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Quilliot (Discrete Math. 1982.) showed that when the bowls of a connected graph 
satisfy the Helly property it is possible to deduce for this graph some fixed point 
and homomorphism extension theorems. For a partially ordered set E a special 
family of subsets is defined which, when it satisfies the Helly property, permits the 
deductions that every homomorphism from E into E has a fixed point, that every 
antitone function from E has “almost” a fixed point, and that there exists a simple 
criterion letting us know when a function f from a subset A of a partially ordered 
set G can be extended into a homomorphism from G to E. 

I. DEFINITIONS 

Since (G, <) is a partial order, x E G, we define: 

Section of x: x+ = section’ofx=[yEG,withy>xX], 

X =section-ofx= [yEG,withy<x]. 

A code is a finite sequence (a,, a2,... a,) of numbers of the set [-I, 11. 

EXAMPLE. (1, 1, -1, 1, -1). If cJ= (a, )...) a,,) is a code, we denote by -0 
the code (-a, X --a,_, ,..., -a,). Every code (a,, a2 ,.,., up), (p < n), is called 
an initial subcode of u = (a, ,..., a,). If cr = (a, ,..., a,), vv = (b, ,..., b,) are two 
codes, we denote by o 0 v the code (a, ,..., a,, b, ,..., b,). We call C, the set 
of all the codes (0 is not commutative in C,). 

Let us consider an oriented graph P, without any loop, P = (X, E). Here, P 
is allowed to have some double-oriented edges. Let 
r = {x = x0, x1 )...) x, = y} a path in P between two vertices x and y 
(Vi E 0, l,..., n - 1, xi and xi+, are adjacent or identical in the corresponding 
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undirected graph). We say that the code (a,, a2,..., a,) is associated with r if 
we have 

vi E 1, 2,..., n; aj= 13.X-i =xi or [G,xi] EE 

(which means the edge [xi-i, xi] is oriented from xi-i to xi) 

a,=-1 *Xi-i =x; or (Xi, ~1 E E. 

We say there is no degeneration in this association if all the vertices 

n 

1 1 xj j=O 

are distinct. We denote by C(x, y) the set 

C(x, y) = {a E C,, such that there exists a path r in P between 

x and y, with u associated to T)}. 

Note that we have clearly 

u E C(x, y) e -u E C(y, x) 

u E C(x, y), v E C(y, z) =s u @ 11 E C(x, z), 

c, = C(x, x). 

For x in X and cr in C,, we denote by B(x, a) or B,(x, a) the set of the 
vertices y of P such that u E C(x, u). Of course we have V’a E C,; 
x E B(x, a) and cr’ is a subcode of cr + B(x, a’) c B(x, 0). If P = (X, E) and 
Q = (Y, F) are two oriented graphs, we say that a function h from X to Y is 
a homomorphism from P to Q, if we have: 

[x,1 E E * [h(x), 4~) I E F or h(x) = h(y). 

Note that we also may consider that there is a loop at every vertex in our 
graph, and therefore a homomorphism may be understood as a function 
preserving the oriented adjacency. 

II. FIRST EXTENSION THEOREM 

Helly Property 

We recall that a family S of subsets of a set Y has the Helly property if 
for every subfamily S’ of S such that VA, B E S’, A n B # @, we also have 
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Our purpose here is first to connect this Helly property to the problem of 
knowing when a function from a subset A of a poset G to a poset G’ may be 
extended into a homomorphism from G to G’. (We already have such a 
connection established for the simple graphs [7,8].) 

THEOREM I. Given two oriented graphs P = (X, E), Q = (Y, F), a subset 
A of X and a function h from A to Y. We suppose that A is finite, X at most 
countable, and that the family of the subsets of Y 

B(Y, 0) yEY, UEC, 

satisfies the Helly property. Then the following equivalency is true: 

h may be extended into a homomorphism h” from P to 
Q-‘fx,yEA, if we have D E C(x, y) we also have 

0 E C@(x), h(y)). (1) 

In fact there is an equivalency between the Helly property for the subsets 
B( y, G), y E Y, o E C,, and the validity of criterion (1) for the existence of 
h”. 

Proof First let us prove that if the Helly property is not satisfied by the 
subsets B( y, u), CJ E C,, y E Y, then criterion (1) does not work. We have 
then the existence of yi ,..., y, E Y, and oi ,..., 0, E C, with 

and 

Vi, j E 1, 2 ,..., n: B(Yi, Ui) nB(Yj> Uj) # @ (a) 

f) B(y,, oi) = @: fP> 
i=l 

Equation (a) also means (si @ (-uj) E C(x,, xj). 

Let us construct a graph P = (X, E), see Fig. 1. 

FIGURE 1 
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FIGURE 2 

Explanation. For i = 1, 2 ,..., n, the path (xi, x0) is constructed in such a 
way that oi is associated with this path, with no degeneration. Two paths 
(xi, x0) and (xj, x,) (j f i) h ave only x0 as a common vertex. 

It is clear then that if we write h(x,) = yi ,..., h(x,) = y,, A = (x1 ,..., x,), 
Theorem I(1) is satisfied by (A, h) and moreover, it is impossible to 
construct h”(x,). Conversely, it is clear that (1) is necessary for the existence 
of the extension h” and we must in fact construct this extension. 

If x0 E X-A, we must in fact construct h(x,) in such a way that (1) is 
satisfied by (A U x0 = A’, h so constructed). If we can do this, obviously we 
may conclude by inductive process on the set X. 

Let us consider u E C(x, x0); x E A and u’ E C(X’, x0); x’ E A. We have 
o @ (-a’) E C(x, x’) and because of (1) cr + (-0’) E C(h(x), h(x’)). This 
means in fact, B(h(x), o) f? B(h(x’), 0’) # @. By the Helly property, we may 
assert 

(-)B(h(x),u)# @, xEA, oE C(x,x,). 

If we choose zq, E r) B(h(x), a), we may write h(x,) = .vO, x E A, 
o E C(x, x0) and clearly for A U x,, and h so constructed, hypothesis (1) is 
still satisfied. We conclude easily. 

Some Examples 

If we consider a tree whose edges are oriented in an arbitrarily way, we 
obtain an oriented graph (Y, F) which satisfies the hypothesis of Theorem I 
(see Fig. 2). 

‘If we consider an elementary cycle without any chord, with length > 4, 
and whose edges are oriented in an arbitrary way, we obtain (Fig. 3) and 
oriented graph (Y, F) which never satisfies the hypothesis of Theorem I. 

FIGURE 3 
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FIGURE 4 

Remark. A graph (Y, F) may contain such a cycle as induced subgraph, 
and satisfy the hypothesis of Theorem I (see Fig. 4). 

3. EXTENSION THEOREMS FOR THE PARTIAL ORDERS 

Let us consider (G, >) a partial order. It generates an oriented graph 
P(G) = (G, E) (comparability oriented graph:[x, y ] E E G x < y). A 
homomorphism between two-order G, G’ is in fact a homomorphism 
between the two graphs P(G) and P(G’). In fact, the easy identification 
between G and P(G) allows us to define for x, y E G, (T E C, the subset 
C(x, v) of C, and the subset B(x, o) of G. The codes which will be useful for 
the orders are the code CJ = (a, ,..., a,), in which no consecutive coefficients 
are equal. We call C, the family of these-codes. 

EXAMPLE. ((l,-l,l,-l)EC,;(l,l,-1,1,-1)&C,). We call the 
number n the length of the code 0. We call a,, the code 

(1, -1, l,...) and ai the code (-1, 1, -1, l,...) . (an, aA E C,). 
n times n times 

A partial order G is said to be a multilattice if for every x, y E G, there exist 
z, z’ E G, with z’ <(; ) < z. 

THEOREM II. Given two partial orders (G, <), (G’, <), G at most 
countable, a finite subset A of G, and a function h from A to G’, we suppose 
that the sections of G’ satisfy the Helly property and also that G’ is a 
multilattice. Then the following equivalency is true: 

h may be extended into a homomorphism h” from G to 
G’ e (t’x, y E A, x < y * h(x) < h(y)) (2) 

Obviously (2) is necessary. 

Conversely, we consider x,, E G -A, and we try to construct h(x,) in such 
a way that A’ = A U x,, and h so completed still satisfy (2). It will be clear!y 
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sufficient to do that in order to conclude by an inductive process on the set 
G. We say 

u= (xEA,x<x,}, u={yEA,y>x,}. 

For example, if u is empty, then it is sufficient to choose h(x,) = yO such that 
Vy E v, h(y) > y,,. (It will be possible since G’ is a multilattice and u is 
finite.) If both u and u are nonempty, we say that 

VXEU, JJEV, x<y~h(x)+nh(y)-f@, 

vx, z E u, ~=y~h(x)+nh(~)+f@, 

t,yEv, z<y, x<t and h(y)- n h(t)- E @. 

By the Helly property, we can conclude 

0 h(x)+ n h(y)- # @, x E U, y E v, and we choose y, = h(x,) 
with y,, E 0 h(x)+ n h(y)-, x E u, y E u. 

Remark. All the lattices satisfy the property of being a multilattice, with 
sections satisfying the Helly property. (See [2] or [3].) 

If 1~: liG~, { ~~7 ljs./ V and J are finite) is a family of pairwise intersecting 
sections of a lattice, it is clear that both Vie, xi and AjEJ yj are in f),,, XT, 
njE, yj. There are other examples, however. The set of the compact 
intervals of the real line, with the dominating order 

X & ox< y  

also satisfies this property, without being a lattice. (fi x n y # @, there is no 
smallest interval among the intervals which dominate both x and y.) 

THEOREM III. We consider two partial orders (G, >), (G’, > ), G at 
most countable, a finite subset A of G, and we suppose that the family of the 
subsets of G’, B(y, a), y E G’, o E C,, satisfies the Helly property. Then a 
function h from A to G’ being given, the following equivalency is true: 

h may be extended into a homomorphism from G to G’ u [ Vx, 

y E A, o E C(x, y), u E C, 3 u E C(h(x), h(y))]. (3) 

In fact there is an equivalency between the Helly property for the subsets 
B(y, G), y E G’, o E C,, and the validity of criterion (3). 

The connection between Theorems I and III is obvious. If (a, ,..., a,) is 
equal to a code in C,, we call co the code obtaned by confusing every 
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maximal sequence of identical coefficients in u in one unique coefficient with 
the same value. 

u = (1, 1, 1, -1, 1, -1, -1, 1) * 0O = (1, -1, 1, -1, l), 

cr” is in C,. We only have to say then that in a partial order (G, the following 
equivalency is true: 

u E C(x, y) e u” E C(x, y) (x, Y E G). 

The conclusion is then obvious by the application of Theorem I. 
Of course every partial order G’ satisfying the hypothesis of Theorem II 

(multilattice, with sections having the Helly property), satisfies Theorem III 
also. We may find some other orders. 

THEOREM IV. For n E N, we give the partially ordered sets T,, T;, G, 
in Fig. 5. The representation graphs for T,, TA, G, in Fig. 5 are defined as 
follows: There is an arrow from x to y o x < y and there is no z with 
x < z < y. Then T,, T;, G, satisfy the hypothesis on G’ in Theorem III. 

Proof. It is obvious in the case of T,, and TL (the sets B(x, a), o E C,, 
x E T,,, are in fact intervals of the set totally ordered (0, 1, 2,..., n). In the 
case of G,, we must proceed by induction on n. If CJ = (a, ,...l a, is a code of 

T” O n 

T’, ’ 
n 

n 

(n-i)' 

FIGURE 5 
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C,, we call (pi the code (uz ,..., a,,) also in C,. We identify the suborder of 6, 
G - (n, n - 4, (n - $)‘) with G,_ i. We say that 

Lengthofo> l*B(n-+,o)f~G,-, =B(n- l,a)nGNp,, 

=d?((n-+)‘,a)nG,-, =B(n- l,c~)nG,p,, 

Lengthofa>2*B(n,a)nG,-, =B(n- l,o,)nG,_,. 

These remarks clearly permit the conclusion. 

4. APPLICATION TO THE NOTION OF DIMENSION 

As in the case of the simple graphs, we may deduce from this several 
concepts of dimension. Given a partial order (G, >) (at most countable), 
x, y E G, with x < y, we see that the function h from {x, y) to Z (set of the 
relative integers) defined by h(x) = 0, h(y) = 1, may be extended into a 
homomorphism from G to Z, (Theorem II). If x - y (x incomparable with 
y), the two functions h, h’ from (x, y) to Z defined by: h(x) = 0, h(y) = 1, 
h’(x) = 1, h’(y) = 0 may be extended into 2 homomorphisms h”, h’” from G 
to z. 

We deduce a coefficient a(G) defined by 

o(G) = smallest number of homomorpisms h, , h*,..., h, from G to 
2 such that, for every x, y in G, we have x < y * there exists 
i E (1. 2,..., n) with hi(x) < h,(y), x - y =F there exists 
i, j E (1, 2 ,..., n) with hi(x) < h,(y), h,(y) < h,(x). (‘4) 

If G is infinite, a(G) may be infinite. 

Recall: Dimension of a Poset 

A realizer of a poset (G, <) is a family of linear order relations on G, 
(linear extensions), R 1, R, ,..., R,, such that x < y(x, y E G) Q Vi E 1, 2 ,..., k, 
XR i y. The dimension of (G, <) is then the smallest cardinality k of a realizer 
of (G, <). (Ref. (Dushnik and Miller 141, Trotter [ II]). Therefore we may 
assert 

PROPOSITION I. Here, a(G) as defined above is in fact the dimension OJ 
the poset (G, <). 

ProoJ Let us call dim(G) the coefficient of dimension of G. Obviously, 
we have dim(G) > a(G), since every linear order on G, compatible with our 
relation >, may be interpreted in terms of homomorphisms from G to Z. 
Conversely, if we consider a homomorphism h from G to Z, it is easy to 
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consider it as a homomorphism from G to R (the real numbers) and to 
modify it slightly in a homomorphism h” from G to R with 

Vx # y E G, h”(x) # h”(y), h(x) < h(Y) * h”(x) < h”(Y), 

ho induces at its turn a homomorphism from G to Z, which we also call h”. 
If h, ,..., h, is a family of homomorphisms from G to Z defining o(G) as in 
(A), we see that h:,..., h”, has the same property, and may also be interpreted 
as linear orders on G defining the Dushnik-Miller coefficient. So we con- 
clude. 

We may proceed the same way, replacing Z by any lattice, and also 
replacing Z by the set of the compact intervals of R, with the dominating 
order. In that case we return to the coefficient of interval dimension of the 
poset G, denoted by Int dim(G). (See Trotter and Moore [IO].) We may also 
define a coefficient as follows: Given a finite order (G, <), x, y E G, a 
homomorphism h from G to T,,, TL, or G, is said to be separating for x and 
y if we have 

Case 1. h(x) = 0; h(y) = n; 0, E C(x, y). 

Case 2. h(x) = 0; h(y) = n; a; E C(x, y). 

Case 3. h(x) = 0; h(y) = n; o;+ , and u,+ , E C(x, y). 

A family h, ,..., h, of homomorphisms, each one from G to one of the 
orders of the family {T,},ENU{T~}nENU{Gn}nEN=F will be called a 
separating family for G, if we have Vx, y E G, there exists i E 1, 2,..., p, with 
hi is separating for x, y. Then we define y(G) as equal to a strong dimension 
of G equals to the smallest cardinality of a separating family for G. 

5. CONTRACTIBILITY: FIXED POINT PROBLEMS 

We shall say that a finite poset (G, <) is a Helly poset if its comparability 
graph is connected and if the family of subsets B(x, a), x E G, u E C,, 
satisfies the Helly property. We shall also say that x,, E G stops down y, E G 
if we have 

x0 < Yo ; YEG, Y<Y,*Y<xo, 

that x0 E G stops up y, E G if we have 

x0 > Yo ; YEG, Y>Y,*Y>.~,, 

that x0 stops y,, if x0 stops down or stops up y,. If we refer to the 
terminology of Rival 191, we see that we get y, E G is irreducible in 

582a/35/2-6 
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G = there exists x,, such that x,, stops y,. We shall say that (G, <) is 
contractible or based on Rival [9], that (G, <) is dismantlable by being 
ireducible if we may order the elements of G, G = (x, ,..., x,) in such way 
that Vi < 1, 2,..., n - 1, xi is irreducible in G - (x ,,..., xi- i). 

PROPOSITION II. Every poset T,, TA, G, (n > 0), is contractible. 

It is a simple verification. We now connect our notion of a Helly poset to 
this notion of contractability. 

THEOREM V. Helly Poset is contractible. 

We know 191, that if G does not contain any crown (alternating cycle), G 
must be contractible. It does not seem obvious that a Helly poset cannot 
contain any crown in spite of the fact that G itself cannot be equal to a 
crown. In fact, we shall consider a Helly poset (6, <), and prove our 
assertion by induction on ( G]. Let us consider x,, E G and a code 
u = (a, ,..., a,) E C,) E C, such that 

a,=Z; B(x,,u)=G; if u’ = (a, ,..., a p-J, W,, u’) f G. 

It is obvious that u exists. 
Let us suppose ap = -1. (The reasoning will be the same if apeI = 1.) We 

consider yO E B(x,, u) - B(x,, u’), maximal with this property. If y > y,, we 
obviously have B(y,, l)nB(y,-1)# @; B(y,, l)nB(x,,u’)f @; (Since 
y, is maximal in B(x,, u) - B(x,, u’).) B( y, -1) n B(x,, u’) # @; Therefore 

n y>yoB(~, -1) nB(yoy 1) nm,, ~7 f @. 
If zO is in this intersection, we clearly have zO stops down up yO. In order 

to achieve the proof, we only have to verify that G - y,,, if (b, ,..., bk) E C, 
and is associated with a path T in the comparability graph of G, then 

(b i,..., bk) is also associated with the path in the comparability graph of 
G - y,, which is obtained from T by replacing y, with zO every time it 
appears in T, 

COROLLARY I. If (G, <) is a Helly pose& every homomorphism from G 
into itself has a fixed point. 

It is sufficient to apply Theorem V and a theorem of Rival [9], which 
asserts that if a finite poset is contractible, then every homomorphism from 
this poset into itself possesses a fixed point. We are going to show now that 
it is possible to obtain a similar result concerning the antitone maps from the 
poset G into itself. We are going to show now that it is possible to obtain a 
similar result concerning the antitone maps from the poset G into itself. 



HELLY POSET I95 

Remark. A function h from G to G is an antitone map (G is a partial 
order), if we have x, y E G, x < y * h(x) > h(y). 

THEOREM VI. If G is a finite contractible partial order, and if h is an 
antitone map from G to G, we have one of two possibilities which is true: 

(1) There exists a E G, with h(a) = a. 

(2) There exists a, ,6 E G, with a < p, h(a) = /?, h(J) = a. 

Remark. Conditions (I), (2) may be summarized. There exist a, /I E G, 
with a </I and h(a) = j3, h@) = a. 

We proceed by induction on G. We consider x0, y, E G, with x0 steps (for 
instance stops down) yO. We define the following retraction R from G to 
G- yo: 

x# yo>R(x)=x; R(Y,) = xo. 

By induction there must occur in G - y. one of the following: 

(1) There exists a’ E G - y, with R 0 h(a’) = a’. 

(2) There exist a’, p’ E G - y, with a’ < p’; .R 0 h(a’) =/I’; 
R 0 h@‘) = a’. 

Case 1. The only problem rises when we have h(x,) = y,; 
h(Yo) f x0, Yo. Clearly, however, we deduce that since ,h is antitone, 

xo < ~0 * Wo) < Wo) = ~0, and since x0 stops down y,, h( y,) < x0. 
Repeating this, we get h2(yo) > h(x,) = Y,, h3(yo) < h(y,), h”(y,) > h2(yo), 
and so on. We get two sequences 

Y, < h2(.vo) G h4(yo) ,< ... < h2Yyo) < ... , 

x0 > h(y,) > h3(yo) > ... > h2”+‘(yo) > ... . 

Since G is finite, we must get, when n is great enough 

h2”(yo) = hzMi2(yo) > h2”+l(yo)= h2”+3(yo). 
(I B 

Clearly, we get our result. 

Case 2. The only problem arises from the situation 

YxEG,x#y,with 
i 

h(x) = Y,, > 
h(x,) = x, x and x0 comparable. 

Let us suppose that x0 < x. Then we have h(x,) > h(x), which means 
X>Yo>Xo and we get a contradiction. Thus we have x0 > x and 
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y, > x0 > x. We also have h(Yo)<h(xo)=x (h antitone), 

h2(Yo) > h(x)= Yo, h3(Yo) < h(Yo), and so on. We proceed as in Case 1 and 
conclude. 

COROLLARY II. If (G, <) is a Helly poset and if h is an antitone map 
from G into itself, then there x0 E G such that 

4x,) < xo; h’(x,) =x0. 

It is an obvious consequence of Theorems V and VI. 

Note that this result may be compared to the fixed-edge theorem of 
Nowakowski and Rival [7]: Given a finite graph G = (X, E), with loops and 
no multiple edges (reflexive graph), for every homomorphism h from G into 
itself, we may find [a, b] E E such that {h(a), h(b)} = {a, b}, if and only if G 
is connected and without any cycle (G is a tree). 

We may also propose an other proof of Corollary III which does not use 
Theorem V. Let us consider a separating family of homomorphisms f,,...,f,, 
from G to posets of the family 

It gives rise to a homomorphism f from G to an ordered set H, which is a 
product of posets of the class F. Here, H is contractible. (The product of two 
contractible posets is contractible. See Baclawski and Bjorner [l] or Duffus 
and Rival [S].) In fact, we may consider G as a suborder of H. By the 
definition of a separating family, we see that 

24 (5 C(f (XL f CY>>T x, y E G - u E C(x, Y>, (u E Cl>. 

This means that considering G as a suborder of H, through the embedding& 
we may apply Theorem III to the identical function I from G to G and 
extend it into a retraction r from H to G. Theorem VI gives us 3x, E H, with 

homomor(x,) = -x0. 

Clearly, this means that x0 E G, and therefore that x0 is the solution to our 
problem. Note that we could have applied the same reasoning to prove 
Corollary I. This proof technique using the notion of retraction and 
embedding may be connected to the work about the retractions found in [5]. 

Let us now give a last fixed-point result which involved the automorphism 
group of a Helly poset. If (G, <) is a finite poset, an automorphism of G is a 
one-to-one homomorphism from G into itself. These automorphism form a 
group for the composition of the homomorphisms, denoted by A(G). We get 
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THEOREM VII. Given (G, <) a Helly poset and A(G) its automorphism 
group. Then there exists in G a chain which is invariant under the action of 
A(G). (In particular there exists a point in G which is invariant under the 
action of A(G).) 

Proof. We proceed by induction on 1 GI, and suppose that G is not a total 
order (a trivial case). Let us consider a code u = (a,,..., ap) E C, such that 

Vx, y E G, B(x, u) n B( y, u) # @. (1) 

Then (I) does not hold if we replace u with U’ = (a, ,..., app,). (Obviously u 
exists and p > 1.) We can pose 

G’= f-) B(x,u)#@ 
XEG 

(Helly property). Obviously 1 G’ / < 1 G I. Since G is not a total order. Also G’ 
is globally invariant under the action of A(G). It will be easy to conclude if 
we can prove that G’ is a Helly poset. For this we only have to prove that if 
x0, y, E G’ and if zi E C, is in C&x,,, y,), it is also in C,,(x,, y,). Let us 
write z, = (b, ,..,, bk), v’ = (b, ,..., bk-,), and proceed by induction on k, where 
B(x,, v’) n B( yo, -b,J f @ and x0, Y, E f-LEG B(x, u> * (Helly property), 
there exists z. E G’ with v’ E C,(X,, zo), 6, E C&z,, yo). 

Clearly, we see that this process gives us the result. 
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