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Abstract-we present a conformal theory for the random fractal fields. As an example, the den- 
sity of the porous matter is considered. The equation that expresses density in terms of a nonfractal 
field is evaluated. Assuming the hypothesis of scale and conformal symmetry for the latter, we derive 
the correlation functions for density. The log-normal conformal model is studied. @ 2001 Elsevier 
Science Ltd. All rights reserved. 
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1. INTRODUCTION 

Rocks have a developed porous structure that determines the fluid flows, waves, and other pro- 

cesses in them. It has been recognized that the porous structure may be approximated by the 

scale invariant models. This has led to use of various models and of the terminology of the physics 

of disordered phenomena. In particular, the percolation theory and the fractal models were rec- 

ognized to be useful for modelling the flow and dispersion in the porous media (see, for example, 

the review in [1,2]). Some characteristics of the wave fields may also reflect the fractal structure 

of the media. We consider the conformal model of random fractal fields. For concreteness, we 

shall study the correlation functions of density in the porous media, keeping in mind that the 

same relations may be valid for the wave field and for other related characteristics. 

Kolmogorov introduced the conception of scale invariance into the modern physics. The scale 

invariance lies in the fundament in his theory of turbulence [3]. The logarithmic normal dis- 

tribution follows from his scale invariant model of the fine crushing [4]. Improved scaling [5] 

was developed to describe the scale dependent intermittency in turbulence. Those ideas were 

fruitfully explored in various regions of physics (in statistical physics, in the physics of disordered 

phenomena, and so on). In this paper, the improved scaling theory [5] is used as a base for the 

conformal symmetric model of the porous media. 

The conformal symmetry is the simplest extension of the scale one. It gives more definite pre- 

dictions for the statistical characteristics of the random media than the simple scaling hypothesis, 
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see review in [6]. The main aim of the present paper is to incorporate the conformal symmetry 
into the scaling theory of fractal fields. 

2. THE FRACTAL MODEL OF THE POROUS MEDIA 

We define the fractal fields as a limit of the usual smooth functions. Consider the density 
field p(x). The density that is smoothed over a sphere of radius 1 is 

P’(X) = & r<l P(X + r) d3r. 
J - 

At 1 --+ 0, p’(x) + p(x). Let us consider the dimensionless field $(x,l,I’) = &(x)/$(x) that 
is similar to the dimensionless fields of [5] and will be supposed to have the scale symmetry. 
We suppose that all correlation functions of +(x,1,1’) = p”(x)/p’(x) are invariant to the scale 
transform: when the points x and the scales 1 are transformed as x + Kx, 1 -+ Kl, where K is 
any numeric factor, the correlation functions of $(x, 1,l’) remain the same. 

The field $(x,1,1’) has too many arguments. We define a simpler field that has the same 
information. By the definition of $(x, 1, I’), 

?J (x, 1, l”) = ?I, (x, 1,l’) II, (x, l’, 1”) . (1) 

Let us consider the case I” + 1’. In the first order in 1” - l’, we obtain the differential equation 
for $(x, 1,l’): 

a$ (5 171’) 

al’ 
= +b (x7 1,l’) cp (7 1’) 3 (2) 

where cp(x, 1’) = a”$fo)u=l is a dimensionless field that has the scale symmetric correlation 

functions. From the definition of $(x, 1, 1'), we obtain the equation that expresses the fractal 

field p in terms of cp(x, l), 
f%+ (41 

dlnl = $(x)(P(x, 9. (3) 

In practice, the fluctuations may be observed in some finite range of scales 1, < 1 < L. 

Equation (3) has to be supplemented by the boundary condition on any end of the range (l,, L). 

For definiteness, the boundary condition at 1 = L will be assumed to be fixed p(x, L) = po = 

const. The solution to (3) is 

P(X, 1) = p0 ew [-d’i(xJ)$]. (4 

All statistical properties of the fractal density p(x) = p(x,l/L -+ 0) are determined by the 
field ‘p. Assuming some model for ‘p, we obtain full description of p. In the following sections, 
the correlation functions for p are derived, assuming that cp is the scale and conformal symmetric 
field in some subrange lo < 1 < LO, where 10 > I,, LO < L. 

3. SCALE AND CONFORMAL SYMMETRY 

We consider the scale and conformal pair correlation (cumulant) function of cp(x, 1): 

@ (x, Y, 171’) = (‘p (x7 1) cp (Y, 0, 

The spatial homogeneity and isotropy implies 

ip(x-y,l,I’) = Q, ((x-y)2,1,1’)) 

where the same letter @ is used for the sake of simplicity in the right-hand side. 
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The scale symmetry says that the correlation remains unchanged if all spatial scales are ex- 

tended in K times 

@ ((x - Y)~, l,l’) = @ (K” (x - y)“, Kl, K1’) , 

where K is any positive factor. This equation implies that @ depends on two arguments rather 

than on three: 

Q, ((x - y)2, 1, I’) = + ((x;/y)2i;). (5) 

The conformal group of symmetry consists of the scale subgroup plus invariance to the special 

conformal transformation. In two dimensions, arbitrary analytic function of complex variable 

induces some conformal transformation, that locally looks as the scale one. In three dimensions, 

there exists the only independent transformation of space that locally looks as the scale one. This 

transformation is the inversion relative the unit sphere x -+ x/x2. 

The inversion tansforms the radius 1 and the center a of the sphere (x - a)2 5 12, over which 

the density was smoothed, as 

a 
al = - a2 - 12’ II=&. 

Let us suppose that function (5) remains unchanged when all spatial points and scales are trans- 

formed according to (6). The function Q, may be dependent only on the conformal invariant 

[P + V2 - (x - y)2J/(H’), 

@(x,y,l,I’) = a 
[ 
(x - y)2 - 12 - 1’2 

11’ I* 
(7) 

4. SIMPLE SELF-SIMILAR GAUSSIAN PROCESS 

In this section, the random field ‘p is assumed to be Gaussianly distributed. Let us average 

solution (4). Taking into account that (p(x, 1)) = po at any 1, x, we obtain 

l= (-p [-lLp(x,ll)$]). (8) 

For the Gaussian field f(l) and for arbitrary regular function 0, we have the following equality [7]: 

([i 
L 

exp -i 0 (11) f(h) dll 

1 I) = exp -i [/ 
L 

e (II) (f (11)) dll - 1 

L (9) 
1 s s 

L 

2 1 
dll dlld Ul) Q 02) (f (11) f C/2)), 

1 1 . 

Choosing e(Z) = --i/l, f(li) = cp(x,l), we have from (8),(g), 

L dll L dl2 s s - 
1 11 1 

/2 Mx, ofe7 /2)), = 2 (10) 

From (3),(10), we obtain the formula (1n2p(x,1)) = ln2 pc + 2hL((p(x,1i)) %. Let us divide 

the interval of integration into (I, LO) and (La, L), where LO is the upper bound of the similarity 

range. We obtain 

(ln2p(x,Z)) = A + 2vln (11) 

where A is some nonuniversal contribution that comes from large scales LO < II < L. 
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In order to obtain from (4) another correlation function of density p, one needs the second 

correlation of the Gaussian field ‘p. The scale symmetry determines them up to the universal 

function of two dimensional arguments (5), and the conformal symmetry retains the only dimen- 

sionless complex (see (7)). Th is enables us to find the general form of the correlation functions 

of p. 

Let us consider the second correlations of p. Formula (4) gives 

(p(x, l)p(x + rr 0) = d ( [/ exp - iL[~(x,ll)+~(x+r,ll)l~ I) 
Using equation (9) with f(lr) = cp(x, 11) + cp(x + r, 1i), 19(l) = -i/l and taking into account (lo), 

we have 

(p(x, Mx + rr I)) = 

The integral is analyzed in the polar coordinates X, x in Ii, 12 plane: X = dm?, sin x = 

lz/dmz. The region of integration is divided in the three subregions, 

(1) 1 I A IT, 

(2) 7. I A I Lo, 
(3) Lo I x 5 L. 

The integral is evaluated asymptotically at r, 1 < LO < L. 

The last region gives some nonuniversal contribution (~3. In that region, the distance r < X 

and may be omitted. Thus, the dimensionless contribution crs does not depend on r. The scale 

and conformal invariance give in the polar coordinates 

Mx, Mx + r, 1)) = ,:exp{~3+2/1Lo~~~‘2&Q [& (%/)‘I}. (13) 

In Subregion 2, the main logarithmical divergent term is extracted. In the remainder convergent 

contribution, the upper limit is replaced by 00. That approximation gives an error of the order 

of 0(r2/Lg). 

The result of the integration is 

(p(x,l)p(x+r,l)) =Cpif + 2’, 
( ) 

C=exp FQi , [ 1 i=l 

(14) 

where ai, i = 1,2,3 are determined by integrals over Subregions 1, 2, and 3. 

al(A) = 2 1: 
I s 

X’2 --$-@ [4s,sIijkx] = 21’ $/-Y&Q [Is:Iijix] = const, 

a2(A) = 2im $ ir’2ss b @s:iijkx) - CP (&)I = const, 

L dX J J T’4 
aa = 4 

dX 

LO 
T 

0 
sin (9(x, X ~0s x)cp(x + rr X sin x)) 

(15) 

The value C is not universal because it contains the contribution as. On the contrary, the 

power index in (14) is universal. According to the experimental data [l], 2v N 0.3. 
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4.1. Spatial Correlations of Higher Order 

Formula (4) gives for the correlation function of nth order, 

(16) 

With the help of equation (9), the mean of the exponent is written as the exponent of mean value 
of an expression. Using (8), we have 

where r$ = (xi - ~j)~. 

The integral is of the same kind as considered above. Similar straightforward algebra leads to 

where re = (xi - xj)2. 

4.2. Non-Gaussian Conformal Fields of Higher Order 

Let us consider the correlation function of the conformal symmetric field cp of the third order, 

~3(~1,1l,x2,/2,X3,/3,) = (Cp(Xl,ll)cP(x2,12)(P(x3,/3)),. 

There are three conformal invariants of the same kind as in equation (7). The conformal sym- 
metric function has to be equal to 

~3(Xlr~lrX2,~2rX3,~3,) @” 1: + 1; - x92 1: + 1; - x:3 1; + 1; - x:3 = 

1112 

7 > > . 

1113 1312 

The generalization to the correlation functions of more high order is obvious. The correlation 
functions have to depend on all independent conformal invariants. 

5. CONCLUSIONS 

We started from the modified Kolmogorov theory in terms of the ratios of smoothed fields. 
The scale symmetry determines the correlation functions of those fields as universal functions 
of dimensionless arguments. The differential equation (3) expresses the usual fields in terms on 
the scale invariant ones. Conformal symmetry diminished the number of dimensional arguments. 
For the Gaussian (p, the formulae of the log-normal model follows with definite expressions for 
its parameters in terms of the integrals of correlations of the conformal field cp. 
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