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Abstract

We suggest the exactly solvable model of the oscillator on a four-dimensional hyperboloid which interacts with a SU(2) instanton. We calculate
its wavefunctions and spectrum.
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1. Introduction

There exists a well-known generalization of the N -dimen-
sional isotropic oscillator to spheres and hyperboloids, sug-
gested by Higgs [1]. The uniqueness of this system is that it
inherits all constants of motion of the standard (flat) oscilla-
tor, although its symmetry algebra becomes nonlinear (whereas
the symmetry algebra of the flat oscillator is su(N)). However,
this system does not respect the inclusion of external gauge
fields. For instance, the inclusion of a constant magnetic field
in the two-dimensional Higgs oscillator breaks even its exact
solvability. On the other hand, a constant magnetic field pre-
serves the kinematical symmetries of a free particle on the two-
dimensional sphere and hyperboloid (which form, respectively,
so(3) and so(1.2) Lie algebras), as well as the exact solvabil-
ity of the planar (two-dimensional) oscillator. Similarly, the
inclusion of the BPST instanton field preserves the kinemat-
ical symmetries of a free particle moving on the four-dimen-
sional sphere and the exact solvability of the four-dimensional
flat oscillator, but it breaks the exact solvability of the Higgs
oscillator on the four-dimensional sphere. Instead, the ana-
log of the oscillator on both complex projective spaces CP N

and their noncompact analogs, i.e., Lobachevsky spaces LN =
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SU(N.1)/U(N) [2], loosing part of the hidden symmetries,
remains, nevertheless, exactly solvable in the presence of a con-
stant magnetic field. Since CP 1 is the two-dimensional sphere,
and L1 is the two-dimensional hyperboloid, the above model
seems to be an appropriate alternative to the two-dimensional
Higgs oscillator, as the analog of the planar oscillator with con-
stant magnetic field. These systems are defined by the poten-
tial [2]

VCPN = ω2r2
0
uaūa

u0ū0
,

(1)u0ū0 + εuaūa = r2
0 , a = 1, . . . ,N, ε = ±1,

where ua/u0 are homogeneous complex coordinates for CP N

and LN , ε = 1 corresponds to the CP N , and ε = −1 corre-
sponds to the LN .

In [3] it was claimed, that the potential (1), would be the
appropriate generalization of the oscillator on the quaternionic
projective spaces with HP N respecting the inclusion of the
(constant uniform) instanton field, provided we interpret ua

and u0 as quaternionic coordinates of the ambient quaternionic
space H

N+1. For HP 1 (i.e., for the four-dimensional sphere) it
was shown that this is indeed the case [4]. Moreover, in con-
trast with the case of CP 1, the spectrum of the system depends
on the topological charge of the instanton (what might be con-
nected to the behaviour of two-dimensional noncommutative
quantum mechanics models in a constant magnetic field [5]).
The invention and study of this model was motivated by the
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recently suggested theory of the four-dimensional Hall effect
[6], which attracted a wide interest in the physics community
(see, e.g., [7,8]). This theory is based on the quantum mechan-
ics of colored particle moving on a four-dimensional sphere
in the field of a SU(2) Yang monopole [10] (which is equiva-
lent to the BPST instanton [11]). The inclusion of the potential
reduced it to the effective three-dimensional edge theory. The
key role in this model is played by the external instanton field,
which provides it with a degenerate ground state, becoming in-
finite in the planar limit. This theory displays a few interesting
phenomena, such as an infinite gapless sequence of massless
particle excitations with any spin. The initial (without potential
term) symmetry of this theory is SO(5), and it has no relativis-
tic interpretation. On the other hand, the quantum mechanics of
the colored particle on the four-dimensional hyperboloid, mov-
ing in the (constant uniform) field of SU(2) instanton would
possess a SO(4.1) symmetry. There is no doubt that it will
have a degenerate ground state, hence, developing the theory of
four-dimensional quantum Hall effect will be possible on this
quantum-mechanical background too. One can expect that this
hypothetic, SO(4.1)-symmetric theory of the four-dimensional
Hall effect will have a relativistic interpretation. By this reason,
the construction of the noncompact analog of the model [4],
i.e., the exactly-solvable model of the oscillator on the four-
dimensional hyperboloid interacting with the SU(2) instanton
field, seems to be even more important, than the initial “com-
pact” system. This is the subject of the present Letter.

The Letter is arranged as follows. In Section 2 we construct
the hyperbolic analog of the BPST instanton and suggest the
appropriate oscillator potential. In Section 3 we get the energy
spectrum and wavefunctions of the system.

2. Instanton

In this section we construct the SU(2) instanton and anti-
instanton on the four-dimensional two-sheet hyperboloid, which
defines the field configuration with constant magnitude, i.e.,
the hyperbolic analog of the BPST instanton. Also, we present
the hyperbolic analog of the oscillator potential on the four-
dimensional sphere considered in Ref. [4]. It is convenient to
get these basic ingredients of the model by the use of quater-
nions, following [9].

Let us parameterize the (ambient) pseudo-Euclidean space
R

4.1 by the real coordinate x0 and the quaternionic one x =
x4 + ∑3

a=1 xaea , with eaeb = −δab + εabcec, ēa = −ea . Notice
that ta ≡ ea/2 form a su(2) algebra: [ta, tb] = εabctc. In terms
of these coordinates the metric on R

4.1 reads

(2)ds2 = dxd x̄ − dx2
0 .

Imposing the constraint

(3)x2
0 − xx̄ = r2

0 ,

we shall get the metric on the four-dimensional hyperboloid. It
is convenient to resolve this constraint, choosing

(4)x0 = r0
1 + ww̄
1 − ww̄

, x = r0
2w

1 − ww̄
,

where |w| < 1 for the upper sheet of hyperboloid, and |w| > 1
for the lower one. In these coordinates the metric (2), restricted
to the hyperboloid, looks as follows:

(5)ds2 = 4r2
0 dwdw̄

(1 − ww̄)2
.

This is precisely the quaternionic analog of the Poincaré model
of the Lobachevsky plane (two-dimensional two-sheet hyper-
boloid). The instanton and anti-instanton solutions are defined
by the following expressions:

A+ = Im
wdw̄

ww̄ − 1
= − Im

xd x̄
2r0(x0 + r0)

,

(6)A− = Im
w̄dw

ww̄ − 1
= − Im

x̄dx
2r0(x0 + r0)

.

Let us prove it following the arguments of Atiah [9]. In quater-
nionic notation the strength of the SU(2) gauge field with po-
tential A = Aaea/2 is defined by the expression F = dA +
A ∧ A. Hence, calculating it for the A±, we get

F+ = − dw ∧ dw̄
(ww̄ − 1)2

= eaω̃
(2)+
a

2(1 − ww̄)2
,

(7)F− = − dw̄ ∧ dw
(ww̄ − 1)2

= eaω̃
(2)−
a

2(1 − ww̄)2
,

where

(8)

ω̃(2)±
a = (±dw4 ∧ dw1 + dw2 ∧ dw3,

±dw4 ∧ dw2 + dw3 ∧ dw1,

±dw4 ∧ dw3 + dw1 ∧ dw2).

The set ω̃+
a defines, precisely, the basis of self-dual two-forms,

and ω̃−
a that of anti-self-dual ones. Consequently, the F+ is a

self-dual field, and F− is a anti-self-dual one: �F± = ±F±.
Seemingly, |F±| → ∞, when |w| → ∞ (and |x| → ∞).

However, considering the classical motion of a particle the on
four-dimensional hyperboloid in the presence of these fields
(see [12]), one can see that the constructed instanton and anti-
instanton configurations have a constant uniform magnitude.
Indeed, the magnitude of the gauge field is defined as the
strength multiplied on the inverse metrics. Hence, the product
of the matrices F± given by (7) on the inverse to the metrics (5)
is equal to the constant two-form −eaω̃

±
a /8r2

0 .
Finally, let us conclude this section writing down the com-

ponents of connections (6) in real coordinates

(9)

A±
1 = 2

±w4 dw1 + w3 dw2 − w2 dw3 ∓ w1 dw4

wµwµ − 1

= −±x4 dx1 + x3 dx2 − x2 dx3 ∓ x1 dx4

r0(x0 + r0)
,

(10)

A±
2 = 2

−w3 dw1 ∓ w4 dw2 − w1 dw3 ± w2 dw4

wµwµ − 1

= −−x3 dx1 ∓ x4 dx2 − x1 dx3 ± x2 dx4

r0(x0 + r0)
,

(11)

A±
3 = 2

w2 dw1 − w1 dw2 ∓ w4 dw3 ± w3 dw4

wµwµ − 1

= −x2 dx1 − x1 dx2 ∓ x4 dx3 ± x3 dx4
.

r0(x0 + r0)
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3. Oscillator

The quantum mechanics of the colored particle moving on
the four-dimensional hyperboloid in the presence of the poten-
tial V and (anti-)instanton field is described by the Hamiltonian

Ĥ = − h̄2(1 − wµwµ)4

2r2
0

Dµ(1 − wµwµ)−2Dµ + V (w, w̄),

(12)Dµ = ∂/∂wµ + iA(a)µTa,

where Ta are the SU(2) generators on the internal space S2

of the (anti-)instanton, [T̂a, T̂b] = iεabcT̂c , and Aa
A is defined

by (6).
We choose the oscillator potential on the four-dimensional

hyperboloid given by the expression

(13)Vosc = 2ω2r2
0 ww̄ = 2ω2r2

0
x0 − r0

x0 + r0
,

which is similar to the one on the complex projective space CP 1

[2], and on the quaternionic projective spaces HP 1 [3,4]. Let us
show that this oscillator system is an exactly solvable one and
calculate its wavefunction and spectrum.

We restrict ourselves to the upper sheet of hyperboloid and
introduce the “hyperspherical” coordinates

x0 = r0 cosh θ, x2 + ix1 = r0 sinh θ sin
β

2
ei

α−γ
2 ,

(14)x4 + ix3 = r0 sinh θ cos
β

2
ei

α+γ
2 ,

or, equivalently,

w2 + iw1 = tanh
θ

2
sin

β

2
ei

α−γ
2 ,

(15)w4 + w3 = tanh
θ

2
cos

β

2
ei

α+γ
2 ,

where θ ∈ [0,∞), β ∈ [0,π], α ∈ [0,2π), γ ∈ [0,4π).
In these terms the quantum Hamiltonian with the oscillator

potential (13) and with the instanton field A+
a reads

H+ = − 1

2r2
0

[
1

sinh3 θ

∂

∂θ

(
sinh3 θ

∂

∂θ

)
+ 2L̂2

1 − cosh θ

(16)+ 2Ĵ 2

1 + cosh θ

]
+ 2ω2r2

0
cosh θ − 1

cosh θ + 1
.

Here L̂a are the components of the SU(2) momentum [L̂a,

L̂b] = iεabcL̂c,

L̂1 = i

(
cosα cotβ

∂

∂α
+ sinα

∂

∂β
− cosα

sinβ

∂

∂γ

)
,

L̂2 = i

(
sinα cotβ

∂

∂α
− cosα

∂

∂β
− sinα

sinβ

∂

∂γ

)
,

(17)L̂3 = −i
∂

∂α

and Ĵa = L̂a + T̂a ,

[L̂a, L̂b] = iεabcL̂c, [L̂a, Ĵb] = iεabcL̂c,

(18)[Ĵa, Ĵb] = iεabcĴc.
It is convenient to represent the generators T a in terms of S3, as
in (17) (where, instead of α,β, γ , there appear the coordinates
of S3, αT ,βT , γT ), with the following condition imposed

T̂ 2Ψ (α,β, γ, θ,αT ,βT , γT )

(19)= T (T + 1)Ψ (α,β, γ, θ,αT ,βT , γT ),

which corresponds to the fixation of the isospin T . Notice that
the generators Ĵa , L̂2, T̂ 2 are constants of motion, while L̂a , T̂a

do not commute with the Hamiltonian.
In order to solve the Schrödinger equation HΨ = EΨ , we

introduce the separation ansatz

(20)Ψ (θ,α,β, γ,αT ,βT , γT ) = Z(θ)Φ(α,β, γ,αT ,αT , γT ),

where Φ are the eigenfunctions of L̂2, T̂ 2 and Ĵ 2 with the
eigenvalues L(L + 1), T (T + 1) and J (J + 1). Thus, Φ can
be represented in the form

(21)

Φ =
∑

M=m+t

(JM|L,m′;T , t ′)DL
mm′(α,β, γ )DT

tt ′(αT ,βT , γT ),

where (JM|L,m′;T , t ′) are the Clebsh–Gordan coefficients
and DL

mm′ and DT
tt ′ are the Wigner functions.

Using the above separation ansatz, we get the following “ra-
dial” Schrödinger equation:

1

sinh3 θ

d

dθ

(
sinh3 θ

dZ

dθ

)
+ 2J (J + 1)

1 + cosh θ
Z + 2L(L + 1)

1 − cosh θ
Z

(22)+ 2r2
0

(
E − 2ω2r2

0
cosh θ − 1

cosh θ + 1

)
Z = 0.

Now, making the substitution Z(θ) = sinh−3/2 θR(θ), we end
up with the equation

(23)

d2R

dθ2
+

[
ε − L(L + 1) + 3/16

sinh2 θ/2
+ J̃ (J̃ + 1) + 3/16

cosh2 θ/2

]
R = 0,

where we introduced the notation

ε = 2r2
0E − 4ω2r4

0 − 9

4
,

(24)J̃ (J̃ + 1) ≡ J (J + 1) + 4ω2r2
0 .

The same equation appears also in the Schrödinger equation of
the Higgs oscillator on a 4-dimensional hyperboloid [13].

The regular solution of this equation is the hypergeometric
function

RnJL =
(

sinh
θ

2

)2L+3/2(
cosh

θ

2

)2n−2J̃−1/2

(25)× 2F 1
(−n,n + 2J̃ + 1,2L + 2, tanh2 θ/2

)
,

where n = √−ε+ J̃ −L−1/2 is a nonnegative integer number
n = 0,1,2, . . . , [J̃ − L − 1/2]. Taking into account the expres-
sion (24), we get the energy spectrum of the system

(26)

E = (J̃ − J )(n + L + 1)

r2
0

− (n + L − J − 1)(n + L − J + 2)

2r2
0

.
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The regular normalized wavefunction is defined by the expres-
sion

Z(θ) =
√

(2J̃ − 2L − 2n − 1)(n + 2L + 1)!�(2J̃ − n + 1)

n!�(2J̃ − 2L − n)

(27)× (sinh θ)−3/2RnJL.

Let us remind that

J = |L − T |, |L − T | + 1, . . . ,L + T ,

(28)n = 0,1,2, . . . , [J̃ − L − 1/2], L = 0,1/2,1, . . . .

In the absence of the instanton field one has J̃ = J . In this
case one can introduce the principal quantum number N =
n + J + L, and get standard expressions for the spectrum and
wavefunctions of the oscillator on the four-dimensional hyper-
boloid.

Remark 1. A similar system with the anti-instanton field is de-
scribed by the Hamiltonian

H− = 1

2r2
0

[
1

sinh3 θ

∂

∂θ

(
sinh3 θ

∂

∂θ

)
+ 2L̂2

1 + cosh θ

(29)+ 2Ĵ 2

1 − cosh θ

]
+ 2ω2r2

0
cosh θ − 1

cosh θ + 1
.

Hence, its spectrum and wavefunctions can be obtained from
the above ones, (26), (27) by the redefinition

L̃ → J̃ , J → L,

(30)J̃ (J̃ + 1) ≡ J (J + 1) + 2ω2r2
0 .

Remark 2. The above results could be easily extended to the
system with the “singular oscillator” potential defined as fol-
lows:

(31)V so = 2ω2r2
0

cosh θ − 1

cosh θ + 1
+ 2ω2

1r
2
0

cosh θ + 1

cosh θ − 1
.

The spectrum and wavefunctions of this system with the in-
stanton field can be obtained from (26), (27) by the redefinition

J → J̃ , J̃ (J̃ + 1) ≡ J (J + 1) + 2ω2
1r

2
0 ,

(32)E → E − 2ω2
1r

2
0 .

Similarly, for the anti-instanton configuration we should make
the following substitution:

L → L̃, L̃(L̃ + 1) ≡ L(L + 1) + 2ω2
1r

2
0 ,

(33)E → E − 2ω2
1r

2
0 .

Hence, the instantonic singular oscillator with “characteristic
frequencies” (ω,ω1) is “isomorphic” to the anti-instantonic sin-
gular oscillator with “characteristic frequencies” (ω1,ω).

4. Discussion

We constructed the hyperbolic analogs of the BPST (anti-)-
instanton and of the oscillator potential, which preserve the
exact solvability of the particle moving on a four-dimensional
hyperboloid in their presence. We calculated the energy spec-
trum and the wavefunctions of this model and found, that it
possesses a degenerate ground state. Hence, we suggest that
this system could form the appropriate ground for develop-
ing the relativistic theory of the higher-dimensional Hall effect.
The system inherits the asymmetry with respect to instanton
and anti-instanton fields, earlier observed in the models on
the four-dimensional plane [8] and sphere [4]. Also, it has a
finite discrete energy spectrum, which is typical for the sys-
tems on spaces with constant negative curvature. Notice that
the suggested system could be viewed as a spherical part of the
quantum-mechanical system on the R

4.1 describing the motion
of a particle interacting with the “hyperbolic Yang monopole”
(6) and potential (13), where r0 is a dynamical variable. Hence,
it could by obtained, by the reduction associated with the sec-
ond Hopf map, from the appropriate systems on R

4.4 and
on the L3 = SU(3.1)/U(2) (compare, respectively, with [15]
and [14]), which are specified by the absence of external gauge
fields. Finally, let us mention that there is a kind of duality
between monopoles and relativistic spinning particles (at the
moment it is part of a folklore in physics, but probably for the
first time it was pointed out in [16]). From this viewpoint the
nonrelativistic particle moving on the hyperboloid in the pres-
ence of an instanton field is dual to the (4 + 1)-dimensional
massive spinning particle, similarly to the duality between a
nonrelativistic particle moving on the two-dimensional hyper-
boloid in the presence of a constant magnetic field, and the free
massive relativistic (2 + 1)-dimensional particle [17]. A pos-
sible direction for future developments is the consideration of
supersymmetric extensions, as it was done in the first Ref. [2]
and [18].
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