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A b s t r a c t - - U n t i l  now, only nonoscillatory radial basis functions (RBFs) have been considered in 
the literature. It has recently been shown that  a certain family of oscillatory RBFs based on J-Bessel 
functions gives rise to nonsingular interpolation problems and seems to be the only class of functions 
not to diverge in the limit of flat basis functions for any node layout. This paper proves another 
interesting feature of these functions: exact polynomial reproduction of arbitrary order on an infinite 
lattice in IR n. First, a closed form expression is derived for calculating the expansion coefficients for 
any order polynomial in any dimension. Then, a proof is given showing that  the resulting interpolant, 
using this class of oscillatory RBFs, will give exact polynomial reproduction. Examples in one and 
two dimensions are presented. It is specifically noted that  such closed form expressions cannot be 
derived for other classes of RBFs due to the fact that  J-Bessel RBFs reproduce polynomials via a 
different mechanism. @ 2006 Elsevier Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

Given N distinct nodes Xl,X2, . . .  ,XN in ] ~  and corresponding (scalar) function values f l ,  f2, 
. . . .  fN, a radial basis function (RBF) interpolant to this data  is given by 

N 

j = l  

(1) 

where r = II '  112 is the standard Euclidean vector norm and ~(r)  is a radial function. The 
expansion coefficient Aj are chosen to satisfy the interpolation conditions. 

Until recently, the radial functions ~(r)  in (1) tha t  have been considered in the literature have 
been nonoscillatory. However, it is noted in [1] that  the family of radial functions 

Jd/2-1 (Er) 
~d(Er )  (£p)d/2--1 ' d = 2 , 3 , 4 , 5 , . . . ,  (2) 

possesses special properties. Here, J,(r) denotes the J-Bessel function of order p and e is 
a free 'shape '  parameter.  This class includes Gaussians in the special limit as (d,e) ~ oc, 
l i m a _ ~  2a~!(Ja(2v/~r)/(2x/~r) a) - e -~2, where c~ = d/2 - 1 and e = 2v~. Similar to several 
other classes of RBFs, the resulting interpolation matrices (here, in up to d dimensions) are 
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positive definite, assuring nonsingular interpolation. The class of Bessel RBFs,  given by (2), is 
unusual in that  

1. there is strong evidence to suggest they are the only type of RBFs  to feature unconditional 
nondivergence of interpolants for any node distribution in n _< d dimensions, in the flat 
limit as e -* 0; 

2. they are band limited in Fourier space. 

The first property tha t  is noted above is relevant in that,  as e ~ 0, RBF interpolation can 
reproduce all previous classical pseudospectral methods [2-4], in some cases stably computable 
by the contour-Pad~ algorithm in [5]. Fornberg et al. [1] proved that  interpolants using ~d(r)  

never diverge in the particularly severe test case of all da ta  lying along a line, and the interpolant 
being evaIuated off tha t  line. Except for Gaussians, which are the limiting case of ~pd(r) as noted 
above, they proved that  no other classically used RBF in the literature possesses this property. 
For the Gaussian case, it was conjectured that  no matter  how points are scattered in any number 
of dimensions, Gaussian interpolants will never diverge in the limit as ¢ ~ 0. This was later 
proven in [6]. 

The second property, noted above, is unusual in that  there are no currently used RBFs that  
are band limited in Fourier space. This property is the cornerstone for proving that  Bessel RBF 
interpolants give polynomial reproduction on unbounded lattices in R ~. Unlike commonly used 
RBFs, such as nmltiquadrics, the Bessel RBF interpolant can reproduce a polynomial of any 
order in a given dimension. 

The remainder of the paper is organized as follows. In Section 2, the polynomial reproduction 
properties of some of the commonly used RBFs are reviewed; Section 3 derives the closed-form 
expression for the Bessel RBF expansion coefficients for the interpolant and gives a proof of exact 
polynomial reproduction in R n. Section 4 concludes the paper with examples in one and two 
dimensions. 

N o t e .  The explicit formulas for RBF expansion coefficients presented in this paper illustrate 
the uniqueness of Bessel RBFs. For other RBFs, no closed-form expressions for the expansion 
coefficients can be given in the cases where exact polynomial reproduction has been observed. In 
those cases, as the interval continually becomes wider, every individual coefficient associated with 
interior nodes will tend to zero. All nontrivial information will come from coefficients located 
towards the ends of the continually increasing interval. The mechanism by which Bessel RBFs 
reproduce polynomials is fundamentally different. For example, in the case of reproducing a 
constant (see Section 4), all tile expansion coefficients are equal and nonzero. 

2.  P O L Y N O M I A L  R E P R O D U C T I O N  

P R O P E R T I E S  O F  C O M M O N L Y  U S E D  R B F S  

Powell [7] and Buhmann [8] summarize the polynomial reproduction properties of the commonly 
used RBFs. Powell proves, via his Theorems 5.2, 5.3, and 7.2, and Buhmann  in Section 4.1 of his 
book, that  as the dimension increases so does the polynomial tha t  can be recovered by the RBF 
interpolant except in the case of Gaussian RBFs. With  1-I~ denoting the set of all polynomials of 
at most degree # in n dimensions (e.g., II9 2 = {1, x,  y, x y ,  x 2, y2}), Table 1 summarizes the values 
of p for which the RBF interpolant, s(2), is such that  s(~) = f (2) ,  f C II~. The entries assume c 
is a positive constant. 

For example, in one dimension, n = 1, inverse multiquadrics and quadratics cannot reproduce 
polynomials of any order while multiquadrics can only reproduce a constant and linear function. 
Interestingly, in three dimensions a cubic can reproduce all polynomials up to quintic order and 
thin plate splines up to quadratic order. Unlike the above examples, we will prove in the following 
section that  the family of Bessel RBFs, given by (2), can reproduce a polynomial  of any order in 
a given dimension. 
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Table 1. Summary of the degree, #, of the polynomial that can be reproduced in a 
given dimension n for some common RBFs. 

1201 

RBF ¢(r) 

Piecewise Smooth 

Linear r 

Cubic r 3 

Thin Plate Spline r 2 log(r) 

Infinitely Smooth 

Multiquadrics 

Inverse Multiquadrics 

Inverse Quadratics 

Gaussians 

# 

n + l  

n + 2  

~/1 + (¢r) 2 n 

1 
n - - 2  

V5 + (¢r) ~ 
1 

n - - 3  1 + @r)  2 

~--¢r 2 . . .  

3. E X A C T  P O L Y N O M I A L  R E P R O D U C T I O N  I N  IR n 

As explained in the introduction,  a key point of this paper is not simply to present nice exact 

expressions for the expansion coefficients with regard to polynomial  reproduction using Bessel 

RBFs, bu t  to specifically note tha t  this class of RBFs is unique in tha t  similar formulas cannot 
be given for other classes of RBFs for which exact polynomial reproduction has been observed. 

Given this unique feature, the RBF Bessel expansion coefficients will first be derived in closed 

form for reproducing a polynomial of degree m in R n on a regular infinite lattice of spacing h. 

This result will then be used in the following section to provide a proof tha t  the resulting Bessel 

RBF expansion yields exact polynomial reproduction. 

3.1. Bes se l  R B F  E x p a n s i o n  Coe f f i c i en t s  for P o l y n o m i a l  I n t e r p o l a t i o n  

Given the vectors • = [x~, x 2 , . . . ,  x,~] and rTt = [rnl, rn2 , . . ,  rn~], let us consider the polynomial 

f (2)  . . . .  ~ "*~ • "< = 2"*. If we let • = [h on a discrete grid, [ = [/~, 12, , l,], of spacing h, - -  32 1 X 2 • . X N • . . 

then the Bessel RBF expansion of 2m on this infinite n-dimensional  lattice is 

(~h) m = ~ ~ (~) ~ (~h I1~- ~ll~), i,~ ~ z, , ,  (a) 

where ~d(er) = dd/2-1(er)/(Er) d/2-1. The sum in (3) can be viewed as a discrete convolution 

which, in Fourier space, can be wri t ten as (cf. [9]) 

T=-oo f~ \ p=-cc  

having set/~ = [ -  k. Taking the inverse Fourier t ransform with respect to ~ = [~1, ~ 2 , . . . ,  ~n]  

gives an integral expression for the coefficients A(fc), 

(ih)~ ~-ih( ~~ ) 
l= - -oo  e~(~~) dE, (4) 

noting that  the frequencies that  can be represented on the defined lattice are ~ E [-vr/h, Tr/h]. 
In order to find a closed form expression for (4), the sums need to be evaluated. 
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First let us examine the sum in the numerator of (4). 

(Th)'~'e-~'~(rO = ~ [(Z,h)"'~ - '"'~'] [(Z~h)'~e-'"'~]. . .  [(~,~,~)mo.~-"~]. 
[=-oc {=-oo 

(5) 

Each expression in the square brackets in the sum (5) can be rewritten. For example in the first 
set of brackets, 

( l ah )m~e_ ihh~  1 _ 1 0 r i l l  ' 

( - - i )  ''7~'1- 09~TI (e-- '~h' l l~l)  ° 

This results in 

(Z-h) ~ e-~"(~~) 
/_-_~ 

• , , ( ~ ' r ~ n  _ _ _1 ~ am' ~ ~-~"("0 

(_~)m,. (_~) .... o ~ T '  " 

1 c 9ml ' "  O m~ 
. . . . . .  0 "~ _2-" e-~h'r("  ( ) ( - i )~ ,  (--i)m~ a~F ~ ¢. 

l ~ - o o  

(6) 

(7) 

The Poisson summation formula (cf. [10]) allows one to rewrite the discrete Fourier transform 
(ET) of a function as its continuous FT summed over a 27r/h  periodic grid. The formula, when 
applied to (7), results in a multidimensional &function that repeats itself with a spacing of 27c/h 

over the Z *~ lattice. That is, 

[=-oc O =-0¢ 

However, since ~ is confined to [ - w / h ,  ~r/h] in all dimensions, only the term q = 0 will make a 
contribution. Thus, 

r=-~ ( - ~ ) ~ , . . .  ( - i ) ~  o~T' o~; ~ . . .  o ~  ~ a (~-). (8) 

In order to simplify the notation, the following definitions are made: 

• " 0  f r t n '  o(-~ 0~F'0~; ~ .  ~ 
1 1 

( - i )  "~ ( i ) ' * ~ ( i )  m2 . . . ( - - i )m*~  " 

Substituting (8) into (4), gives 

; ( k ) =  1 ~_~/h,~/h] ~" ~ 5 ({-) } eit~(;¢() 

1 0~ { e/h(r~f) } 

~=-oo f=6 

d~ (9) 

(10) 

where the following property of &functions has been used (cf. [10]): 

/ /  5(m)(w)F(w) dw = (-1)'r~F('~)(0). 
OO 
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Next, the denominator in (10) needs to be evaluated, first using the Poisson summation formula 

y]~ ~. (~h I1:ot1~) e -~h('~e) = ~ - -  , (11) 
p=-cc q = - ~  2 

where Cd is the continuous F T  of ~Zd in R n, defined as 

Cd ~ 2 = ~d  11~112) d~  

0, 

(12) 

if ~ < 1, 
2 (13)  

if ! 2>1. 
Equation (13) shows tha t  the Bessel RBFs are band limited (i.e., compact  in Fourier space). 

Thus, if @d is to be nonzero in (11), then for Eh < 27r the only term that  enters into the summation 
is q = 0. As a result, the sum in (11) collapses to 

2(e /2-~)-nr( (d  - n ) /2)  (EhF'  

giving the formula for the coefficients 

)~(]c)= ( 2 ( d / 2 - 1 ) - n ) 2 ( ( ~ d ~ n ) / 2 ) ( e h ) n  Or~ { eih@~) } ~ = 0  (14) 

i~zr~/2 0~ --~ (1 -- ~2/e2) (a/2-1) ~/2 

It needs to be noted that  when using ~d(r) in n dimensions to reproduce 2 m  the individual 
terms in the sum, s(~) = y~.~=_~ A(k)~od(e[[2 -- hk[]2), go to zero if d > 2m + 1 and the sum 
converges absolutely if d > 2 ( r e + n ) +  1, where the scalar rn = rnl +rn2 + - . .  +rn,~. Since the radial 
functions are oscillatory (and furthermore, the expansion coefficients exhibit cancellations if any 
of the powers mi are odd), absolute convergence is not necessary for conditional convergence. We 
will see an example of this in the 2D case in Section 4. 

3.2. P r o o f  o f  E x a c t  R e p r o d u c t i o n  o f  2"* for  Besse l  R B F  E x p a n s i o n s  o n  I n f i n i t e  G r i d s  

= .. m,~ = _- N n (including O) and A(k) from (14), THEOREM 1. Given f (2 )  x ~ l x ~  2" x N x m, m C 
then the Bcssel R B F  interpolant, 

s ( ~ )  = ( 2 ( d / ~ - ' ) - ' ~ )  r ( (d  - n ) / 2 )  (Eh) ~ 
irnTcn/2 

~__Z"~_~z 69~rn (1 -- ~2/52)(d/2-1)-n/2 

to this function on an infinite grid of  spacing h is exact for Eh <_ 2% when d is sufficiently large 
that  the sum converges. 

PROOF. For easier reading we will use the representation of the expansion coefficients given 
by (15), and then interchange the order of summation and differentiation. The expression for the 
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interpolant becomes 

- ~d (~ l l~ -  h~ll~) (16) 

1 ( h ) ~  cgm { 1 ~ } ~=0" 

Notice that  ~ _ _ _ ~  e~h(r~g)pd(~ -- hk) is the discrete convolution of two functions. So we can 
again use Poisson's summation formula along with the commutative law for convolutions to 
rewrite the summation as 

O 0  

£ = - ~  ~=-oc 

= A ~ )  ~ ~ 2~3 
j = _ ~  7 -  7 h -  2 • 

Recalling that  the FT of the Bessel RBF is compact on ( -1 ,  1) and that  ~ E [-rr/h, rr/h], then 
only the j = 0 term will make a nonzero contribution to the summation for eh _< 2rr. As a 
note, if eh > 2% additional terms enter into the summation resulting in nonexact reproduction 
and oscillatory behavior of the error as will be numerically demonstrated in the examples. The 
interpolant, (17), now reduces to 

= ~ 0 "~= e~(~/ 
im 0~ ~ ~=0 

4.  E X A M P L E S  

4.1. 1-D Case  

In one dimension, the Bessel RBF expansion for f ( x )  = x m can be simply written as 

2(d /2 -2 )F( (d~  l ) / 2 ) e h  O r e {  eiMk }~=0 
s(x) = - ~ - -  ~ ~d(elx - hkl). (18) 

k = - ~  0~m (1 - ~2/d)(d/2-3/2) 

Notice that  the expansion coefficients A(k) will be a polynomial in k of degree m. Therefore, in 
order for the RBF expansion to he convergent, which was assumed in the proof above, we need to 
choose a d in pd(elx - hkl) = Jd/2_l(elx -- hk])/(elx - hkD d/~-I such that  it decays sufficiently 
more rapidly than k m. For the 1-D case, this can be done by letting d > 2m + 1. Thus, as the 
power of the polynomial increases so must the order of the Bessel RBF. The larger d is the faster 
the series converges. 

Below, we give the coefficients for f ( x )  = 1, x, x 2, x 3. 

f(x) A(k) 
1 o~ 

x ahk 

o(h3 3 3dghk)   
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w h e r e  t h e  c o n s t a n t  c~ = 2 ( d f 2 - 2 ) F ( ( d - 1 ) / 2 ) e h / v ~ .  N o t i c e  t h a t  e v e n  p o l y n o m i a l s  will have  

e x p a n s i o n  coeff ic ients  t h a t  a re  even  p o l y n o m i a l s  in  k a n d  o d d  p o l y n o m i a l s  will  have  e x p a n s i o n  

coeff ic ients  t h a t  are  o d d  p o l y n o m i a l s  in  k. 
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Figure 2. Error plot for the interpolant s(x)  to f ( x )  = z 2 when ~h < 27r and eh > 2~. 
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Figure 3. 

Since the error plots look similar for any polynomial,  we will only show the cases f ( x )  = x and 

f ( z )  = x 2 as given in Figures 1 and 2. We have let d = 8 and h = 1. As stated in the proof of 

the theorem, eh < 27r is required for the RBF expansion to give exact polynomial  reproduction. 

For the value of e = 6.282 we see that  we do get exact reproduction of the polynomial;  however, 

as soon as eh is even slightly greater than  27% exact reproduction is lost and the interpolant  

becomes oscillatory. This is due to the fact that  the Poisson sum for the F T  of pd(er) no longer 

collapses down to one term, introducing additional terms into the RBF expansion. 

Bessel RBF expansions will diverge if d is not appropriately chosen as mentioned above. If we 

allow d < 2m + 1, the interpolant  diverges as is shown in Figure 3, where we again interpolate 

f ( x )  x 2 but  this time with d 4, h 1, e 6.282, or s ( z )  . . . . .  E ~ = - ~  ;~(k)~(~1~ - k l) .  

For the d = 4 case, the coefficients are growing as O(k 2) but  the Bessel RBF is only decaying 

as 0 ( k - 3 / 2 ) ,  resulting in the displayed divergence. 

4.2. 2-D C a s e  

The 2-D case follows the same pat terns observed in the 1-D case, except tha t  the expansion 

coefficients, A, are now a function of two variables k = [kl, k2]. The interpolant  is given by 

s(x,  y)  = 
0~F10~ ~ (1 ~ - ~ ( d / ~ - 2 ~  -~1/ - 6 / ~  ) 

k 2  ~ - - O O  k l  = - - O ¢ )  (19)  
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Figure 4. Error in the  Bessel RBF intcrpolant to f (x ,  y) = xay s. Flat surface is for 
c = 6.28. Oscillatory surface is for e = 6.32. 

where ,~ = 2(d/2-a)F((d - 2)/2)(eh)2/rci (m1+'~2). In 2-D, of the  infini tely smooth  RBFs  reviewed 

in Section 2, mul t iqnadr ics  can reproduce the family of polynomials  {1, x, y, my, x 2, y2}  and in- 

verse mul t iquadr ies  can reproduce a constant .  Again, Bessel RBFs  can reproduce  any polyno- 

mial  x"~ly .... , m l , m 2  E N, so long as d is appropr ia te ly  chosen and eh _ 27c. For the  2-D case 

the expansion coefficients will grow as O(k~lk~  ~2) as i l lus t ra ted  in the  table  below for the set of 
polynomials  II~ = {1, z,  y, xy, x 2, y2}. 

f(x, t]) ~(kl, ~2) 
1 

z, y, xy ~hkl ,  flhk2, ~h2klk2 

However, as a more interest ing example,  we will consider the function f ( x , y )  = xay 5. In 

Figure 4, the  error is plot ted for eh < 27r and eh jus t  s l ightly over 2re wi th  d = 20, h = 1. As 
in the 1-D case, exact  reproduct ion proper t ies  are lost for values of eh > 2rr. This  is also a ease 

where the expansion coefficients kl and k2 a l ternate  in sign due to being odd powers to highest 

order. This results in cancellat ion of terms tha t  accelerates the  convergence of the  sum, (19), 
allowing for the use of a lower value of d than  would be required for absolute  convergence (in this 

case a} > 21). 
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