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Abstract

This paper is concerned with the unique solvability of stage equations which arise when implicit Runge–Kutta methods
apply to nonlinear sti� systems of di�erential equations y′ = f(t; y). Denoting by A the matrix of coe�cients of the
Runge–Kutta method and by �2[J ] the logarithmic norm of the matrix J associated with the ‘2-norm, several authors
(Crouzeix et al., BIT 23 (1983) 84–91; Hundsdorfer and Spijker, SIAM J. Numer. Anal. 24 (1987) 583–594; Kraaijevanger
and Schneid, Numer. Math. 59 (1991) 129–157; Liu and Kraaijevanger, BIT 28(4) (1988) 825–838) have obtained
conditions on A that ensure, for a given �, the unique solvability of stage equations for all stepsize h and sti� system
with h�2[f′(t; y)]¡�, where f′(t; y) is the jacobian matrix of f with respect to y. The aim of this paper is to study
the unique solvability of stage equations in the frame of the ‘∞- and ‘1-norms. For a given real � it will be proved that
the condition �∞[(�I − A−1)D]¡ 0, for some positive-de�nite diagonal matrix D, implies that the stage equations are
uniquely solvable for all stepsize h and function f such that h�∞[f′(t; y)]6�. Further, it is shown that these conditions
also imply the BSI-stability i.e. the stability of stage equations under non uniform perturbations. Applications to some
well-known families of Runge–Kutta methods are included. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

We consider the numerical solution of sti� initial value problems

y′(t) = f(t; y(t)); t¿t0; (1.1)

y(t0) = y0 ∈ Rm; (1.2)
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by means of an s-stage Runge–Kutta method which advances the numerical solution from (tn; yn)→
(tn+1 = tn + h; yn+1), computing yn+1 from the formulas

yn+1 = yn + h
s∑

i=1

bif(tn + cih; Yn; i); (1.3)

Yn; i = yn + h
s∑

j=1

aijf(tn + cjh; Yn; j) (i = 1; : : : ; s); (1.4)

where ci, bi and aij (16i; j6s) are real parameters de�ning the method with ci = ai1 + · · · + ais,
(i=1; : : : ; s). Thus the method can be speci�ed in terms of the s× s matrix A=(aij) and the column
vector b = (bi). In the following, to simplify the presentation, it will be assumed that the function
f :R× Rm → Rm and its jacobian matrix f′(t; y) are continuous functions on R× Rm.
Eq. (1.4) that de�ne the stage vectors Yn; j (j = 1; : : : ; s) will be called the stage equations and

due to the implicitness of the methods a natural requirement is the existence of a unique solution
of these equations for the class of problems and the range of stepsizes under consideration.
Conditions on h and f that guarantee the unique solvability of (1.4) have been given by several

authors [2,7,10,11]. However, most of these studies have been carried out under the assumption that
the function f(t; y) satis�es a one-sided Lipschitz condition

〈f(t; u)− f(t; v); u− v〉6�|u− v|2; t ∈ R; u; v ∈ Rm; (1.5)

where 〈·; ·〉 is an inner product on Rm; | · | its induced norm and � a real constant. Denoting by �[J ]
the logarithmic norm of a matrix J associated to a matrix norm ‖ · ‖ (see e.g. [3])

�[J ] = lim
�→0+

‖(I +�J )‖ − 1
�

; (1.6)

assumption (1.5) can be presented in the following equivalent forms:
H1(�). �[f′(t; u)]6� for all (t; y) ∈ R × Rm where ‖ · ‖ is the matrix norm subordinated to

|x|=√〈x; x〉.
H2(�). For any two solutions y(t) and ỹ(t) of (1.1) the function �(t):=e(−�t)|ỹ(t) − y(t)| is

a nondecreasing function of t in the interval of de�nition common to both solutions.
The study of the unique solvability of (1.4) in the frame of sti� systems (1.5) has been justi�ed

by the fact that there exist a well-established theory that analyzes the stability and convergence
properties of Runge–Kutta methods for such a class of sti� systems [1,3,6]. A remarkable fact is
that a simple algebraic condition on the coe�cients of a Runge–Kutta method, the so-called algebraic
stability, which plays an essential role to ensure their stability and convergence does not imply the
unique solvability of (1.4) for �=0 and therefore some additional conditions on matrix A have been
given by several authors to ensure the unique solvability. Thus, Crouzeix et al. [2] proved that for
�=0 a su�cient condition on A is the so-called Lyapunov diagonal stability which means that there
exists a diagonal matrix D such that D and DA+ATD are positive de�nite. This condition has been
weakened in [7,11].
Furthermore, these theoretical studies have been applied to many families of Runge–Kutta methods

of practical interest (see, e.g., [3,6]), in order to determine for a given � in (1.5) the range of
stepsizes which allow the unique solvability of (1.4). More recently, Kraaijevanger and Schneid [10]
in a detailed study presented necessary and su�cient conditions for the unique solvability of some
classes of implicit equations which include Eq. (1.4) with f satisfying (1.5).
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While the analysis of the stability and convergence properties of Runge–Kutta methods in the
frame of inner product norms developed rapidly after the early papers of Burrage, Butcher and
Crouzeix, for other norms like the maximum norm it has been rather lengthy. It must be remarked
that the use of the ‘∞- and ‘1-norms may have some advantages over the inner product norms.
First in view of the de�nitions of �∞; �1; �2 (see, e.g., [3, Section 1:5]) in many practical problems
the conditions on �∞[f′(t; y)] or else �1[f′(t; y)] can be checked more easily than those of the
euclidean norm �2[f′(t; y)]. Recall that

�∞[Q] = �1[QT] = max
j

qjj +
∑
l6=j

|qjl|
 and �2[Q] = �max((QT + Q)=2):

On the other hand, there are problems (1.1), (1.2) in which the Jacobian J = f′(t; y) can be
bounded more appropriately in the ‘∞- or ‘1- than in the ‘2-norm. To illustrate this fact consider
the simple matrix

J =
(
0 0
� −�

)
where � � 1:

An elementary calculation shows that �∞[J ] = 0 while �2[J ] = ((
√
2 − 1)=2)�. Thus for � large

�2[J ] will be large in spite of the well-conditioned global behavior of the solutions of y′ = Jy and
therefore bounds based in the ‘2-norm can be useless. More generally, when J is almost symmetric,
�2[J ] is close to the spectral abscissa which is, in a sense, an optimal measure of the asymptotic
behavior of the ow. However for problems where J has a moderately sized spectral abscissa and
is very unsymmetric the quantity �2[J ] can be very large. For these problems the ‘∞- or ‘1-norms
may provide a more appropriate measure of the asymptotic measure of their solutions. This kind
of problems appear, e.g., in singular perturbations and in some discretizations of partial di�erential
equations (see, e.g., [3, pp. 275–277]). Moreover, in these problems the maximum norm leads to
error bounds that hold uniformly in all space variables.
For problems in which �2[J ] is very large but �1[J ]60 or �∞[J ]60 the classical theory of

B-stability and B-convergence based on the ‘2-norm can not be applied and a more appropriate
theory, based on the ‘1- or ‘∞-norms should be developed. Among the contributions on the stability
and convergence properties of Runge–Kutta methods on arbitrary norms we may mention those of
Spijker [12] that deal with the contractivity of Runge–Kutta methods and more recently those of
Kraaijevanger [8,9] who analyze not only the contractivity and convergence properties of these
methods but also the unique solvability of stage equations. Let us recall that method (1.3),(1.4) is
said to be (unconditionally) contractive for a given norm | · | if it preserves the dissipativity with
respect to this norm for all stepsizes, i.e., if for all f ∈ H1(0) the result of two parallel steps with
the same method: (tn; yn)→ (tn+1; yn+1); (tn; ỹn)→ (tn+1; ỹn+1); satisfy |ỹn+1− yn+1|6|ỹn − yn|: Note
that as shown by van Dorsselaer and Spijker [4], H1(�) ⇔ H2(�) for any norm and therefore the
dissipativity with respect to any norm can be characterized either by H1(0) or else by H2(0).
As a consequence of the above studies Kraaijevanger has shown in [8] that a Runge–Kutta method

is (unconditionally) — contractive in the maximum norm if and only if the so called K-function of
the method de�ned by

K(Z) = det(I − AZ + eeTZ)=det(I − AZ)
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with eT = (1; : : : ; 1) and Z = diag(z1; : : : ; zs), is absolutely monotonic for all (z1; : : : ; zs) ∈ (−∞; 0]s.
Moreover, this condition is equivalent to the following algebraic condition:

A is nonsingular; A−1 is an M -matrix and A−1e¿0; bTA−1¿0; bTA−1e60: (1.7)

This condition plays, for the maximum norm, the same role of the algebraic stability condition for
the inner product norms. In addition Kraaijevanger [8] has proved that this absolute monotonicity is
su�cient to ensure the unique solvability of stage equations. However, the main drawback of (1.7)
is that the order of an (unconditionally) — contractive Runge–Kutta method is 61 and therefore
(1.7) is a too strong requirement to the unique solvability of stage equations in the maximum norm.
The aim of this paper is to give su�cient conditions on the matrix A (weaker than (1.7)) that

imply the existence of a unique solution of (1.4) for the class of dissipative problems with respect
to the ‘∞- and ‘1-norms. In Section 2, for any real �, we give a su�cient condition on A which
ensures the unique solvability of (1.4) for the more general class of di�erential equations (1.1) that
satisfy either H1(�) or else H2(�) with h�6�. In Section 3 it will be shown that this su�cient
condition implies also the BSI-stability of stage equations (1.4). Finally, in Section 4, the unique
solvability behavior of stage equations of some well-known families of Runge–Kutta methods is
established by means of the new su�cient condition.

2. The su�cient conditions to the unique solvability of stage equations

We start introducing some notations to write the stage equations (1.4) in a more compact form.
First of all putting

Xi = Yn; i − yn; fi(X ) = f(tn + cih; yn + X ) (i = 1; : : : ; s);

Eq. (1.4) can be written as

Xi = h
s∑

j=1

aijfj(Xj) (i = 1; : : : ; s): (2.1)

Next in the space of stages (Rm) s we introduce the vectors and matrix given by

X =

X1
...
Xs

 ; F(X) =

f1(X1)
...

fs(Xs)

 ; A= A⊗ I; (2.2)

where ⊗ stands for the Kronecker product. With these notations we may rewrite (2.1) in the form

X = hAF(X): (2.3)

Note that throughout the rest of this paper vectors and matrices in the space of stages will be denoted
by boldface.
Further, we will assume in the remainder of the paper that A is a nonsingular matrix. Observe that

we are interested in the existence of a unique solution to Eq. (1.4), thus in case that there exist ex-
plicit stages (e.g. in Lobatto IIIA or IIIB methods) they can be eliminated and the implicit equations
can be written again in the form (2.3) with A the submatrix of implicit stages. More generally, if a
A is a reducible matrix [5, pp. 50], as proved in [10, Theorem 2.1], the unique solvability of (2.3)
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reduces to lower-dimensional problems with the same type and irreducible matrices. This implies
that, without loss of generality, we could assume in the following that A is irreducible. However,
we do not introduce this assumption because most of our results hold true without it.
Now following the ideas of suitability of Kraaijevanger and Schneid [10] we introduce the fol-

lowing.

De�nition. We say that (2.3) is Uniquely Solvable (UniSolv) for a given norm | · | in Rm at
some  ∈ R if Eq. (2.3) has a unique solution for all set of continuously di�erentiable functions
fj :Rm → Rm such that

�[f′
j (X )]6� (j = 1; : : : ; s) (2.4)

with h� = , and � de�ned by (1.6).

Remark. (1) Since in the context of Runge–Kutta methods fj(X ) = f(tn + cjh; yn + X ); condition
(1.5) on f implies (2.4). This means that the UniSolv of (2.3) introduced in the above de�nition
is a stronger requirement than necessary for the unique solvability of stage equations in (conuent)
Runge–Kutta methods (see comments on the de�nition of suitability given in [10]). However, the
conditions that will be derived here to the existence of a unique solution of (2.3) hold in this general
setting.
(2) If (2.3) is UniSolv at some  and ′ ¡ then it is clear from the above de�nition that (2.3)

is UniSolv at ′. This implies that (2.3) is UniSolv at all values (−∞; ] and motivates (see, e.g.,
[10]) the de�nition of the abscissa of UniSolv s(A) for a given norm | · | as the sup{} for which
(2.3) is UniSolv at  in this norm.
(3) Following the ideas used in Theorem 2:10 of [10] it can be proved that (2.3) is UniSolv at

� if and only if (I − �A) is nonsingular and

X = hA(�)F(X) (2.5)

with

A(�) = A(�)⊗ I and A(�) = A(I − �A)−1;

is UniSolv at =0. This follows from the fact that UniSolv of (2.3) at �=h� for f satisfying (2.4) is
equivalent to the UniSolv of (2.3) at =0 for f̂j(X )=fj(X )−�X , since �[f̂

′
j ]=�[f′

j −�I ]=�[f′
j ]−�.

Clearly this result allows us to reduce the study of the UniSolv of (2.3) at any real � to the UniSolv
of (2.5) at the �xed value = 0:

Theorem 2.1. Let � be a real number. If there exists a positive-de�nite diagonal matrix D such
that

�∞[(�I − A−1)D]¡ 0; (2.6)

then (2:3) is UniSolv at � for the maximum norm.

Proof. In view of Remark 3 and the fact that when I − �A is nonsingular −A(�)−1D=(�I −A−1)D
it will be enough to prove the theorem for �= 0.
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Let D be a positive-de�nite diagonal matrix and D=D⊗I . Putting X=DZ the UniSolv of (2.3) at
� is equivalent to the existence of unique solution of G(Z)=0 with the function G : (Rm) s → (Rm) s

given by

G(Z):=− A−1DZ + hF(DZ): (2.7)

To prove the existence of a unique solution of (2.7) we apply Theorem 3:6 of van Dorsselaer and
Spijker [4]. We take Z (0) = 0 the zero vector of (Rm) s, and in this space we consider the norm

‖X‖= max
16i6s

|Xi|= max
16i6s

max
16j6m

|Xi; j|; (2.8)

i.e., the maximum norm in the space of stages.
From (2.7) it follows that the Jacobian matrix of G can be written as

G ′(Z) =−A−1D + hF ′(DZ)D:

Denoting by � the logarithmic norm of matrices in (Rm) s associated to the norm (2.8) we have

�[G ′(Z)]6�[− A−1D] + �[hF ′(DZ)D]: (2.9)

Since for all Q ∈ R s×s and I = Im, we have �[Q ⊗ I ] = �∞[Q] then

�[− A−1D] = �[(−A−1D)⊗ I ] = �∞[− A−1D] =−r0¡ 0: (2.10)

On the other hand, hF ′(DZ)D is a block diagonal matrix with the form

diag(Q1; : : : ; Qs) with Qj = hdjf′(djZj);

where D = diag(d1; : : : ; ds). Hence,

�[hDF ′(DZ)] = max
16j6s

�∞[Qj]60: (2.11)

Substituting (2.10) and (2.11) into (2.9) we get

�[G ′(Z)]6− r0

with r0¿ 0 given by (2.10). Now by the above mentioned Theorem 3:6 of [4] the equation G(Z)=0
has a unique solution.

Remark. (1) It can be seen that Theorem 2.3 can be easily modi�ed to show that the unique
solvability of (2.3) at � for the maximum norm also holds if there exist two positive-de�nite diagonal
matrices D1 and D2 such that

�∞[D1(�I − A−1)D2]¡ 0: (2.12)

Although this condition is apparently more general than (2.6), both conditions turn out to be
equivalent and therefore we have formulated Theorem 2.3 with the more simple condition (2.6).
(2) It follows from Theorem 2.1 that the existence of a positive-de�nite diagonal matrix D such

that �∞[ − A−1D]¡ 0 ensures the UniSolv of (2.3) at � = 0 in the ‘∞-norm, i.e., the UniSolv of
(2.3) for all dissipative systems and all stepsizes in the uniform norm. Furthermore, for �¿ 0, since

�∞[(�I − A−1)D]6 �∞[�D] + �∞[− A−1D]

= � max
16j6s

dj + �∞[− A−1D];
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the same theorem implies the unique solvability for

h� = �¡
−�∞[− A−1D]
max16j6s dj

:

Notice that the above Theorem 2.1 provides a set of su�cient conditions for the UniSolv of (2.3)
at a single value of �. Thus for a given matrix A will be important to get insight into the set

�A:={�; �∞[(�I − A−1)D]¡ 0; for some D¿ 0}; (2.13)

where D¿ 0 denotes a positive-de�nite diagonal matrix.
First of all since �∞[(�I−A−1)D]→ −∞, when � → −∞, the set �A is 6= ∅. Moreover if � ∈ �A

there exist D¿ 0 such that �∞[(�I − A−1)D]¡ 0. Hence for all �′ ¡�, utilizing the properties of
the logarithmic norm, we have

�∞[(�′I − A−1)D]6�∞[(�I − A−1)D] + �∞[(�′ − �)D]¡ 0;

and therefore �′ ∈ �A.
On the other hand, since (�; D) → �∞[(�I − A−1)D] is a continuous mapping, �A is an open

subset of R. Then the above remarks show that �A is an interval of type (−∞; �∞(A)) with �∞(A)=
sup�A ¡+∞. In fact, by the de�nition of �∞ for all � ∈ �A ,we have �¡min16i6s {(A−1)ii}, and
therefore

�∞(A)¡ min
16i6s

{�ii = (A−1)ii}: (2.14)

In order to determine �∞(A), we consider the matrix T ∈ Rs×s de�ned by

T =
{
tii = (A−1)ii ;
tij =−|(A−1)ij| (i 6= j):

(2.15)

Then �∞[(�I − A−1)D]¡ 0 holds for D=diag (di)¿ 0 if and only if Td¿�d for d= (d1; : : : ; ds)T

(here u¿v stands for ui ¿ vi; i = 1; : : : ; s). Hence an alternative de�nition of �∞(A) is

�∞(A) = sup�A = sup{� ∈ R; Td¿�d; for some d¿ 0}: (2.16)

Now suppose that A is an irreducible matrix [5, Chapter XIII]. Then A−1 and T are also irreducible
and according to Frobenius theorem [5, pp. 53] for some �¿ 0 su�ciently large −T + �I is a
nonnegative irreducible matrix that has an eigenvalue r ¿ 0 with a positive eigenvector u. Hence
Tu=(−r+�)u and we may ensure that T has a real eigenvalue �0 with a positive eigenvector d0. In
view of this, for all �¡�0 we may write �d0 = (�− �0)d0 + Td0¡Td0 which implies that � ∈ �A.
This shows that such a real eigenvalue �0 corresponding to a positive eigenvector is a possible
candidate to the value of �∞(A). In fact, with a similar argument to the one used in the proof of
Frobenius theorem [5, pp. 56] it can be seen that �∞(A) must be an eigenvalue of T associated to
a positive eigenvector.
In conclusion we have proved:

Theorem 2.2. If A is an irreducible matrix then �∞(A) is an eigenvalue of T corresponding to a
positive eigenvector.
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For the ‘1-norm proceeding in a similar way to the above theorem we can prove:

Theorem 2.3. Let � ∈ R and D a positive-de�nite diagonal matrix such that

�1[D(�I − A−1)]¡ 0: (2.17)

Then (2:3) is UniSolv at � for the ‘1 norm.

Observe that the remarks and consequences derived from the su�cient condition for the UniSolv
for the ‘∞-norm can be easily translated to the ‘1-norm.
To end this section let us remark that the approach used in Theorems 2.1 and 2.3 to derive

su�cient conditions on the UniSolv. of (2.3) at � for the ‘∞- and ‘1-norms can be applied also
to the euclidean norm. Thus, it can be proved that the existence of two positive de�nite diagonal
matrices D1 and D2 such that

�2[D1(�I − A−1)D2]¡ 0; (2.18)

implies the UniSolv of (2.3) at � with respect to the euclidean norm. Furthermore (2.18) implies
that

�¡ 0(A−1) = sup
D¿0

 D(A−1); (2.19)

where  D(A)=min�6=0 〈A�; �〉D=〈�; �〉D is the function de�ned by Dekker and Verwer [3, Chapter V]
in their study of the unique solvability with respect to inner product norms. Note that for appropriate
D1 and D2 condition (2.19) implies (2.18).

3. The stability of stage equations

In this section we study the e�ect of nonuniform perturbations of the stage equations (1.4) on
their solutions for the classes of functions f satisfying �∞[f′(t; y)]6� or else �1[f′(t; y)]6�. The
Runge–Kutta methods (A; b) whose matrices A show a stable behavior are usually called BSI-stable
for the corresponding class of functions and stepsizes.
Together with (1.4) we consider the perturbed equations

Ỹ n; i = yn + h
s∑

j=1

aijf(tn + cjh; Ỹ n; j) + �i (i = 1; : : : ; s); (3.1)

where �i are arbitrary perturbations introduced in the ith stage. Furthermore, we introduce the stage
vectors

U :=(Ui = Ỹ n; i − Yn; i); �:=(�i):

De�nition. The matrix A is said to be BSI-stable at some � ∈ R for the ‘∞-norm if for all contin-
uously di�erentiable function f with �∞[f′(t; y)]6� and all stepsize h ≥ 0, with h�6� Eqs. (1.4)
and (3.1) are uniquely solvable and their solutions satisfy

‖U‖6C‖�‖ (3.2)

with some constant C independent of the sti�ness.
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Note that in the above de�nition the same ‘∞-norm is used in the spaces Rm and (Rm) s, however,
more general norms could be considered in the space of stage vectors (Rm) s. Further, a similar
de�nition can be given for the ‘1-norm replacing �∞[f′(t; y)]6� by �1[f′(t; y)]6� and the norms
(2.8) of (3.2) by their corresponding ‘1-norm, i.e.,

‖X‖=
s∑

i=1

|Xi|=
s∑

i=1

m∑
j=1

|Xi; j|:

As a �nal remark note that in [10] a similar concept has been called stable suitability at �.
Substracting (3.1) from (1.4) we have

U = hA [F(X +U)− F(X)] + �: (3.3)

Next, we will show that the su�cient conditions (2.6) or else (2.12) for the unique solvability
also imply the BSI-stability.

Theorem 3.1. Let � ∈ R and D1; D2 ∈ Rs×s positive-de�nite diagonal matrices such that (2:12)
holds; then the matrix A is BSI-stable at � for the ‘∞-norm.

Proof. Each component of the bracket in (3.3) fi(Xi + Ui)− fi(Xi) can be written in the form

fi(Xi + Ui)− fi(Xi) =

(∫ 1

0
f′(Xi + �Ui) d�

)
Ui ≡ JiUi:

Moreover as shown in [3, pp. 29] the assumption �∞[f′(t; y)]6� implies that �∞[Ji]6�.
Putting J= diag (J1; : : : ; Js), (3.3) can be written equivalently in the form

[I − hAJ ]U = �;

or else

[A−1 − hJ ]U = A−1�:

Introducing the matrices D1=D1⊗ I and D2=D2⊗ I where D1 and D2 are positive diagonal matrices
we have

[D−1
1 (A

−1 − hJ)D2]V =−D−1
1 A

−1�

with V =D−1
2 U .

Now the matrix Q =D−1
1 (A

−1 − hJ)D2 with �∞[Ji]6� (i = 1; : : : ; s) and h�6� satis�es

�∞[Q]6�∞[D1(�I − A−1)D2] =−r0

with some constant r0¿ 0. Therefore, the matrix Q is nonsingular and ‖Q−1‖61=r0 and this implies
that

‖U‖= ‖D2V‖= ‖D2Q−1D−1
1 A

−1�‖
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and then

‖U‖6 |D2|∞ |D−1
1 A−1|∞

r0
‖�‖ (3.4)

which proves the BSI-stability.

Remark. (1) The above theorem can be stated with the simpler condition (2.6) (D1 = I; D2 = D)
instead of (2.12), however the stability constant derived from (3.4)

C = inf
D1¿0; D2¿0

|D2|∞|D1A−1|∞
�∞[D1(�I − A−1)D2]

may be smaller than that corresponding to D1 = I; D2 = D.
(2) A similar statement holds for the ‘1-norm.
(3) For the ‘2-norm we have observed that (2.18) implies also the unique solvability of stage

equations with h�2[f′(t; y)]6�. Assumption (2:18) implies again the BSI-stability for the ‘2-norm.

4. Applications

In this section we calculate �∞(A) for some well-known implicit Runge–Kutta methods. First of
all let us recall that in the case of the ‘2-norm (and also for all inner product norms) we have
the upper bound �2(A) =  0(A−1)6min16i6s (A−1)ii (see [3, Chapter 5]). Furthermore, it has been
found [3] that by choosing an appropriately positive diagonal matrix D, �2(A) may attain this upper
bound for some well-known families of implicit methods (Gauss–Legendre, Radau IA and Radau
IIA). Since we have the same bound for the ‘∞-norm the question arises whether a suitable choice
of D allows for �∞(A) to attain again this upper bound. It will be seen next that unfortunately this
question has a negative answer.

Theorem 4.1. For the two-stage Gauss–Legendre; Radau IA; Radau IIA and Lobatto IIIC Runge–
Kutta methods �∞(A)¡min{�ii; i = 1; 2}.

Proof. For the two stage Gauss–Legendre method we have

A−1 =

(
3 −3 + 2

√
3

3 + 2
√
3 3

)
; and T =

(
3 3− 2

√
3

−3− 2
√
3 3

)
:

Taking into account Theorem 2.2 we calculate the eigenvalues of T which are �± = 3±
√
3. Since

�+¿min(A−1)ii=3 it can be disregarded. For �−=3−
√
3 there is a positive eigenvector (d1; d2)T.

Therefore,

�∞(A) = 3−
√
3¡min

i=1;2
�ii = 3:

Similar calculations for the other method results are given in Tables 1 and 2.
For the four-stages Lobatto IIIA method we have �∞(A) =−1:6821¡ 0.
As can be seen from Table 1, the �-values that give the bound h�[f′(t; y)]¡� for the ‘∞-norm

are smaller than that corresponding to the ‘2-norm in the classical two-stage implicit Runge–Kutta
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Table 1
Two-stages Runge–Kutta methods

Method �∞(A) mini=1;2 �ii

Gauss–Legendre 3−√
3 3

Radau IA 2−√
10=2 3=2

Radau IIA 2−√
10=2 3=2

Lobatto IIIC 0 1

Table 2
Three-stages Runge–Kutta methods

Method �∞(A) mini=1;2 �ii

Gauss–Legendre −0.895631 2
Radau IA −1.748719 2−√

6=2
Radau IIA −1.748719 2−√

6=2
Lobatto IIIC −2 0
Lobatto IIIA 3−√

5 2

methods. However, as remarked above, there are sti� problems in which �2[f′(t; y)] can be positive
and even very large while �∞[f′(t; y)]60. For these problems, since h�∞[f′(t; y)]60¡�∞(A) for
all h¿ 0 our study allows to ensure the unique solvability for all stepsize while the study in the
‘2-norm only implies the unique solvability for h�2[f′(t; y)]¡min �ii. In addition it is straightfor-
ward to estimate the logarithmic norm of the jacobian in the ‘∞-norm but the ‘2-norm requires the
computation of the largest eigenvalue of the matrix (f′+f′T )=2 and this clearly more complicated,
particularly for higher-dimensional matrices.
In Table 2, it is found that, except in the Lobatto IIIA methods, the value of �∞(A) is negative and

therefore the unique solvability, which is ensured for stepsizes and problems with h�∞[f′(t; y)]¡
�∞(A), does not have practical relevance. In fact for methods such as �∞[−A−1D]¿ 0 for all diag-
onal matrix D, our approach does not provide practical results on the solvability of stage equations
in sti� problems.
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