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Let B denote one of the subalgebras A(n) of the modp Steenrod algebra A, or 
one of the subalgebras P(n) of A/A/IA. In [4] it was shown that B admits a left A- 
module structure extending its left B-module structure. The proof made use of in- 
variant theory, and the Steinberg representation St of GL,lF,, to construct a cer- 
tain A-module; this module was then shown to be free on one generator as a B- 
module. Later, Jeff Smith [6] gave another proof of this result, using certain 
‘triangular’ representations of the symmetric groups (our terminology is derived 
from the associated partitions). The question then arises whether these two A- 
module structures are the same. We show here that if B =P(n) (or p = 2 and 
B=A(n)), there is in fact a rather natural isomorphism between the two structures. 
At first glance this is somewhat surprising. However, we also show (Theorem 1.4) 
that St is precisely the ‘Weyl module’ associated to a suitable triangular representa- 
tion via the classical theory described in [8]. (This fact is certainly well known, but 
we provide an elementary proof.) Furthermore - and this is really the main point 
of the paper - we show that Smith’s theorem is in fact a corollary of the Weyl 
module result by making use of an unpublished result of Steward Priddy (Theorem 
1.5 below). Hence this paper can be read independently of [6]. 

It is a pleasure to thank Jeff Smith for several conversations about his work [6], 
and for an introduction to the representation theory of the symmetric groups. 

Notation. P(n) is the subalgebra of A/ABA generated by Pi, . . . , P”“. (Pi= Sq2’ if 
p=2).) Our results will be stated in terms of P(n), but if p=2, then P(n) can be 
replaced throughout by A(n) - the subalgebra of A generated by Sq’, . . . , Sq2”. 
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1. Smith’s Theorem, and the Steinberg module as a Weyl module 

We begin by summarizing what we need from the representation theory of the 
symmetric groups; for further details we refer to [2]. The irreducible representations 
of Zk over Q correspond to partitions of k (any field is a splitting field for &). 
Such a partition A is usually represented by a ‘Young diagram’: for example, the 
diagrams 

represent the partitions (3,2,1) and (4,2) of k = 6. The irreducible SA corresponding 
to Iz is constructed explicitly by giving a primitive idempotent fA, called a Young 
symmetrizer; then SA =fA Q&. To define fA, let RA, CA denote respectively the row 
and column stabilizer groups of the Young diagram. For example, if A = (4,2), then 
RA =& x Zz and Cl =& x & XC, xZ; . Here we have labelled the diagram as 
follows: 

1 2 3 4 

EP 
5 6 

so that the orbits of RA are { 1,2,3,4} and (5,6}, while those of CA are (1,5}, 
(2,6}, {3}, (4). One then defines 

where cA is a certain constant and a bar (resp. tilda) over a set of elements in Z;, 
denotes the sum (resp. signed sum) of those elements in the group ring. There is a 
beautiful combinatorial formula for c, - it is the product of the ‘hook lengths’ 
associated with the Young diagram [2, 20.11. In particular fA is defined over ZtPJ 
if and only if all hook lengths are prime to p. For example, if k= (p- l)(g), and 
A =A, is the ‘triangular’ partition ((p - l)(n - l), (p - l)(n - 2), . . . ,p - l), it is easy 
to show by induction on n that p -f c, [6]. In fact for p = 2 an amusing exercise is 
to show that p f c, if and only if k= ($) and A= A,,. (We remark here that by 
general theory, the projective irreducible representations of ffP& are precisely the 
reductions mod p of the Sk with CL’ E Z&) Let f, = fdn. 

Smith makes the following use of the idempotents fn: Let ff,[yJ denote the 
unstable A-algebra with 1 yl=2 (i.e., H*Q3P”). Let 2, =A - y G iFp[yJ/yp”. Note 
that 2, = P(n -2) - y, and that 2, has basis Y,J@, . . . , yP”-‘. For any k, 0” 2, is 
then an A [&]-module. 
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1.1. Theorem [6]. As a P(n -2)-module, (@I(“- ‘)(“Z,)f~ is free on one generator. 

The first step in the proof is to observe that the dimensions are right. Here one 
uses a classical formula [2, 26.. 191, again involving hook lengths, that expresses 
dim((@ W)fl) in terms of ;Z and dim W (for any vector space W). In particular 
one has: 

1.2. Lemma (Smith). 1f dim W= n, then dim(( @‘- I)(‘) W)f,) =p(z). 

Since dim P(n - 2) =p@, the remaining (and hardest) part of the argument is to 
show the given A-module is P(n -2)-free; this is accomplished in [6] by analyzing 
the appropriate Margolis homology groups. 

In attempting to understand how Smith’s construction is related to [4], we were 
naturally led to ask how the Steinberg module is related to the representations of 
2,. The result is exactly what one would expect, but there is a surprise: The answer 
to the question in fact implies Smith’s theorem. To explain what one would expect, 
we first recall the classical construction of irreducible representations of GL,C [8]. 
Let V denote the standard n-dimensional representation of GL,C. Given a parti- 
tion 1 of k, k 10, the corresponding Weyl module W, = (Ok V)fl. Weyl shows [8, 
Chap. IV]: 

1.3. WA is either zero or irreducible. 

The dimension of WA is given by the formula alluded to earlier. In characteristic 
p the situation is much more complicated [I]. However, if fA is defined over HlpJ, 
the definition of W, makes sense over !FP. In Section 2 we prove: 

1.4. Theorem. The Weyl module WA, is isomorphic to the Steinberg representation 
of GLJ,. 

Remark. If n = 1, then (i) = 0 and by convention &= { 11, and W,, is the trivial 
representation of GL,(F,), i.e., the Steinberg module. If n =2, Sd2 is again the 
trivial representation (of Z&i), and we recover the familiar fact that St is the 
(p - I)-st symmetric power of K We also note that 1.4 remains true if we replace 
V by its contragredient V# in the definition of WA. This is because St is self-dual, 
i.e., St#ZSt. 

Remark. Theorem 1.4 can be deduced from the standard correspondence between 
dominant weights and partitions; cf. Remark 3.2 below. However, there is also an 
elementary proof based on the flag complex (Tits building) description of St 
Theorem (Section 3). 

Comparing Smith’s theorem and Theorem 1.4, we see that they are strikingly 
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similar. In fact, we claim the two theorems are almost equivalent. The necessary link 
is provided by a remarkable observation of Stewart Priddy: Let U,, denote the 
unipotent subgroup of GL, lFp, consisting of upper triangular matrices with ones on 
the diagonal. If A is an augmented algebra, E”A is the graded algebra associated 
with the augmentation ideal filtration. 

1.5. Theorem (Priddy). E”(FpU,,) and E”P(n -2) are isomorphic as Hopf algebras. 
(If p = 2, P(n - 2) can be replaced by A(n - 2). ) 

Proof. By a theorem of Quillen [5], E”(FpU,)= V(L$), the restricted universal 
enveloping algebra of the restricted Lie algebra associated with the mod p lower cen- 
tral series of Un. Similarly, by the Milnor-Moore theorem, E’(P(n - 2)) z V(L?~), 
where 2; is the (restricted) Lie algebra of primitives in E’(P(n -2)). But in fact 
Yn = 9; as (ungraded) restricted Lie algebras: On the one hand, it is well known 
that Yn is just the usual Lie algebra of upper triangular nilpotent matrices (with 
trivial restriction). It has a basis {x0 : i< j), where x0 has a one in the (ij)-position 
and zeros elsewhere. On the other hand in his thesis P. May [3] showed that 6p,’ has 
basis (Pf:s+t<n- 1, t >O}. Moreover, Theorem 11.2.9, (3) and (4), of [3] states 
precisely that the map Y., 49 defined by xij ++F++:i is an isomorphism of restricted 
Lie algebras. Cl 

Remark. The correspondence is easily remembered in terms of the display 

Proof of Theorem 1.1. If R is a Hopf algebra over lFp, and N is an R-module, let 
T(N) denote the R-module (0 (P-l)(‘)N)fn. Let E= E°FpUn = E’P(n - 2). Then the 
point of the proof is simply that (V”)# and Z, can both be regarded as E-modules, 
and in fact are identical as E-modules. More precisely, E’(V)’ is an E-module 
(by restricting the GL, lFp action to U,J, with basis el , . . . ,3, and E acting”by (xij)ek+; 
dikej. On thek_other hand E’Z,has basis y,yp, . . . ,yp , with Pfyp =S,y” . 

Hence ek + yp is an isomorphism of E-modules. Now, by 1.4, T( V#) is free as 
an IFpUn-module. Hence T(E” V#)) = T(E’Z) = EOT(Z) is free as an E-module, and 
hence T(Z) is free on one generator as a P(n -2)-module. Cl 

Remark. If one tries to reverse the above argument, by assuming Smith’s theorem, 
on. arrives at the conclusion that WA, is a projective GL, ff,-module of dimension 
p(2). However, this in itself does not imply that WA,= St, even when p = 2. 
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2. Generators for Weyl modules 

In this section we write down explicit generators (in fact highest weight vectors) 
for the Weyl modules tv,. As usual, n>O is fixed, V= K” (K is a field), kr0 and 
A=(&,..., km) (with k,rkzz.a. ok,) is a partition of k into at most n terms 
(when Char K = 0, this is precisely the range .where WA #O). We define elements x1, 
Z~ of Bk V as follows: First form a ‘tableau’ of elements of V by filling in the ith 
row of the Young diagram for A with copies of the standard basis vector ei. Then 
form the tensor product x1 of all the elements in the tableau, tensoring first the col- 
umns from top to bottom and then the rows from left to right. For example, if 
n=k=3 and A=(2,1), q=e,@e2@el. Next, let (ri,...,~J be the partition of k 
given by the columns of the Young diagram (ordered from left to right; note s5 k, 
and riS n). In a= 1 /\‘i V we have the standard basis vector 

zA=(elA ...Ae,,)0...6(elA..-Ae~~). 

The signed trace c1 induces an embedding a= 1 AC V+ 0” V; we use the same 
notation for the image of zA under this map. The following is immediate from the 
definitions: 

Corollary. If Char K 7 q (so fA defined over K), then zlfA = 2~. 

Let B = Bore1 subgroup of upper triangular matrices in GL( V). The following is 
then obvious, using the exterior product version of zn: 

2.1. Proposition. If Char K = 0, then (CA/ ) RJ 

2.2. Proposition. The line spanned by zA is 
z,, = z& is fixed by B. 

B-stable. When K = FP and A= A,,, 

3. Proof of Theorem 1.4 

Let K be a field, and let V= K”, with standard basis el, . . . , e,. The set of flags 
(resp. complete flags) in V is denoted F(V) (resp. F,(V)). (Here a flag is a chain 
of proper nontrivial subspaces of V.) If K = IF, and we regard F(V) as a simplicial 
complex, then fin-’ (F(V); Fq) =St, the Steinberg module [7]. Since St is self-dual 
we can also identify St with N n-2, and hence with the submodule Zn-2 of cycles in 
Fq ?? Ec( 0). 

In particular St contains an obvious (spherical)(n -2)-cycle a defined as follows: 
There is an obvious inclusion of the poset of proper nonempty subsets of { 1, . . . , n} 
into the poset of proper nonzero subspaces of V (using the standard basis). Passing 
to the associated complexes, we obtain an embedding of the barycentric subdivision 
of the standard (n -2)-sphere into F(V); this defines the cycle a. Explicitly, 
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a=&[A], where [ii] is the standard flag (er)c(er,ez.)S;...E(e,,...,e,_l). 
Now identify lFp - F,(V) with the induced representation ffpGL(V)@rpB tFp, 

where B is the Bore1 subgroup stabilizing [n”]. Then by adjunction there is a unique 
map @: IF&_(V)+@ @-r)(‘) V such that @([li]) =z,, (using 2.2). Moreover it is 
clear on inspection that @(a) is nonzero (use the exterior power description of 2,). 
Hence @ restricts to a nonzero map St+ WA,; this map is injective (since St is ir- 
reducible) and hence an isomorphism (since the dimensions agree). 

3.1. Remark. We may regard # as a map IFpe Fc( V)-, WC/ (A’ V)p-‘. In this 
form it is just an obvious modification of the usual ‘Plucker-Segre’ embedding of 
the flag variety in the projective space l’P(@‘z,’ Ai V). 

3.2. Remark. From the viewpoint of algebraic groups Theorem 1.4 is seen as 
follows: The irreducible polynomial representations W of SL,C are classified by 
their ‘highest weights’ - that is, by the character of the diagonal subgroup H acting 
on the unique B-stable line in IV. Such a highest weight can be written uniquely in 
the form w = cfi: aiWi (ai EZ, airO), ‘where the fundamental dominant weights 
Wi correspond to the exterior powers Ai V”. From Section 2 it is then obvious that 
the weight w corresponds to the partition (aI + ae. + a,, _ 1, a2 + ... + a,, _ 1, . . . , a,,). 
Since St can be obtained (sometimes by definition) as the ‘mod p reduction’ of the 
module with highest weight (p- 1) ~~~~ Wi, it follows easily that W&sSt. 

4. A-module structures on P(n) 

In this section we show that the A-module structures on P(n) (or A(n), if p = 2) 
obtained in [4] and [6] are isomorphic. In order to be consistent with the conven- 
tions of [4], we replace V” by IV” = (V’)# - the contragredient module. IV” has 
basis yl, . . . , yn dual to el, . . . . e,. For krn, we regard Wk as the subspace of IV” 
spanned by ~~__~+~,...,y~. We set dimyi = 2, so that the symmetric algebra S” = 
S(W”)= IF,(Yl, **-, y,J becomes, as usual, an unstable A-algebra. Let G, = GL, ffP. 
Then S” is in fact an A[G,]-algebra. Finally, let M, denote the ‘covariant algebra’ 
S”@G, FP and let e, denote the Steinberg idempotent in ffPGn. Then one of the 
main results of [4] is: 

4.1. Theorem. As a P(n - 2)-module, M,e, is free on one generator. 

This theorem exhibits an A-module structure on P(n - 2) extending its P(n - 2)- 
module structure. Theorem 1.1 provides another such structure, but in fact the two 
coincide: 

4.2. Theorem. (0 (PS1)(‘)Z,,)fn and M,e, are isomorphic as A-modules. 
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Proof. Identify IV@- ‘)(‘) with (p- l)W”-‘@(p- l)W”-‘@..*@(p, 1)W’. The 
flag W’C W2c ... c IV”-’ then defines an obvious map @ : W(p-1)(2)* W”; the 
restriction 0.f $J to each Wk is just inclusion. Hence we obtain a map 
S(@) : &a- w +S” of A-algebras. 

4.3. Lemma. If zcz S”, dim z>O, then zp” is zero in M,. 

By the l$mma, S(e) induces a map of A-algebras a! : Q, -*M,, where 
Qn = 0’P-f)‘2’ff~[y]/(yl)n). At th’ 1s point it is convenient to replace e,, by the con- 
jugate idempotent x(e,) [4, 2.23. We then define v/ to be the composite 

@ 
(p l)(Z) 

- Gfn -+Q, SK -+%x(e,,). 
Now ideqtify 2, with V by the correspondence ek++yp’-‘. We then obtain 

z, E @P-1)(2) Z,,fn as in 2.2. Moreover it follows immediately from the definitions 
that ly(z,) = ~5::: .s.Lf-‘, where &=(Y~.__~+~ ??..J&-‘)& (here & permutes the 
last k coordinates in W”). But this is precisely the generator of M,x(e,) [4, $31. 
Hence w is onto, and is then an isomorphism by 4.1 and 1.2. 

Proof of 4.3. Let N=Sn@ffp, where T= ffp[yf”, . . . ,y,p”]. By [4, (3.4)], there is a 
map of S-modules q : M +N defined by q(x) = L,x. Recall that M and N are Poin- 
care duality algebras. If a =~f”-~ -..y~n-pn-‘- ‘, then q(a) =yp”- ’ ..*yt”-’ - the 
fundamental class of N. It follows that a must be a fundamental class for M (since 
it has the right dimension). Thus q maps fundamental class to fundamental class, 
and hence is injective. Now if ZE M, obviously q(zp”) = 0, and hence zp” = 0. 
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