a&, and for deciding if a�b for
any a, b # X. Such procedures clearly exist if X=[0, 1]n.

We begin by observing that it is easy to find a hypothesis
that is consistent with a given set of labeled examples.
Specifically, let S�X be a finite set of examples labeled by
f. We define a new polynomial h in terms of its coefficients
as follows: For a # S. we define h� (a), the coefficient in h of
?a(x), using the inductive rule:

h� (a)= f (a)& :

a$<a
a$ # S

h� (a$). (4)

If a � S, then h� (a) is defined to be 0. Algorithmically, it is
clear that all of the coefficients h� (a) can be computed by
visiting all of the elements in S from the smallest to the
largest; that is, we visit the elements in such an order that no
element a is visited until every element smaller than a has
been visited.

The resulting polynomial

h(x)= :
a # X

h� (a) ?a(x)= :

a�x
a # X

h� (a) (5)

is called the manifest hypothesis of S with respect to f, and it
is denoted hypf (S). When f is clear from context we write
simply hyp(S).

As mentioned above, hyp(S) is consistent with f on S
(although nothing is guaranteed about its behavior on
X&S).

Lemma 1. Let f : X � F, where X is a semilattice and F is
a field. Let S be a finite subset of X. Then the polynomial
h=hyp(S) is consistent with f on S; that is, f (a)=h(a) for all
a # S.

Proof. Note that, by construction of h, for every a # S,

f (a)= :

a$�a
a$ # S

h� (a$)= :

a$�a
a$ # X

h� (a$)

since h� (a=0 for a � S. On the other hand, by Eq. (5), the
right-hand side of this equation is exactly equal to h� (a). K

If h=hypf (S), then let

termsf (S)=[a # X: h� (a){0].

That is, termsf (S) is the set of elements associated with the
nonzero coefficients of hyp(S). Clearly, terms(S)�S and
|terms(S)| is exactly the sparcity of hyp(S). (As with
hyp(S), we drop the subscript of termsf (S) when f is clear
from context.)

Although the hypothesis hyp(S) is consistent with a given
sample S, its sparcity may be quite large relative to the
target function f. For example, suppose that f is the constant
function 1, X=[0, 1]n and S=[a # X: &a&=n�2], i.e.,
S is the set of all examples with exactly n�2 1's. Then
terms(S)=S, so the hypothesis hyp(S) has sparcity
(n

n�2)=20(n), even though the target function f has only a
single nonzero term.

Because hyp(S) may be so much larger than the target
function, by Occam's Razor, we would not intuitively
expect hyp(S) to generalize well as a hypothesis for classi-
fying elements outside of S. We show below how to find a
much smaller consistent hypothesis. Specifically, we show
how to construct hypotheses which are no larger than the
target function, a technique which will help us in bounding
the number of queries made by our algorithm.

The main idea of this technique for simplifying the
hypothesis is to add examples to the set S and to then
recompute the manifest hypothesis. Note that adding an
example c to the set S will change the manifest hypothesis
if and only if c is a counterexample (that is, hyp(S){
hyp(S _ [c]) if and only if f (c){hyp(S)(c)):

Let t be the sparcity of f. A key fact, which we prove in a
later section, states if |terms(S)|>t then there must exist a
pair a, b # terms(S) for which a 7 b is a counterexample for
hyp(S). Thus, if |terms(S)|>t then we can find a counter-
example to hyp(S) by asking membership queries for the
elements a 7 b where a, b # terms(S). We call such a coun-
terexample an easily observable counterexample since it can
be easily detected using membership queries.

If hyp(S) has no easily observable counterexamples, then
we say that S is stable with respect to the target function f.
Thus, S is stable if for every pair a, b # terms(S), f (a 7 b)=
h(a 7 b), where h=hyp(S). Stability is a key notion in the
development that follows.

By repeatedly adding easily observable counterexamples
to S. we can eventually stabilize S (since there are only a
finite number of elements that can ever be added). Unfor-
tunately, if we add the counterexamples in an arbitrary
order, we could potentially add an exponential number of

FIG. 1. An algorithm for learning polynomials over F.

4 SCHAPIRE AND SELLIE

File: 571J 134605 . By:MC . Date:16:01:96 . Time:11:00 LOP8M. V8.0. Page 01:01
Codes: 4002 Signs: 3124 . Length: 56 pic 0 pts, 236 mm

FIG. 2. The subroutine EasyCounterexample.

new elements before stabilizing. However, we show later in
the paper that if we add the counterexamples in a somewhat
greedy fashion, with bias toward the choice of small
counterexamples, then we are guaranteed to stabilize after
adding at most a polynomial number of elements to S.
(Intuitively, we want to choose small counterexamples since
these are likely to be ``closer'' to a true term of the target
formula.

A high-level description of our algorithm is given in
Fig. 1. In the figure, Equiv is an equivalence oracle which
takes as input a conjectured hypothesis polynomials and
returns either the flag ``equivalent'' if the hypothesis is
equal to the target, or a counterexample for the hypothesis
(i e., an element on which the hypothesis and target func-
tions disagree). We will also be using a membership oracle
Member which takes as input an element a # X and returns
the value of the target on a.

Our algorithm maintains a set of examples S which is
stable prior to each equivalence query. After each counter-
example c is received from the equivalence oracle, we use c
to modify S (line 6), and then restabilize S by repeatedly

FIG. 3. The subroutine AddElement.

finding easily observable counterexamples (line 7) and using
them to again modify S.

The subroutine for finding easily observable counter-
examples is called Easy-Counterexample and is described
in Fig. 2. The idea of the subroutine is simple: we test pairs
a, b # terms(S) until we find one for which a 7 b is a coun-
terexample. The subroutine tests pairs in a straightforward
greedy fashion so as to find the counterexample a 7 b for
which max(&a&, &b&) is minimized. (We will see later why it
is important to add the noncounterexamples to S at line 9.)
If no counterexample is found, then S must be stable, and
the subroutine returns a flag indicating this fact.

Finally, we describe AddElement, the subroutine that
modifies S using a counterexample c; this subroutine is
shown in Fig. 3. Before adding c to S. the subroutine first
determines if there is another element a # terms(S) for which
a 7 c is also a counterexample. If such an a can be found,
then we replace c with the smaller counterexample a 7 c.
We will see later why this greedy approach is helpful for
analyzing the performance of the algorithm.

Note that by adding a new counterexample to S, we may
radically change the structure and size (i.e., sparcity) of
hyp(S). Thus, it is not immediately clear that this technique
will allow us to make substantial progress towards stabiliza-
tion of S. The proof that S can be stabilized quickly is given
in the following sections and is based on certain com-
binatorial properties of stable sets.

4. PROPERTIES OF STABLE SETS

In this section, we prove various properties of stable sets
that will enable us to prove bounds on the number of
queries made by our algorithm. In addition to the notion of
stability described in the last section, we will also be inter-
ested in a slightly stronger notion: We say that a finite set
S�X is properly stable with respect to a function f if

5SPARSE MULTIVARIATE POLYNOMIALS

File: 571J 134606 . By:CV . Date:13:07:07 . Time:15:45 LOP8M. V8.0. Page 01:01
Codes: 5715 Signs: 3884 . Length: 56 pic 0 pts, 236 mm

a7 b # S for all a, b # termsf (S). Lemma 1 implies that S is
stable if it is properly stable.

We begin with a proof that the sparcity of the manifest
hypothesis of a stable set cannot exceed the sparcity t of the
target polynomial. This fact, which may be of independent
combinatorial interest, will be used repeatedly in the
analysis of our algorithm. For instance, because S is stable
prior to each equivalence query, this implies that the equiv-
alence queries used by our algorithm are ``proper'' in the
sense that the conjectured hypotheses always belong to the
target class of t-sparse polynomials.

Theorem 2. Let f be a t-sparse polynomial over a field F
on a semilattice X. Let S be a finite subset of X that is stable
with respect to f. Then |termsf (S)|�t.

We present two very different proofs of this theorem, one
below and the other in the Appendix.

Before presenting the first proof, we state two algebraic
lemmas. Although these lemmas are standard, we include
brief proofs for completeness.

We say that an element s # F is a square in F if there exists
an element r # F for which r2=s.

Lemma 3. Let F be a field, and let A�F be a finite set
of elements of F. Then there exists a field E of which F is a
subfield and in which each element of A is a square.

Proof. It suffices to prove the lemma in the case that A
is a singleton since the general result then follows by induc-
tion on |A|. If A is the singleton [s] (where, without loss of
generality, s is not already a square in F) then the result
follows, for instance, from Theorem 5.3.1 of Herstein [16]
in which E is taken to be the field F[x]�(x2&s). The result
can also be proved more directly by formally creating a new
element r not already in F, and by defining a new field
E=[a+br: a, b # F] in which r2=s by definition (similar
to the manner in which the imaginary number i=- &1 is
adjoined to R to obtain the complex field C). It can be
verified that E is indeed a field that satisfies the required
properties. K

We define addition between two vectors a, b # F t in the
usual way. Thus, a+b is that vector c # F t for which
ci=ai+bi for i=1, ..., t. Similarly, a } b=�t

i=1 aibi is the
standard inner product of a and b.

Lemma 4. Let A�F t be a set of vectors over a field F,
for all a, b # A:

1. a } a{0, and

2. if a{b then a } b=0.

Then |A|�t.

Proof. We claim that the elements of A are linearly inde-
pendent. For if � a # A *a a=0 for some coefficients *a # F,
then for any b # A,

0=b } 0=b } \ :
a # A

*a a+= :
a # A

* a(b } a)=* b(b } b)

by property 2. This implies *b =0 by property 1.
Since A is a linearly independent subset of a t-dimen-

sional vector space, it follows immediately that |A|�t. K

Proof of Theorem 2. Let f be the polynomial

f (x)= :
t

i=1

ci ? t i (x)

where each ci # F and ti # X. Let h=hypf (S).
We assume that S is properly stable. We make this

assumption without loss of generality since adding non-
counterexamples to S does not affect its manifest
hypothesis.

By Lemma 3, the field F can be extended to another field
E in which each of the coefficients ci is a square. We define
a function {: X � Et by the rule

{(a)=(- c1 ?t i (a), ..., - ct ? t i (a)),

where - ci is some element whose square equals ci . Infor-
mally, {(a) encodes the terms of f that are satisfied by a: if
ti�a (so that the corresponding term is satisfied), then the
i th component of {(a) is - ci ; otherwise, this component
is 0. Note that the value f (a) can be recovered from {(a)
simply by taking its inner product with itself since

{(a) } {(a)= :
t

i=1

ci ? t i (a)= f (a). (6)

More generally,

{(a) } {(b)= :
t

i=1

ci ? t i (a 7 b)= f (a 7 b) (7)

since ? t(a) } ? t(b)=? t(a 7b) for any t, by definition of the
meet operator.

Finally, we define the function #: S � Et. This function is
defined recursively for a # S by the rule:

#(a)={(a)& :

a$<a
a$ # terms(S)

#(a$). (8)

Notice that #'s definition mimics the definition of the coef-
ficients h� (a) of hyp(S) given in Eq. (4). Here, {(a) has taken
the role of f (a), and #(a) has taken the role of h� (a). In fact,

206 SCHAPIRE AND SELLIE

File: 571J 134607 . By:CV . Date:13:07:07 . Time:15:45 LOP8M. V8.0. Page 01:01
Codes: 5144 Signs: 2994 . Length: 56 pic 0 pts, 236 mm

just as we saw that {(a) } {(a)= f (a), so it will also turn out
to be the case that #(a) } #(a)=h� (a), for all a # S. Moreover,
if a and b are distinct elements in terms(S), we will see that
their images under # are perpendicular, i.e., #(a) } #(b)=0.
These properties, which we prove in the next lemma, will
allow us to apply Lemma 4 to complete the proof of the
theorem.

Lemma 5. For all a, b # terms(S), the following hold:

1. #(a) } #(a){0.

2. If a{b then #(a) } #(b)=0.

Proof. We argue first that, for a, b # S. if a�b then

#(a) } {(b)=h� (a). (9)

For fixed b, this follows by an induction argument on S in
which we prove the property for all of the elements of S in
any order that is compatible with �. In other words, when
proving that the property holds for some element a # S, we
assume inductively that it holds for all a$<a.

Suppose a�b. Then, taking the inner product of {(b)
with both sides of Eq. (8), we obtain

#(a) } {(b)={(a) } {(b)& :

a$<a
a$ # terms(s)

#(a$) } {(b).

If a$ is as in the sum above, then #(a$) } {(b)=h� (a$) by induc-
tive hypothesis. Also, by Eq. (7), we have that {(a) } {(b)=
f (a) since a�b. Thus,

#(a) } {(b)= f (a)& :

a$<a
a$ # terms(S)

h� (a$)

and the claim follows by definition of h� (a).
To complete the lemma, we show that the following

claims hold for all pairs (a, b) # S2:

1. if a=b then #(a) } #(a)=h� (a);

2. if b<a and b # terms(S) then #(a) } #(b)=0 (and
symmetrically if a<b);

3. if a �3 b, b �3 a, and a, b # terms(S) then #(a) }
#(b)=0.

These statements clearly imply the lemma: If a # terms(S),
then, by claim 1, #(a) } #(a)=h� (a){0, and if a and b are
distinct elements of terms(S), then #(a) } #(b)=0 by claims
2 and 3.

The proof of these claims is by induction on S2 using any
order compatible with the partial order �, where it is
understood that (a$, b$)�(a, b) if and only if a$�a and
b$�b.

Let (a, b) # S 2. We assume inductively that the three
claims hold for all pairs (a$, b$)<(a, b).

Proof of claim 1. Suppose a=b. By taking inner
product of #(a) with both sides of Eq. (8), we see that

#(a) } #(a)=#(a) } {(a)& :

a$<a
a$ # terms(S)

#(a) } #(a$).

Note that, if a$ is as in the sum above, then #(a) } #(a$)=0 by
claim 2 since (a, a$)<(a, a). Thus,

#(a) } #(a)=#(a) } {(a)=h� (a)

by Eq. (9).

Proof of claim 2. Suppose b<a and b # terms(S).
Similar to the proof above, we take the inner product of #(b)
with both sides of Eq. (8) to obtain

#(b) } #(a)=#(b) } {(a)& :

a$<a
a$ # terms(S)

#(b) } #(a$).

As before, if b{a$ then #(b) } #(a$)=0 by claims 2 and 3
(since (a$, b)<(a, b)). Thus,

#(b) } #(a)=#(b) } {(a)&#(b) } #(b)=0

since #(b) } {(a)=#(b) } #(b)=h� (b) by Eq. (9) and claim 1.

Proof of claim 3. Suppose a �3 b, b �3 a, and a, b #
terms(S). By definition of #(a), we have

{(a)=#(a)+ :

a$<a
a$ # terms(S)

#(a$)

and similarly for {(b). Thus,

{(a) } {(b)=#(a) } #(b)+ :

a$<a
a$ # terms(S)

#(a$) } #(b)

+ :

b$<b
b$ # terms(S)

#(a) } #(b$)

+ :

a$<a, b$<b
a$, b$ # terms(S)

#(a$) } #(b$).

If a$,b$ are as above, then #(a$) } #(b)=0 by claims 2 and 3
since (a$, b)<(a, b) and since a${b (otherwise, b�a).
Similarly, #(a) } #(b$)=0 and #(a$) } #(b$)=0 whenever
a${b$. Thus,

{(a) } {(b)=#(a) } #(b)+ :

c�a 7b
c # terms(S)

#(c) } #(c).

207SPARSE MULTIVARIATE POLYNOMIALS

File: 571J 134608 . By:CV . Date:13:07:07 . Time:15:45 LOP8M. V8.0. Page 01:01
Codes: 6204 Signs: 4381 . Length: 56 pic 0 pts, 236 mm

That is,

#(a) } #(b)={(a) } {(b)& :

c�a 7 b
c # terms(S)

#(c) } #(c)

={(a) } {(b)&#(a 7 b) } #(a 7 b)

& :

c<a 7 b
c # terms(S)

#(c) } #(c)

= f (a 7 b)&h� (a 7 b)& :

c<a 7 b
c # terms(S)

h� (c)=0.

The first equality can be seen as follows: if a 7 b # terms(S),
then the equality is trivial. Otherwise, since S is properly
stable, a 7 b # S-terms(S) so, by claim 1, #(a 7b) } #(a 7 b)
=h� (a7 b)=0 (since (a 7b, a 7 b)<(a, b)), and the
equality again is trivial. The second equality follows from
Eq. (7) and claim 1, and the final equality follows from the
definition of h� (a 7 b).

This completes the induction and the proof of the
lemma. K

Lemma 5 clearly implies that # is injective on the restricted
domain terms(S) and, moreover, that the set

#(terms(S))=[#(a): a # terms(S)]

satisfies the hypotheses of Lemma 4. Thus, |terms(S)|=
|#(terms(S))|�t. K

The next theorem will be helpful in proving that our algo-
rithm is guaranteed to make progress on each iteration.
Informally, it states that if S is properly stable, then adding
elements to S can only increase the sparcity of its manifest
hypothesis. Note that this property does not hold in general
for unstable sets, or even for sets that are stable but not
properly stable. (To see that Theorem 6 fails for sets that are
not properly stable sets, let X=[0, 1]4, F=GF(2), and
f(x)=x1+x2+x3+x4 . Then the set S=[1110,1101,1011]
is stable (but not properly stable), and terms(S)=S;
however, if S$=S _ [1000], then terms(S)=[1000].)

Theorem 6. Let f : X � F where F is a field and X is a
semilattice. Let S�X be finite and properly stable with
respect to f. Let S$�X be a finite superset of S. Then
|termsf (S)|�|termsf (S$)|.

Proof. Let h=hypf (S$). Then, by Lemma 1, h is consis-
tent with f on S�S$. Thus, hypf (S)=hyph(S) and S is
properly stable with respect to h. Therefore, by Theorem 2,
|termsf (S)|=|termsh(S)| is at most the sparcity of h, which
is exactly |termsf (S$)|. K

5. ANALYSIS AND CORRECTNESS

Using the theorems proved in the last section, we are now
ready to fully analyze our algorithm. For a set S�X and

integer r, we denote by S �r the set of elements in S of height
at most r: S �r=[a # S: &a&�r]. We begin by proving the
essential properties of subroutine EasyCounterexample.

Lemma 7. Let S i and S f be the initial and final values of
program variable S on a call to EasyCounterexample, and
let c be the value returned by the subroutine. Then the follow-
ing hold:

1. If S i is stable, then c=``stable'' and S f is properly
stable.

2. If S i is not stable, then c is a counterexample for
hyp(Sf) and S �&c&

f is properly stable.

3. The number of membership queries made during the
execution of EasyCounterexample is at most (t+1

2).

Proof. Part 1. If S i is stable, then EasyCounter-

example tests every pair a, b # terms(S i) and discovers that
for none of these is a 7 b a counterexample. Thus, for each
such pair is a 7 b added to S. It follows that EasyCounter-

example returns the flag ``stable'' and, moreover, that S f is
properly stable.

Part 2. If S i is not stable, then for some pair
a, b # terms(S i), a 7 b is a counterexample so the sub-
routine returns a counterexample c rather than the flag
``stable.'' Suppose that a, b and T are as in the subroutine
at the point at which c=a 7b is returned. To see that S �&c&

f

is properly stable, consider a pair a$, b$ # terms(S �&c&

f)�
terms(S f). Since c is a counterexample, c{a (by Lemma 1)
so max(&a$&, &b$&)�&c&<&a&. Thus, a$, b$ # T because of
the greedy order in which elements are tested and added to
T. Since EasyCounterexample did not halt when a$, b$
were tested, a$ 7 b$ cannot be a counterexample. Thus,
a$ 7 b$ was added to S f at line 9, and therefore,
a$ 7 b$ # S �&c&

f . Hence, S �&c&
f is properly stable.

To prove the bound given in part 3 on the number of
membership queries, it suffices to show that |T |�t at all
times. If Si is stable, then T�terms(S i) so, by Theorem 2,
|T |�|terms(S i)|�t. If S i is not stable, then T�
terms(S �&c&

f) and by part 2 of this Lemma, S �&c&

f is stable;
thus, again applying Theorem 2, |T |�|terms(S �&c&

f)|�t.
K

Next, we prove some of the basic properties of Add-

Element.

Lemma 8. Let S i and S f be the initial and final values
of program variable S on a call to AddElement from
LearnPoly; let c i and c f be similarly defined for c. Then the
following hold:

1. c i is a counterexample for hyp(S i), and the set S �&ci&
i

is properly stable;

2. the set S �&cf&
f is properly stable;

3. at most t membership queries are made during the
entire execution of the subroutine.

208 SCHAPIRE AND SELLIE

File: 571J 134609 . By:CV . Date:13:07:07 . Time:15:45 LOP8M. V8.0. Page 01:01
Codes: 6426 Signs: 5073 . Length: 56 pic 0 pts, 236 mm

Proof. When AddElement was called from LearnPoly,
a parameter c i was passed that was obtained either from
Equiv or from EasyCounterexample. In the latter case,
part 1 of the lemma follows immediately from part 2 of
Lemma 7. In the former case, the result follows from the
assumed properties of the equivalence oracle, and from the
fact that S is properly stable prior to each call to Equiv (by
part 1 of Lemma 7).

For part 2, consider the behavior of the algorithm after
the program variable c has been set to c f ; this setting either
holds initially (if c i=cf), or it occurs at some later point
after executing line 6. In either case, on the next iteration
of the outer loop (lines 2�10), l=&c f &, and, on each suc-
ceeding execution of the loop, l is decremented (since c
never changes again). Thus, for each a # terms(S i) with
&a&�&c f &, a 7 c f is at some point tested and found not to
be a counterexample. Using part 1 of this lemma and since
&cf&�&c i &, it follows that (S i _ [c f])�&c f& is stable and,
therefore, that S �&cf&

f is properly stable.
Part 3 follows immediately from Theorem 2 since S �&ci&

i

is stable and since each element of terms(S �&ci&
i) is tested at

most once. (Note that l decreases on each iteration of the
outer loop since if a 7 c is a counterexample as at line 6 then
a7 c � S i so &a 7 c&<&a&=l.) K

Next, we use the preceding results to show that the sub-
routine AddElement is called at most nt+1 times, where n
is the height of X (i.e., the number of variables if X is the
boolean lattice). This fact will allow us immediately to
bound the number of equivalence queries made, and will be
helpful for bounding the number of membership queries.

Lemma 9. Given access to a target t-sparse polynomial f
on a height-n semilattice, algorithm LearnPoly halts after
executing subroutine AddElement at most nt+1 times.

Proof. We prove this lemma by showing that whenever
we add a counterexample c to S at line 11 of AddElement

we increase the number of hypothesis terms of height at or
below &c& (i.e., the set terms(S �&c&) strictly increases in
size).

More formally, let U=[1, ..., n]_[1, ..., t] _ [(0, 1)].
We describe below a procedure for ``marking'' elements of
U. Initially, all elements of U are unmarked. We show that
exactly one element is marked on each execution of
AddElement, and we also show that no element is ever
marked twice. Thus, AddElement is executed at most
|U|=nt+1 times.

Specifically, immediately following AddElement's execu-
tion, we ``mark'' element p(c, S)=(&c&, |terms(S �&c&)|),
where c and S are as given in the subroutine. (This marking
is not actually performed by the algorithm��we use it
merely as an aid in proving the theorem.)

First, we show that p(c, S) is actually an element of U. By
part 2 of Lemma 8, the set S �&c& is properly stable. Thus, by

Theorem 2, &terms(S �&c&)&�t. So if &c&>0 then p(c, S)
is indeed an element of U (i.e., 1�&c&�n and 1�
&terms(S �&c&)&�t). If &c&=0 then c== and terms(S �&c&)
=[c] so p(c, S)=(0, 1).

It remains to show that no element of U is marked twice.
Suppose to the contrary that the same element is marked
following two separate calls to AddElement, once when
c=c1 and S=S1 , and again later when c=c2 and S=S2 .
That is, p(c1 , S1)=p(c2 , S2). Let r=&c1 &=&c2 &.

Note that c2 # terms(S2) since c2 was the last counter-
example added to S2 and by the way we compute hyp(S2).
Note also that S �r

1 �S �r
2 &[c2] since the algorithm never

deletes elements from S.
Thus, by Theorem 6,

|terms(S �r
1)|�|terms(S �r

2 &[c2])|.

Since c2 is not less than any element in S �r
2 , it follows

from the manner in which the manifest hypothesis is com-
puted that terms(S �r

2 &[c2])=terms(S �r
2)&[c2]. Thus,

since c2 # terms(S2),

|terms(S �r
1)|�|terms(S �r

2)&[c2]|

=|terms(S �r
2)|&1<|terms(S �r

2)|.

This contradicts that p(c1 , S1)=p(c2 , S2). K

Finally, we are ready to prove Theorem 10, the main
result of this paper.

Theorem 10. Given access to equivalence and member-
ship queries for a target t-sparse polynomial f over a field F
on a height�n semilattice X, the algorithm LearnPoly halts
and outputs a hypothesis equivalent to f in polynomial time
after making at most nt+2 equivalence queries and
(nt+1)(t2+3t)�2 membership queries.

Proof. As is typically the case for equivalence-query
algorithms, the procedure is automatically correct (in the
sense that it outputs a hypothesis equivalent to the target)
if it can be shown to halt after a bounded number of queries.

Since AddElement is executed at least once following
each unsuccessful equivalence query, by Lemma 9, the
number of equivalence queries is at most nt+2. Also, Easy-

Counterexample is executed exactly once following each
execution of AddElement. Thus, combining Lemmas 7, 8,
and 9, we see that the number of membership queries is at
most (nt+1)(t+(t+1

2))=(nt+1)(t2+3t)�2. Finally, it is
straightforward to verify using the lemmas developed above
that the algorithm runs in polynomial time. K

Setting X=[0, 1]n we obtain the following immediate
theorem.

Theorem 11. Given access to equivalence and member-
ship queries for a target t-sparse polynomial f on n boolean

209SPARSE MULTIVARIATE POLYNOMIALS

File: 571J 134610 . By:CV . Date:13:07:07 . Time:15:45 LOP8M. V8.0. Page 01:01
Codes: 6437 Signs: 5673 . Length: 56 pic 0 pts, 236 mm

variables over a field F, the algorithm LearnPoly halts
and outputs a hypothesis equivalent to f in polynomial time
after making at most nt + 2 equivalence queries and
(nt+1)(t2+3t)�2 membership queries.

6. APPLICATIONS AND EXTENSIONS

In this section, we describe a number of applications and
extensions of our main result.

Multilinear Polynomials. We begin by showing that our
algorithm can be used as a subroutine for learning multi-
linear polynomials when the domain of each variable is the
entire field F, rather than [0, 1]. To prove this, it suffices to
show that any counterexample in F n can be used to derive
another counterexample in [0, 1]n.

Let f be the target multilinear polynomial, and let h be a
hypothesis. Let d= f&h. Suppose c is a counterexample to
h and that there exists some i for which ci � [0, 1]. We par-
tially evaluate d by fixing all the variables xj to be cj for j{i.
We thus obtain the univariate polynomial d $(xi)=axi+b
for some a, b # F. Clearly, if d $(0)=d $(1)=0 then a=b=0,
contradicting that d $(ci){0. Therefore, there exists
y # [0, 1] such that d $(y){0. Thus the vector c$ obtained
from c by replacing ci with y is a counterexample to h, and
such a c$ can be found with at most two membership
queries. Repeating this process at most n times we produce
a counterexample in [0, 1]n.

Thus we have proved the following theorem.

Theorem 12. Given access to equivalence and mem-
bership queries for a target t-sparse, n-variable multilinear
polynomial f : F n � F over a field F, there exists an algorithm
that halts and outputs a hypothesis equivalent to f in
polynomial time.

Infinitely Many Attributes. Our main algorithm was
shown to be effective for learning polynomials defined on
any semilattice of finite height. The prime example of such
a domain is of course the boolean lattice [0, 1]n. Here
is another example: Let A be an infinite set, and let
A=[B�A: |B|�n] be the collection of all subsets of A of
cardinality at most n. Let the collection A be partially
ordered by inclusion (i.e., B�C if and only if B�C). Then
A is a semilattice of height n, so our algorithm can be
applied to efficiently learn a polynomial defined on it.

In fact, if we regard the set A as a collection of
``attributes,'' then it becomes clear that a polynomial on this
semilattice is just an ordinary polynomial defined over an
infinite collection of variables (corresponding to the
attributes in A), and a sample point (i.e., an element of A)
consists of a set of at most n attributes that hold for that
example. In other words, the problem of learning a polyno-
mial on this semilattice is exactly the problem of learning an

ordinary polynomial in Blum's ``infinite attribute'' model
[4], and so we obtain as a corollary to our main result that
polynomials can be exactly identified in the infinite attribute
model with membership and equivalence queries. Thus,
although Blum gives a general technique for converting a
``finite attribute'' algorithm into one in the infinite attribute
model, we obtain this result for polynomials by the direct
argument given above.

Semilattices with Infinite Chains. Recall that our proof
of the correctness and efficiency of our algorithm required
that the target polynomial be defined on a semilattice of
finite height. The finite-height requirement is, in general,
necessary in order to achieve exact identification. For
instance, the real interval [0, 1] forms a semilattice under
the usual ordering, but no element of this set (except 0) has
finite height. It is not hard to see that an adversarial oracle
for equivalence and membership queries can force the learn-
ing algorithm to make an infinite number of queries, even if
the target polynomial f is known to consist of a single term
with coefficient 1 (so that, for some a # [0, 1], f (x) is 1 if
x�a and 0 otherwise).

However, if our goal is simply to approximate the target
polynomial, then we can, in many situations, modify our
algorithm to handle polynomials defined on a semilattice X
that is not necessarily of finite height. More specifically, let
f : X � F be the target polynomial of sparcity t, and let
S�X be a finite sample labeled by f. We claim that, given
access to a membership oracle for f, our algorithm can be
used to efficiently construct a hypothesis polynomial h of
sparcity at most t that is consistent with f on S. The running
time of the procedure is polynomial in t and |S| (and any
other parameters that may be relevant to the particular
problem at hand).

To see that this is so, let X$ be the subsemilattice of X
obtained by closing the set S under the meet operation; that
is, X$ consists of all elements of X which are the meet of a
subset of the elements of S. It is not hard to show then that
X$ is a finite semilattice of height at most |S|. Further, the
target polynomial f can be replaced by a polynomial
f $: X$ � F whose terms are all in X$ and that equals f on all
elements of X$. (Specifically, f $ can be derived from f by
replacing each term ? t by ? t$, where t$ is the meet of the set
[a # X$: t�a].) For our simulation, we regard f $ as the
target polynomial, X$ as the target semilattice, and we
simulate the equivalence oracle by responding to each
equivalence query with any element of S on which f (or,
equivalently, f $) disagrees with the conjectured hypothesis
(or with the ``equivalent'' flag if no such element exists). By
the arguments above, and by Theorem 10, this simulation
will produce a hypothesis of sparcity at most t that is consis-
tent with f on S in time polynomial in t and |S|.

In many situations, such an algorithm for efficiently find-
ing a ``small'' hypothesis consistent with a given sample is

210 SCHAPIRE AND SELLIE

File: 571J 134611 . By:CV . Date:13:07:07 . Time:15:45 LOP8M. V8.0. Page 01:01
Codes: 6142 Signs: 5270 . Length: 56 pic 0 pts, 236 mm

sufficient to guarantee efficient PAC-learnability. For exam-
ple, if X=Rm is partially ordered by domination (so that
a�b if and only if ai�bi for i=1, ..., m), and if F is, say, R
or GF(2), then a uniform convergence argument, such as
those given by Blumer et al. [6] and Haussler [14], implies
that a ``small'' hypothesis consistent with a randomly chosen
sample will, with high probability, be a good approximation
of the target function. Thus, by the arguments above, such
polynomials can be efficiently PAC-learned from random
examples given access to a membership oracle.

Functions Representable by Sparse Polynomials. Finally,
returning to the boolean lattice, we make some remarks
on the sorts of functions that can be represented by sparse
polynomials.

As noted briefly in Section 2, every function g: [0, 1]l � F
can be represented by a 2l-sparse polynomial. Call such a
function l-arbitrary. Then clearly any l-arbitrary function
can be learned by our algorithm in time polynomial in 2l.
More generally, we can replace each variable of g with a
monomial xa for arbitrary a # [0, 1]n. The resulting func-
tion g(xa1, ..., xa l), when ``multiplied out,'' can be represented
by a 2l-sparse polynomial over x1 , ..., xn . Generalizing
further, we see that the l-arbitrary functions can be added
together to obtain a function of the form

:
t

i=1

gi (xa i1, ..., xa il)

which can be represented by a t2l-sparse polynomial on n
boolean variables. Thus, such functions can be learned in
time polynomial in n, t, and 2l.

As a specific example of this technique, we can show that
logarithmic-depth decision trees can be learned in poly-
nomial time: For each leaf i, let pi (x) be the value of the leaf
node if it is reached on input x, and 0 otherwise. The func-
tion computed by the decision tree is then �t

i=1 pi (x),
where t is the number of leaves in the tree. Since pi (x) can
be viewed as an l-arbitrary function on the l variables
occurring along the path to leaf i, this shows that the
computed function can be represented by a t2l-sparse poly-
nomial. Thus, the decision tree can be exactly identified in
polynomial time if its depth l is logarithmic.

The same result holds if each node's decision function is
replaced by an arbitrary (monotone) monomial, rather than
a single variable. Thus, we have shown that logarithmic-
depth decision trees in which each node is decided by a
monomial can be exactly identified using equivalence and
membership queries. Although it was known that this was
possible for (ordinary) logarithmic-depth decision trees by
the results of Kushilevitz and Mansour [17] and Bshouty
[7], it appears that this result could not have been derived
using previous methods for the case in which each decision
node is a monomial.

7. CONCLUSIONS AND OPEN PROBLEMS

We have shown that sparse polynomials over a field F
defined on several boolean variables can be exactly iden-
tified using membership and equivalence queries. We have
argued that this result depends largely on the lattice struc-
ture of the boolean domain and that the result holds for a
more generalized notion of a polynomial defined on an
arbitrary semilattice with no infinite chains. Among our
extensions is a proof that our algorithm can be used to
efficiently learn multilinear polynomials when the domain
of each variable is all of F.

There are many open problems and possible directions
for future research. For starters, we would like to know if
our algorithm can be made robust to handle noise or errors
in the data it is receiving. In this regard, we have some
preliminary results which indicate that the algorithm can be
modified to handle a small but significant level of random
misclassification noise. (See also the related work of Ar et al.
[2] and Gemmell and Sudan [12].)

Our algorithm is only able to learn functions that can be
represented exactly by sparse polynomials. The algorithm
would be much more practical if we could extend it to
handle functions that can only be approximated by a sparse
polynomial. This is an important open problem.

It would also be quite interesting to extend our algorithm
to learn polynomials in which each ``term'' is a conjunction
of literals, some of which are negated. For instance, for
GF(2), this is the problem of learning a boolean formula
that consists of an xor of several monomials, each of which
is a conjunction of negated or unnegated variables (rather
than exclusively unnegated variables as was considered in
this paper).

A similar problem is that of learning arbitrary poly-
nomials (not necessarily multilinear) on the unrestricted
domain F n. In this regard, we have some preliminary results
indicating that this is possible when each term of the target
polynomial includes a limited number of variables of degree
greater than one.

APPENDIX

In this appendix, we present an alternative proof of
Theorem 2 based on the computation of the rank of certain
matrices. Recall that the rank of a matrix A is equal to the
maximum number of linearly independent columns of the
matrix A.

Alternative Proof of Theorem 2. It suffices to prove the
theorem in the case that X is finite. For if X is infinite, then
we can replace X by X$, the finite subsemilattice that is
generated by closing the finite set

S _ [a : f� (a){0]

211SPARSE MULTIVARIATE POLYNOMIALS

File: 571J 134612 . By:CV . Date:13:07:07 . Time:15:45 LOP8M. V8.0. Page 01:01
Codes: 5096 Signs: 3468 . Length: 56 pic 0 pts, 236 mm

under the meet operation. Clearly, if Theorem 2 holds for
X$, then it holds for X as well. Thus, we assume henceforth
without loss of generality that X is finite.

The high level idea of this proof is to construct two
matrices G and G� for which we can argue that:

1. rank(G)=t, the sparcity of f;

2. rank(G�)=|terms(S)|, the sparcity of hyp(S); and

3. rank(G�)�rank(G).

Obviously, these three facts together suffice to prove the
theorem. The method of constructing these matrices is
inspired by a technique used by Wilf [21].

Let the r=|X| elements of X be indexed a1 , ..., ar in a
manner consistent with the partial orderings �, i.e., in such
a way that if i>j then ai �3 aj . We can then represent the
partial order � by an r_r matrix Z=(zij), where

zij={1
0

if ai�aj

otherwise.

Then Z is upper triangular (i.e., zij=0 if i>j) and all
diagonal entries zii are equal to 1. Thus, Z has determinant
1, and so it is nonsingular.

Next, let D=(dij) be the r_r diagonal matrix whose
diagonal elements are given by the coefficients of f. That is,

dij={ f� (a i)
0

if i= j
otherwise.

Note that the rank of D is equal to the number of non-zero
diagonal entries, which is exactly t, the sparcity of f.

To complete the construction of G, we finally let G=
(gij)=ZT DZ. Since Z is nonsingular,

rank(G)=rank(D)=t. (10)

Also, we can explicitly compute each entry of G as follows:

gij=:
k, l

zki dkl zlj=:
k

zkizkj f� (ak).

Note that

zkizkj={1
0

if ak�ai 7 aj

otherwise.

Thus,

gij= :

a�ai 7 aj
a # X

f� (a)= f (ai 7a j).

We use a similar construction for the matrix G� . First, let

T=[i : ai # terms(S)]=[t1 , ..., ts],

where t1< } } } <ts , and s=|terms(S)|. Let Z� =(ẑij) be the
T_T submatrix of Z (i.e., ẑij=zti tj). Then the same argu-
ment used above shows that Z� is also nonsingular.

Next, we define D� =(d� ij) to be the s_s diagonal matrix
whose diagonal elements are the coefficients of h=hyp(S).
That is,

d� ij={h� (ati)
0

if i=j
otherwise.

Since each diagonal element is non-zero, D� has full rank s.
Finally, we let G� =(gij)=Z� T D� Z� . As before, because Z is

nonsingular,

rank(G�)=rank(D�)=s=|terms(S)|. (11)

Moreover, we can compute the entries of G� explicitly as
before to obtain

ĝij= :

a�ati 7 atj

a # terms(S)

h� (a)=h(ati 7 atj)= f (ati 7 atj),

where the last equality follows from our assumption of
stability.

Thus, the matrix G� is exactly the T_T submatrix of G,
which implies that

rank(G�)�rank(G). (12)

The theorem follows immediately from Eq. (10), (11),
and (12). K

REFERENCES

1. D. Angluin, Learning regular sets from queries and counterexamples,
Inform. and Comput. 75 (1987), 87�106.

2. S. Ar, R. J. Lipton, R. Rubinfeld, and M. Sudan, Reconstructing
algebraic functions from mixed data, in ``33rd Annual Symposium on
Foundations of Computer Science, October 1992,'' pp. 503�512.

3. M. Ben-Or and P. Tiwari, A deterministic algorithm for sparse multi-
variate polynomial interpolation, in ``Proceedings, Twentieth Annual
ACM Symposium on Theory of Computing, May 1988,'' pp. 301�309.

4. A. Blum, Learning boolean functions in a infinite attribute space,
Mach. Learning 9, (No. 4) (1992), 373�386.

5. A. Blum and M. Singh, Learning functions of k terms, in ``Proceedings,
Third Annual Workshop on Computational Learning Theory, August
1990,'' pp. 144�153.

6. A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, Lear-
nability and the Vapnik�Chervonenkis dimension, J. Assoc. Comput.
Mach. 36, (No. 4) (1989), 929�965.

7. N. H. Bshouty, Exact learning via the monotone theory, in ``34th
Annual Symposium on Foundations of Computer Science, November
1993.''

212 SCHAPIRE AND SELLIE

File: 571J 134613 . By:CV . Date:13:07:07 . Time:15:45 LOP8M. V8.0. Page 01:01
Codes: 2953 Signs: 2218 . Length: 56 pic 0 pts, 236 mm

8. M. Clausen, A. Dress, J. Grabmeier, and M. Karpinski, On zero-
testing and interpolation of k-sparse multivariate polynomials over
finite fields, Theoret. Comput. Sc. 84 (1991), 151�164.

9. A. Dress and J. Grabmeier, The interpolation problem for k-sparse
polynomials and character sums, Adv. in Appl. Math. 12 (1991), 57�75.

10. A. Du� r and J. Grabmeier, Applying coding theory to sparse inter-
polation, SIAM J. Comput. 22, (No. 4) (1993), 695�704.

11. P. Fischer and H. Ulrich Simon, On learning ring-sum-expansions,
SIAM J. Comput. 21, (No. 1) (1992), 181�192.

12. P. Gemmell and M. Sudan, Highly resilient correctors for polynomials,
Inform. Process. Lett. 43, (No. 4) (1992), 169�174.

13. D. Yu. Grigoriev, M. Karpinski, and M. F. Singers, Fast parallel
algorithms for sparse multivariate polynomial interpolation over finite
fields, SIAM J. Comput. 19, (No. 6) (1990), 1059�1963.

14. D. Haussler, Decision theoretic generalezations of the PAC model for
neural net and other learning applications, Inform. and Comput. 100,
(No. 1) (1992), 78�150.

15. L. Hellerstein and M. Warmuth, Interpolating GF[2] polynomials,
unpublished manuscript.

16. I. N. Herstein, ``Topics in Algebra,'' New York, Wiley, 2nd ed., 1975.
17. E. Kushilevitz and Y. Mansour, Learning decision trees using the

Fourier spectrum, SIAM J. Comput. 22, (No. 6) (1993), 1331�1348.
18. Y. Mansour, Randomized interpolation and approximation of sparse

polynomials, ``Automata, Languages and Programming: 19th Interna-
tional Colloquium, July 1992,'' pp. 261�272.

19. R. M. Roth and G. M. Benedek, Interpolation and approximation of
sparse multivariate polynomials over GF(2), SIAM J. Comput. 20,
(No. 2) (1991), 291�314.

20. L. G. Valiant, A theory of learnable, Comm. ACM 27, (No. 11) (1984),
1134�1142.

21. H. S. Wilf, Hadamard determinants, Mo� bius functions, and chromatic
number of a graph, Bull. Amer. Math. Soc. 74, (No. 5) (1968), 960�
964.

22. R. Zippel, Probalistic algorithms for sparse polynomials, in ``Symbolic
and Algebraic Computation,'' pp. 216�226, Springer-Verlag, New
York�Berlin, 1979.

23. R. Zippel, Interpolating polynomials from their values, J. Symbolic
Comput. 9 (1990), 375�403.

213SPARSE MULTIVARIATE POLYNOMIALS

