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1. INTRODUCTION 

The concept of optimizing set functions (i.e., functions of sets) arises in 
various mathematical areas. For example, an early result was the 
Neyman-Pearson lemma of statistics [6, 111, which is simply the statement 
of a sufficient condition for maximizing an integral over a single set. The 
necessity of this condition, as well as the existence of a solution, was later 
established in [S]. These results were subsequently generalized to n sets 
and a duality theory was developed in [3,4]. However, all these results 
were for special cases of set functions involving integrals. The first general 
theory for optimizing set functions was developed by Morris [lo], who 
obtained for functions of a single set the analogs to standard mathematical 
programming results. Subsequent work [Z, 7,8, 141 on duality and mul- 
tiple objective optimization has remained confined to functions of a single 
set. 

In this paper previous work is generalized by minimizing n-set functions, 
i.e., functions of n sets. In Section 2 some preliminary matters are con- 
sidered and the problem is formally stated. In Section 3 differential 
necessary conditions for local minima are developed. These conditions 
are shown to be sufficient under convexity assumptions in Section 4. 
Saddlepoint optimality conditions and a Lagrangian duality are obtained 
in Section 5. 
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2. PRELIMINARIES 

Throughout this paper let (X, -c4, ,u) be a finite atomless measure space. 
We will be concerned with functions on A”’ = {(S,, . . . . S,): Sip &, 
i= 1 , . . . . n}. The fact that d” is only a semialgebra, not a a-algebra, does 
not limit the analysis. d” is a pseudometric space under the pseudometric 
d defined by 

4(R, ,..., &I, (S, ?..., SJI = 1 
m 

, Ri, Sip&, i= 1, . . . . n, 

where A denotes symmetric difference. Essentially (R,, . . . . R,) and 
(S , , . ..1 S,) will be regarded as equivalent if Rj and S;, i= 1, . . . . n, differ only 
by zero measure. This practice presents no difhculty in an optimization 
theory over the class of pseudocontinuous n-set functions F: d” -+ R’, as 
noted below. This paper is therefore restricted to such functions. The proof 
of Result 2.2 is an immediate consequence of Definition 2.1. 

DEFINITION 2.1. The n-set function F is said to be d-pseudocontinuous 
at (R,, . . . . R,) on the pseudometric space (&‘, d) if given E > 0 there 
exists 6 > 0 for which IF(R,, . . . . R,) - F(S,, . . . . S,,)l <E whenever 
dC(R,, . . . . 41, (S,, . . . . S,,)l < 6. 

RESULT 2.2. If F: d” -+ R’ is d-pseudocontinuous on the pseudometric 
space (&“, d) and d[(R,, . . . . R,), (S,, . . . . S,)] =O, then F(R,, . . . . R,) = 

f’t‘(s 1, . ..? $1. 

The counterparts of the usual definitions of local and global minima are 
next stated for (JP, d). 

DEFINITION 2.3. Let F: d” -+ R’ and B c d”. Then (S:, . . . . S,*) E g is a 
(global) minimum of F on g if F(ST, . . . . S,*)< F(S,, . . . . S,) for all 
(S 1, . . . . S,) E a. (S:, . . . . S,*) is a local minimum of F on @ if there exists 
6 > 0 such that F(S:, . . . . S,*) < F(S,, . . . . S,) for all (S,, . . . . S,) E g satisfying 
dC(S,, . ..> S,,), (ST, . . . . S,*)l < 6. 

For F, G,, . . . . G,: d” -+ R’ the problem to be analyzed here is to find 
minima of F on B = {(S,, . . . . S,) : G,(S,, . . . . S,) d 0, j= 1, . . . . m}, i.e., to 

minimize F(S,, . . . . S,) subject to 
(1) 

G;(S, , . . . . S,) < 0, j= 1, . . . . m. 
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3. LOCAL DIFFERENTIAL THEORY 

For h E L,(X, d, p) and SE d with characteristic function xs~ 
L,(X, d, p), the integral js h dp will be denoted by (h, xs). Definition 3.1 
is due to Morris [lo]. 

DEFINITION 3.1. A set function H: ~2 + R’ is differentiable at S* E .d if 
there exists h,, E L,(X, d, p), the derivative of H at S*, such that 

H(S) = H(S*) + (hs*, xs - xs* > + E,(S*, S), 

where E,(S*, S) is o[d(S*, S)], i.e., lim,,,*,,,+O E,(S*, S)Id(S*, S) = 0. 

Differentiation for n-set functions is next defined. 

DEFINITION 3.2. Let F: d” + R’ and (ST, . . . . S,*) E d”. Then F is said 
to have a partial derivative at (SF, . . . . S,*) with respect to S, if the set 
function H(S,) = F(S:, . . . . Si*_ r, S;, ST+ 1, . . . . S,*) has derivative h,* at S,*. 
In that case we define the ith partial derivative of F at (ST, . . . . Sj) to be 
fs;,...,s~ = hs:. 

DEFINITION 3.3. Let I? d” + R’ and (ST, . . . . S,*) E d”. Then F is said 
to be differentiable at (S:, . . . . S,*) if all the partials fgr ,,,.,. Y,*, i = 1, . . . . n, exist 
and satisfy 

F(S,, . . . . S,) = F(S:, . . . . Xl+ if (flrf ,...,_ 5-,‘, xs,-xs4 
,=I 

+ W,C($+, . ..> CL (S, > . . . . S,,)l, (2) 

where W,[(S:, . . . . S,*), (S,, . . . . S,)] is o{d[(ST, . . . . S,*), (S,, . . . . S,)]}. 

As in Proposition 2.2 of [lo], if F: G?” --+ R’ is differentiable, its partial 
derivatives are unique. An example of a differentiable n-set function is as 
follows. 

EXAMPLE 3.4. Define F(S,, . . . . S,) = u(<u,, xs,), . . . . <u,, xsn)), where 
U: R” + R’ is differentiable and u,, . . . . u, E L,(X, ~2, p). Then F is differen- 
tiable and 

f&s: = u(‘)((“i2 XS;), ...3 Gun, XSZ)) l-)tt i=l n, ,..., 

where u(‘) denotes the ith partial derivative of U. 

Differential necessary conditions for a local (and hence global) minimum 
to (1) are next established. Result 3.5, which follows readily from elemen- 

409/127’1-13 
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tary properties of integration and (2), justifies such a development in view 
of Result 2.2 and the previous restriction to pseudocontinuous functions. 
The result also illustrates similarities to differentiability of real-valued 
function of n-variables. In that setting (see [12]) differentiability implies 
continuity, and the continuity of the partial derivatives implies that the 
gradient exists and is continuous. 

RESULT 3.5. If F: d” + R’ is differentiable at (S:, . . . . S,*), then F is 
pseudocontinuous a (ST, . . . . S,T) and x7=, (f ‘& ,,,.,. mC, xs, - xs:) is a 
pseudocontinuous function of (S,, . . . . S,). 

Theorem 3.7 below is the analog of the Fritz John conditions of 
mathematical programming [ 11. A well-known lemma of Liapunov [ 131 is 
needed. 

LEMMA 3.6. Let h,: X+ RI, i= 1, . . . . p, he integrable fimctions on the 
atomless measure space (X, &, p) and SE d. Then the range of the vector 
measure ((h, , xs), . . . . (h,, xs)) is convex and compact. 

THEOREM 3.7. Let (X, &, p) be a finite atomless measure space and let 
F, G, , . . . . G, : A@‘” + R’ be differentiable at (ST, . . . . S,*). If (ST, . . . . S,*) is a 
local minimum for (l), then there exist scalars A,*, A:, . . . . 22 such that 

l 
iof I,-?, ,s; + f yg;; ..,... s;t xs, - xs: 3 0 forall S,Ed, i= 1, . . . . n 

,= 1 ) 

(3) 

i:G,(S;, . . . . S,*) = 0, j= 1, . . . . m (4) 

Lo*, I”:, . ..) 2; 3 0 (5) 

G,(S:, . . . . S,*) d 0, j=l 2 . . . . m (6) 

1.: not all zero, (7) 

where g&, ..,, s: is the ith partial of G, at (SF, .,., S,*). 

Proof: In the proof we write f; for f $ ,,,,, sZ, g$ for g$ ,,,,, s,r, and f ‘, g” 
for arbitrary (S, ,..., S,). Define 

(uO, u, ,..., v,): there exists (S,, . . . . S,) E d” such that 

003 i (f;>Xs,-Xs:)? 
,=I 

vi 2 G,(S;, . . . . w+ i <g;, xs,-xs:)9 j= 1, . . . . m 
*=I 
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and 

B= ((UO> u1, . . . . v,): v,<O,j=O, 1, ..‘) ml. 

The set B is clearly convex. To prove that A is convex it suffices to prove 
that the translate of A. 

(oO, II,, . . . . u,): there exists (S, , . . . . S,,) E N’ such that 

is convex. Consider 

(u,, II,, . . . . II,): there exists (S,, .~., S,) E d” such that 

uo= i (f',,xs,),u,= i (g;>xs,)t i 

i= I ,=I 
j=l , . . . . m 

and 

c, = 
(uo, UI > ..., u,): there exists S, E -L74 such that 

uo= <.f*,xs,),u,= W;, xs,),i= L . . ..m ' 

i= 1, . . . . n. Each Ci is convex from Lemma 3.6, so A, = C, + + C’, = 
{x;=l~i:~,~C,, i=l,..., n} is convex. Similarly A,=A2+R;+, is con- 
vex, and the convexity of A follows. 

A and B are next shown to be disjoint. Assume the contrary, i.e., that 
there exists (S, , . . . . S,) E d” for which 

and Gj(ST, -., S,Z+ i (g$, xs,-x,+ 
r=, 

<O, j=l,..., m. 

For i= 1, . . . . n, let S+ = S;\S,* and Si = S,*\S, so that IS, - xs,+ = 
xs: - xs;. Then from Lemma 3.6 there exist families S,+(M) c S,+ and 
S; (a) c S,: satisfying 
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for c( E [0, 11. Also let S,(a) = [S+(E) u ST]\S;(a). Since d[S,?, S,(or)] = 
ad[ST, S,], it can be deduced from (2) that 

=ff -f (f’,,Xs,-Xs:)+4”). 
i=l 

Similarly, 

Gj[sl(cr)7 ...> Sri(a)] -Gj[S?, ...> S,*l 

=x f (g’:, xs,-xs:) +du), 
r=l 

From (8) and (9) there exists BE (0, 1) 

(8) 

j=l 7 .“, m. (9) 

such that for CIE (0,6) 
both F[S,(cr), . . . . S,(a)] -F[S:, . . . . S,*] t0 and G,[S,(c(), . . . . S,(ol)] - 
G,[S:, . . . . S,*] < 0, j= 1, . . . . m, contradicting that (ST, . . . . S,*) is local 
minimum. 

A and B are thus disjoint convex sets and can be separated by a hyper- 
plane. Hence there exist scalars A,*, ,I?, . . . . AZ, not all zero, and 4 for which 
C,“=, 2,*2,*0,3 5 if (h, ul, . . . . u,)EA and ~,J’=,,~,*z.,<~ if (uO,ul ,..., u,)EB. 
As usual, it can be shown that < = 0. Hence 

G i (J‘;~xs,-xxs:) 
i=, 

+ f ATG,(S:, . . . . XT)+ f i J$Y&xs,-xs:) 
,=I j= 1 I= I 

30 for all (S, , . . . . S,) Ed”. (10) 

Setting S;= ST in (10) yields (4), and (10) becomes 

A+, u:,xs,-xs:)+ 2 i ~f(g’;Js,-xXs:) 
j=l r=l 

20 for all (S,, . . . . S,) E &“. (11) 

Letting S, = S,*, k # i, in (11) establishes (3). Since (5)-(7) are immediate, 
the proof is complete. 1 

KuhnTucker conditions for (1) can be stated under the additional 
assumption that (ST, . . . . S,*) is regular as defined in Definition 3.8. 
Corollary 3.9 then follows from Theorem 3.7 by standard arguments as 
in [9]. 
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DEFINITION 3.8. (ST, . . . . S,*) is said to be regular if there exists 

(S , , . . . . S,) for which 

Gj(s:,...,s,*)+ f  (g~,XS,-XS:)<"Y 
j=l , . . . . m. 

,=I 

COROLLARY 3.9. In addition to the hypotheses of the previous theorem, 
suppose that (ST, . . . . S,*) is regular. Then there exist A:, . . . . A$, which, 
together with AZ = 1, satisfy (3)-(6). 

4. CONVEXITY AND GLOBAL DIFFERENTIAL THEORY 

The convexity of n-set functions is now defined, some properties related 
to convexity are established, and the conditions of Corollary 3.9 are shown 
to be sufficient for a global minimum if F, G, , . . . . G, are convex. 

DEFINITION 4.1. Let F: &“’ -+ R’. F is said to be convex if for each 
1. E [0, l] and (R,, . . . . R,), (S,, . . . . S,) E d” 

lim F[Rk u S; u (R, n S,), . . . . R; u S; u (R, n S,)] 
k-r 

< AF( R, , . . . . R,)+ (1-A) F(S,, . ..> S,) 

for any sequences of sets Rf c Ri\S, and Sf c Sj\ Ri, k = 1, 2, . . . . satisfying 
x,+ +‘I’* I.x~,?,~, and xs: +H.* (1 -E.) x~,,~,, i= 1, . . . . n. 

EXAMPLE 4.2. The n-set function F(S,, . . . . S,) = u( (v,, xs,), . . . . 

(v,,, x.7,)), where u: R” -+ R’ is convex and v,, . . . . v, E L,(X, d, u), is 
convex. 

The following two lemmas are proved in [lo]. 

LEMMA 4.3. Let (X, d, u) be a finite atomless measure space with 
L, (X, G?, u) separable. Then 1~s is in the weak* closure of x = 
{~R:RE.d}cL,(X,~,u)forallS~dandA~[O,l]. 

LEMMA 4.4. Let R, SE d and 1, E [0, 11. Zf R,, Sk, k = 1, 2, . . . . are 
sequences of sets in J&’ such that the L,(X, &, u) sequences 

then 



200 H. W. CORLEY 

THEOREM 4.5. Let (X, d, p) he a finite atomless measure space and let 
F: d” + R’ be differentiable on d”. If L,(X, JZZ, p) is separable and F is 
convex, then for all (R, , . . . . R,,), (S, , . . . . S,,) E &” 

i, (“f ‘R I...., R,, x.5 - xR,) < F(S,, . . . . S,) -FIR,, . . . . R,,). (12) 

Proof: Fix 0 < 2 < 1. It follows from Lemma 4.3 that there exist sequen- 
ces RF(A) c Ri\Si and Sk(%) c Si\ Ri for which 

I(* (1 - 4 x~,‘,.~,, 
* 

XR)(I) xqc,., A 4cY, R,’ 

Set Tf(;i) = Rf;(l) u S:(;-) u (R, n S,), i= 1, . . . . II. Then from Definition 4.1, 

7 
hm 

k + x 
F[T:(/I), . . . . T:(i)] d (1 -I&) F(R,, . . . . R,) + E,F(S,, . . . . S,,), 

so 

lim {F[T;(A), . . . . T;(A)] - F(R,, . . . . R,,}/A 
k-r 

6 F(S,, . . . . S,,) - F(R,, . . . . R,,). 

Applying (2) to (12) and invoking Lemma 4.4 give 

(13) 

,f .fi ,,.... R,,XS,-XR, + !Ipt W,-[(Tt(%), . . . . T;(i)), (R,, . . . . R,)]/3. 
,=I 

< F(S,, . . . . S,) - F(R,, . . . . R,,). (14) 

But using the fact that Rt(A)c R,\Si and SAC R,\S,, it can be shown 
that 

lim lim 
2 + 0 k 4 x’ 

W’,[(T:(n), . . . . T:(i)), (R,, . . . . R,,)]/A =O. 

Letting il + 0 in (14) now yields (12). 1 

THEOREM 4.6. Let (X, &‘, p) be a finite atomless measure space and let 
F: d” --f R’ be differentiable on 1;p”. lf (12) is satisfiedfor all (R,, . . . . R,), 
(S, , . . . . S,) E ,sl”, then F is convex. 

Proof: For J*E [0, l] and (R,, . . . . R,), (S,, . . . . S,,)E.&‘~, let R:c R,\S, 
and Sf c Si\ R, be such that xRf +“‘* IzxRJls, and xsf +‘I’* (1 - A) x,~,~~,. 
Setting T;” = R: u Sf u ( Ri n S;) for each k we have by hypothesis that 

i;, tsi, . ..) 7$7xs,-x7$) < F(S,, . . . . S,) - F( T;, . . . . T;). (15) 
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Letting k --f GO in (15) and applying Lemma 4.4 give 

lim 
k-s ,=I 

(fr: . . 7$>4Xs,-XR,)) 

< F(S,, . . . . S,) - lim 
k-x 

F( T:, . . . . T;). (16) 

Replacing (S,, . . . . S,) by (R, , . . . . R,,) in (15) similarly yields 

lim i <fq . ...) 769 (1 -J.)(XR,-XS,)) 
k-m,,1 

< F(R,, . . . . R,) - lim F(T;, . . . . T;). (17) 
k-u: 

Upon multiplying (16) by (1 - %), (17) by A, and then adding, it follows 
7 

that hm F( Tt, . . . . T:) 6 AF(R,, . . . . R,,) + (1 - A) F(S,, . . . . S,,) to establish the 
convexity of F. 1 

It should be noted that the separability of L,(X, *d, p) is not required in 
Theorem 4.6. 

THEOREM 4.7. Let (A’, d, p) be a finite atomless measure space with 
L,(X, d, p) separable. Suppose that F, G,, . . . . G,,,: &“‘-+ R’ are djflkren- 
tiahle at (ST, . . . . S,*), as well as convex. If there exist scalars 2:, . . . . i-2 such 
that (ST, . . . . S,*) and AT, . . . . %z, together with 2,* = 1, satisfy (3)-(6), then 
(ST, . . . . Sz) is a (global) minimum for (1). 

Proof: Suppose that (S, , . . . . S,) E: &“’ satisfies G,(S, , . . . . S,) f 0, 
j= 1, . . . . m. Then from the convexity of F and Theorem 4.5 

F(S 1 3 ..., s,,)3F(S:,...,s,T)+ i (f’,,x-xs4, (18) 
i= I 

where the notation for derivatives in the proof of Theorem 3.7 is used. 
Summing (3) over i with A$ = 1 and substituting into (18) then give 

F(S,, . . . . S,)>F(S:, . . . . XT)- i 2 A: (g’(r, icy,-x.y). 
i=l,=l 

(19) 

Upon next using in (19) the convexity of the Gj and (4), it follows that 

F(S , , . . . . S,,) 2 F(S:, . . . . S,*)- f ATG,(S,, . . . . S,). (20) 
,=I 

But (5) and the fact that G,(S,, . . . . S,) < 0, j= 1, . . . . m, establish that 
F(S,, . . . . S,) >, F(S;, . . . . S,*) to complete the proof. 1 
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5. SADDLEPOINTS AND DUALITY 

Saddlepoint optimality conditions are next obtained for (1) and a 
Lagrangian duality theory is presented. 

DEFINITION 5.1. Let L(S,, . . . . S,; A,, . . . . ;I,) = F(S,, . . . . S,) +xJ.‘=, ,$G, 
(S,, . . . . S,,). Then (ST, . . . . S,*) and (A:, . . . . ,I:) form a saddlepoint for (1) if 

L(ST, . ..) s,T; A,) . ..) I”,) < L(&!q, . ..) s,*; AI”, . ..) A;) 

< L(S,, . . . . S,; AT, . . . . A,*) for all (S,, . . . . S,) E d” and I , ( . . . . 2, 3 0. 

(21) 

THEOREM 5.2. Let (A’, d, u) be a finite atomless measure space with 
L, (A’, d, p) separable and let F, G, , . . . . G, be convex. Suppose that there 
exists (R,, . . . . R,)E&” such that G,(R,, . . . . R,)<O, j= 1, . . . . m. Then f 

S*) is a minimum for (l), there exist A:, . . . . ,I: 30 *such that 
[:i: :::I Si) and (A* , , ..,, AZ) form a saddlepoint for (1). 

Proof Let 

A= 
I 

(V”, VI > ..*, v,): there exists (S,, . . . . S,) E d” such that 

v,3 F(S,, ..,, S,), vi> G,(S,, . . . . S,), j= 1, . . . . m I 
and 

B= ((v,, vI, . . . . v,): v,< F(ST, . . . . ST), v,<O, j= 1, . . . . m}. 

B is obviously convex, and we next show the closure A to be convex. 
Assume A # a; otherwise 2 is trivially convex. Fix E > 0, ,I E 10, I], and 
a,, a2 E 2. Then there exist (Rf , . . . . RA), (R:, . . . . Ri) E d” for which 

a,,2 
I 

F(Rf, . . . . R:)-i, G,(R{, . . . . R,P)-i, . . . . G,(Rf, . . . . R,P)-i 1 , 

p= 1, 2, 

where the inequality is meant componentwise here. Since L,(X, &, p) is 
separable, from Lemma 4.3 there exist sequences R,!k c R!\Rf, 
Rfk c R,2\ Rf for which 

X$” “’ --L ix R;\Rf* xRfk M.f l1 -n) XRf\R;, i= 1 , . . . . n. 

It follows from the convexity of F, G,, . . . . G, that there exist k and Rj= 
R,!k u Rfk u (Rf n Rz) E -01, i = 1, . . . . n, such that 

F(R,, . . . . R,)<rIF(R;, . . . . R;)+(l -L)F(Rf, . . . . Rf)+; 

Gj(R,) ...) RJ d nGj(Rf 3 ...) Ri) + (1 - 1) G(R:, ...) R,Z) + i, j= 1, . . . . m. 
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Thus Aa, + (1 -A) a2 Z [F(R,, . . . . R,) - E, G,(R,, . . . . R,) - E, . . . . G,(R,, . . . . 
R,) -E]. But E is arbitrary, so Aa, + (1 - A) a2 E 2 and hence A is convex. 

Since 2 and B are clearly disjoint, there exists a hyperplane determined 
by scalars ,I:, . . . . 1: separating 2 and B, and therefore A and B. The 
remainder of the proof follows standard arguments as in [9, p. 2181. 1 

COROLLARY 5.3. Under the hypotheses of Theorem 5.2, let (SF, . . . . S,*) 
be a minimum for (1). Then there exist LT, . . . . AZ > 0 such that 

(ST, ...I S,*) minimizes FfS,, . . . . S,)+ f LfG,(S,, .._, S,,) 
j=l I 

subject to (S,, . . . . S,,)E&’ 

G,(S:, . . . . S,*) d 0, j= 1, . . . . m 

f ;IfG,(S:, ..,, x9,+) = 0. 
,= I 

(22) 

(23) 

(24) 

The proof of the next theorem again follows standard arguments. 

THEOREM 5.4. Zf(Sf, . . . . ST) and (AT, . . . . A,*,) form a saddlepointfor (I), 
fhen (SF, . . . . Sx) is a minimum for (1). 

COROLLARY 5.5. Zf there exist (ST, . . . . S,*) and LT, . . . . Az 20 satisjjing 
(22)-(24), then (ST,..., S,*) is a minimum for (1). 

A Lagrangian dual for problem (1) is next defined, and the duality 
relations between it and (I ) are presented. Theorem 5.7 is the statement of 
weak duality, while Theorem 5.9 is the strong dual relationship. Proofs are 
omitted because they are similar to standard mathematical programming 
arguments. For example, Theorem 5.9 follows from Theorem 5.2 as in [9]. 

DEFINITION 5.6. The Lagrangian dual for the primal problem (i ) is the 
problem 

where 44, -.., 2,) = inf(F(S,, . . . . S,) + Ezl Alcj(s,, . . . . s,): 
(S , ) . . . . S,) E SC}. 

THEOREM 5.7. If (S, , . . . . S,) is feasible to ( 1) and (I., , . . . . A,) is feasible 
to (25), then F(S,, . . . . S,) >, h(l,, . . . . A,,,). 



204 H. IV. CORLEY 

COROLLARY 5.8. rf (ST, . . . . S,*) is feasible to the primal, ;I:, . . . . 2:) is 
feasible to the dual, and F(ST, . . . . S,“)<h(L:, . . . . AZ), then (ST, . . . . S,*) and 
(AT, . . . . 12) are optimal to (1) and (25), respectively. If (25) is unbounded, 
then (1) has no feasible (S,, . . . . S,); and if (1) is unbounded, then (25) has no 
feasible (A,, . . . . %,). 

THEOREM 5.9. Under the hypotheses of Theorem 5.2, then 

inf{F(S,, . . . . S,): Gi(S,, . . . . S,)<O, j= 1, . . . . m) 

= sup(h(&, . . . . A,): AI, . . . . 1, B O}, (26) 

and the rhs qf (26) is attained by AT, . . . . A,*, 3 0. Furthermore, if the lhs of 
(26) is attained by (ST, . . . . S,*)EA” (i.e., (ST, . . . . S,*) minimizes (I)), then 
C:” , I.:G,(S:, . . . . S,*) = 0. 

6. REMARKS 

There are two types of constraints that have not been considered here. 
First, inequality constraints were not included in (1) because there is no 
suitable version for set functions of the inverse function theorem to use in 
proofs. Second, constraints involving the set operations u or n (such as 
S, n S, =~+5, i#j, and u:=, Sj= X) were not considered. Since a theory 
involving both of the above types of constraints was developed for the 
special case in [3,4], it is conceivable that a general theory including such 
constraints can be established. Subsequent work will be directed at doing 
so. 
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