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1. INTRODUCTION

The concept of optimizing set functions (i.e., functions of sets) arises in
various mathematical areas. For example, an early result was the
Neyman-Pearson lemma of statistics [6, 11], which is simply the statement
of a sufficient condition for maximizing an integral over a single set. The
necessity of this condition, as well as the existence of a solution, was later
established in [5]. These resuits were subsequently generalized to n sets
and a duality theory was developed in [3, 4]. However, all these results
were for special cases of set functions involving integrals. The first general
theory for optimizing set functions was developed by Morris [10], who
obtained for functions of a single set the analogs to standard mathematical
programming results. Subsequent work [2, 7, 8, 14] on duality and mul-
tiple objective optimization has remained confined to functions of a single
set.

In this paper previous work is generalized by minimizing n-set functions,
i.e., functions of n sets. In Section 2 some preliminary matters are con-
sidered and the problem is formally stated. In Section 3 diflerential
necessary conditions for local minima are developed. These conditions
are shown to be sufficient under convexity assumptions in Section 4.
Saddlepoint optimality conditions and a Lagrangian duality are obtained
n Section 5.
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194 H. W. CORLEY
2. PRELIMINARIES

Throughout this paper let (X, o/, u) be a finite atomless measure space.
We will be concerned with functions on «"={(S|,..,S,): S;e,
i=1,..,n}. The fact that .o/” is only a semialgebra, not a g-algebra, does
not limit the analysis. &/" is a pseudometric space under the pseudometric
d defined by

n 172
d[(erw Rn)’ (S17--~’ Sn)] =[ Z .uz(Ri AS:):I ’ Ri, Sied’ i= 17 ey 1,

i=1

where 4 denotes symmetric difference. Essentially (R, .., R,) and
(S, ..., S,) will be regarded as equivalent if R, and S;, i= 1, ..., n, differ only
by zero measure. This practice presents no difficulty in an optimization
theory over the class of pseudocontinuous n-set functions F: o/" — R', as
noted below. This paper is therefore restricted to such functions. The proof
of Result 2.2 is an immediate consequence of Definition 2.1.

DerFiNITION 2.1, The n-set function F is said to be d-pseudocontinuous
at (R, .., R,) on the pseudometric space (/" d) if given £¢>0 there
exists 6>0 for which |F(R,,..R,)—F(S,,..,S,) <& whenever
d[(Ry, ..., R,), (S, .. S,)] <.

ResuLT 2.2. If F: /" — R' is d-pseudocontinuous on the pseudometric
space (", d) and d[(R,, .. R,), (S, ...S,)]=0, then F(R,,.,R,)=
F(S,, ... S,).

The counterparts of the usual definitions of local and global minima are
next stated for (/" d).

DerFINITION 2.3. Let F- /" > R' and # < «/”. Then (S¥,..,Sf)eBisa
(global) minimum of F on # if F(SF¥,..,S¥)<F(S,,...S,) for all
(Sy, ... S,)eB. (SF, .., S¥) is a local minimum of F on # if there exists
8> 0 such that F(S¥*, .., S*)< F(S,, .., S,) for all (S|, .., S,) € # satisfying
dl(s,, ... S,), (S¥, ..., S¥)] <.

For F, G,, .., G,,: 4" — R' the problem to be analyzed here is to find
minima of F on = {(Si, .., S,): G(S\, ..., $,)<0, j=1,.,m}, ie, to

minimize F(S,, .., S,) subject to "
G(S,,..S,)<0, j=1,.,m
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3. LocaL DIFFERENTIAL THEORY

For heL (X, o,pn) and Ses/ with characteristic function y5€e
L (X, o, u), the integral j s h du will be denoted by (4, xs>. Definition 3.1
is due to Morris [10].

DEeFINITION 3.1. A set function H: o — R' is differentiable at S* € o if
there exists hg« € L (X, o, ), the derivative of H at S*, such that

H(S)=H(S*)+ {hge, xs— xs+) + Eny(S*, S),
where E,(S*, S) is o[d(S*, S)], ie, lim o5 o E(S*, S)/d(S*, S)=0.

Differentiation for n-set functions is next defined.

DEFINITION 3.2. Let F:.o/" — R' and (S¥, .., S*)e «/". Then F is said
to have a partial derivative at (S¥, .., S¥) with respect to S, if the set
function H(S;)= F(S¥, .., S* ., S, St 4, ., S¥) has derivative hs» at SF.
In that case we define the ith partial derivative of F at (S}, .., $*) to be

DErINITION 3.3. Let F:.o/” —» R' and (S¥, .., S*)e.o/". Then F is said
to be differentiable at (SF, ..., S¥) if all the partials f gl._”_‘sn., i=1,..,n, exist
and satisfy

F(S\, oy $,)=F(SF, .. S+ ) S spoases Xsi— Xsp?

i=1

+ Wel(SF, ... SF)L (S, S ] (2)

where Wil (ST, ... S¥), (S1, ., S,)] is o{dL(ST, .., SF), (S15 . ST

As in Proposition 2.2 of [10], if F: &/" — R' is differentiable, its partial
derivatives are unique. An example of a differentiable n-set function is as
follows.

ExampLE 3.4. Define F(S,, .., S,) = u({v, x5, - {Vy, Xs,7), Where
u: R — R is differentiable and v, .., v, € L (X, &, u). Then F is differen-
tiable and

ffS'l",...,S,T = u(i)(<via XS;" >7 at] <Un7 XS,? >) Uy, i= 1’--', n,
where u'” denotes the ith partial derivative of u.

Differential necessary conditions for a local (and hence global) minimum
to (1) are next established. Result 3.5, which follows readily from elemen-

409/127/1-13



196 H. W. CORLEY

tary properties of integration and (2), justifies such a development in view
of Result 2.2 and the previous restriction to pseudocontinuous functions.
The result also illustrates similarities to differentiability of real-valued
function of n-variables. In that setting (see [12]) differentiability implies
continuity, and the continuity of the partial derivatives implies that the
gradient exists and is continuous.

ResuLT 3.5. If F:.o/"— R' is differentiable at (SY, .., S¥), then F is
pseudocontinuous a (S§, .., S¥) and X7, <fg‘,w_ys:, Xs,~ Xs=> 18 @
pseudocontinuous function of (S, ..., S,).

Theorem 3.7 below is the analog of the Fritz John conditions of
mathematical programming [1]. A well-known lemma of Liapunov [13] is
needed.

LEMMA 3.6, Let h;: X —R', i=1, .., p, be integrable functions on the
atomless measure space (X, o, u) and Se of. Then the range of the vector
measure ({hy, Ys), .., Ch,, xs)) is convex and compact.

THEOREM 3.7. Let (X, s, u) be a finite atomless measure space and let
F, G,,..,G,: «"— R be differentiable at (S¥, .., S¥). If (SF,.,S¥)isa
local minimum for (1), then there exist scalars A¥, AY, ..., A such that

<A‘-0ffs‘,*‘...ﬁ,: + Z /ﬂt,,*g%f...,,s;’ As,— Xs,*> =0 forall S;edd,i=1, ., n

j=1

3)

AFG(STE, ., $F) =0, j=1,..m 4)
X AE L AX=0 (5)
G(S¥, ...S$¥) <0, j=1,..m (6)
AF not all zero, (7)

where g%;,..,,s; is the ith partial of G; at (ST, ..., SY).

Proof. In the proof we write f%, for f%. ., g% for g4, s, and [, g”
for arbitrary (S,,..., S,). Define

(vo, Uy5es U,,): there exists (S, ..., S,) € o/" such that

UO> Z <f’*a XS,_XS,“>7

i=1

A=

0,2 G (St SEVH Y (&5~ AseDr  J=L

i=1
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and
B={(vg,v,,...0,):9,<0,j=0,1,.,m}.

The set B is clearly convex. To prove that 4 is convex it suffices to prove
that the translate of A,

(g, Uy, -y v,,): there exists (S, ..., S,) € &¢" such that

A = v()> Z <fi*a XS,>9
| =

i=1
n ..
;2 ) L& as»i=1l.,m
i=1
is convex. Consider

(vo, Uy, ., 1,,): there exists (S, ..., S,) € o/" such that )

AZ: U(): Z <fi*7 XS,)ﬂ Uj= z <glia XS,>’

i=1 i=1

j=1,..,m

and

(ug, uy, ..., u,,): there exists S, € .o such that
Ci=

u0:<f‘i*a XS,>’ j:<gli) XS,>7j:15~--am

i=1,..,n Each C,is convex from Lemma 3.6, so 4,=C,+ --- +C, =
{Z,‘1 ¢;:c;eC,, i=1,..,n} is convex. Similarly 4, =A4,+ R}, , is con-
vex, and the convexity of A follows.

A and B are next shown to be disjoint. Assume the contrary, i.c., that
there exists (S, .., S,) € .o" for which

Z <fi*,Xs,-_XS,*><O and  G,(S¥, .., S}) +z (8o As— As»)

i=1 i=1
<0, j=1,..,m
For i=1,..,n let §F=8\S¥ and §; =S*\S, so that yg— Ass =

Xsr — Ase - Then from Lemma 3.6 there exist families S;*(a)c S, and
S7 ()= S; satisfying

J. (lfgh'vgm d#—af (1fg19~sgm d‘u
SE(2)
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for ae [0, 1]. Also let S(a)=[S; (x) U SF\S, (a). Since d[SF, S/(«)]=
ad[S¥, S;], it can be deduced from (2) that

F[S(a), .., S.(a)]— F[S%, .., S¥]
o 3 (Sl 2~ Kse D+ 0(0) ®)

Similarly,

Gj[Sl(a)a ooty S,,((X)] - G/[S;k’ ey S:]

ghsxs,—Aspytola), j=1.,m 9)

1

l|
I M:

1

From (8) and (9) there exists 6e(0,1) such that for «e(0,9)
both F[S,(a), ..., S, (ax)]—F[S¥, .. S¥]<0 and G;[S\(a),.., S.(2)]—~
G/[S}, ... S¥1<0, j=1,..,m, contradicting that (Sf¥,..,S}) is local
minimum.
A and B are thus disjoint convex sets and can be separated by a hyper-
plane Hence there exist scalars A&, A¥, ..., A%, not all zero, and ¢ for which
o A0, 2 & (v, vy, .., 0, )€ A and Z "o Ao, < ¢ if (v, vy, - 0,) € B
As usual it can be shown that E=0. Hence

Ag Z Sy Xs,— Xs=>

i=1

+ Z ’Ij*Gj(S*’ w ST+ Z Z )“*<g*’ Xsi— Xs;>

i=1 Jj=1i=1

>0  forall(S,,... S,)e" (10)

Setting S;=S?* in (10) yields (4), and (10) becomes

<f*7XS X5*>+Z Z ]*<g*’XS_XS'>

Jj=1li=1

20 for all (S,, .., S,) e " (11)

O*
H ™=

Letting S, =S, k #1, in (11) establishes (3). Since (5)-(7) are immediate,
the proof is complete. |

Kuhn-Tucker conditions for (1) can be stated under the additional
assumption that (S¥,..,S¥) 1s regular as defined in Definition 3.8.
Corollary 3.9 then follows from Theorem 3.7 by standard arguments as
m [9].
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DerINITION 3.8. (S¥, .., S*) is said to be regular if there exists
(S,, ..., $,) for which

G(SF, .. SH)+ Y &hoas,—xs2> <0, j=1l.,m

i=1

COROLLARY 3.9. In addition to the hypotheses of the previous theorem,
suppose that (S¥, .., S¥) is regular. Then there exist Af, .., A% which,
together with ¥ =1, satisfy (3)—(6).

4. CoNVEXITY AND GLOBAL DIFFERENTIAL THEORY

The convexity of n-set functions is now defined, some properties related
to convexity are established, and the conditions of Corollary 3.9 are shown
to be sufficient for a global minimum if F, G, .., G,, are convex.

DErRINITION 4.1. Let F:.o/" - R'. F is said to be convex if for each
Ae[0,1] and (Ry, .., R,), (S;, .., S,)e A"

fim F[R*USYU(R N S,), ... REUSEU(R, N S,)]

k—x
<SAF(Ry, . R)+(1=2) F(S,, ., S,)

for any sequences of sets R¥ < R\ S, and S*<= S\ R;, k=1, 2, ..., satisfying
Aws =" g and s =" (1—=2) fg gy i= 1, 01

ExamPLE 42. The n-set function F(S,,..,S,) = u({v}, xs s

{v,, xs,>), where u: R"— R' is convex and v,,..,v,€L(X, o, p), is
convex.

The following two lemmas are proved in [10].

LEMMA 4.3. Let (X, o/, u) be a finite atomless measure space with
L(X, o, n) separable. Then Ayg is in the weak® closure of y=
{4r: Resd}c L (X, o, u) for all Se o/ and Ae [0, 1].

LEmMMA 44. Let R, Sef and 1e[0,1]). If R., S, k=1,2,.., are
sequences of sets in of such that the L (X, o, 1) sequences

XRNL_’ A rs> XSk_“—y‘—) (1=2) xs\ro
then

XRkuSku(Rr\S)—_w*—} Ar+(1—4)xs.
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THEOREM 4.5. Let (X, o/, u) be a finite atomless measure space and let
F: /"> R be differentiable on </". If L\(X, o/, u) is separable and F is
convex, then for all (R,, ..., R,), (S,, .., S,)e.of"

Z <fiR1..,.,R,,’ XS,—XR,> g}7(‘5‘1’ eey Sn)*F(Rl’ sees Rn)' (12)

i=1

Proof. Fix 0 <A< 1. It follows from Lemma 4.3 that there exist sequen-
ces R¥(A)c R\ S, and S§%(1) = S\ R, for which

¥

X REG) ——(1-2) ARy si0 LS5 - ;tXS,\ Ri*
Set T%(A)= R¥(A)u SHA)U (R;n S;), i=1, ..., n. Then from Definition 4.1,
T FLTH(A), o THATS (1= 2) F(Ry, s R,)+ AF(S), 0 S,

SO

fm {F[T%(A), ... T5(2)]— F(R,, .. R, }/2

k—
<F(S,, .., S,)— FR,, .., R, (13)

Applying (2) to (12) and invoking Lemma 4.4 give

< Z flkl“,..R,,s XS, - XR,> + quﬁx Wf[(TII(/)9 ey Tf\;(/“))a (R17 oo Rn)]//

i=1

<F(S,, .. S,)—F(R,, .. R, (14)

But using the fact that R*(1)< R\ S; and S¥(1)= R\ S, it can be shown
that

lim Tim W [(TA(A), .. T*(A)), (R, .. R,)]/A=0.

A OQ ko oo

Letting A — 0 in (14) now yields (12). ]

THEOREM 4.6. Let (X, s/, u) be a finite atomless measure space and let
F. /" - R! be differentiable on /" If (12) is satisfied for all (R, .., R,),
(S, .., S,)ed", then F is convex.

Proof. For Ae[0,1] and (R, .., R,), (Sy,..,S,)ed", let R¥< R\S,
and S¥<S\R, be such that yu —"" Ay, and xg =" (1 —2) 5z,
Setting T* = R* U S¥ U (R; " S;) for each k we have by hypothesis that

o Xs,— Ank > <SF(Sy, ., S,)— F(TX, ..., T}). (15)

S

i=1
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Letting k£ — oo in (15) and applying Lemma 4.4 give

lim Y S Mos— 1)

k—oo iz

<FKS,, ... S,)— Im F7T%, .., T (16)
k— o
Replacing (S, .., S,) by (R, ..., R,) in (15) similarly yields

im 3 S s (1= D)r~ xs)>

k==

<F(R,,.., R,)— lTim F(T%, ., T"). (17)

k — oc
Upon multiplying (16) by (1 —41), (17) by A, and then adding, it follows

that lim F(T*, ..., T*) < AF(R,, .., R,)+ (1 — 1) F(S,, .., S,) to establish the
convexity of F. |}

It should be noted that the separability of L,(X, .«/, ) is not required in
Theorem 4.6.

THEOREM 4.7. Let (X, o, u) be a finite atomless measure space with
L,(X, o, u) separable. Suppose that F,G,, .., G, " — R' are differen-
tiable at (S, ..., S¥), as well as convex. If there exist scalars 1}, ..., X such
that (S¥, .., Sk) and AF, .., A%, together with i¥ =1, satisfy (3)-(6), then

(S¥, ... §¥) is a (global) minimum for (1).

Proof. Suppose that (S,,..,S,)e/" satisfies G(S,,..S,)<0,
j=1, .., m. Then from the convexity of F and Theorem 4.5

F(Sy, 0 $,) Z F(SF, s SH)+ 3 e A5 — Ase s (18)

=1
where the notation for derivatives in the proof of Theorem 3.7 is used.
Summing (3) over { with A& =1 and substituting into (18) then give

k4 m

F(Sl’ ey Sn) Z F(S;kv ey S:) - Z Z '1;* <gi;{<’ Xsi— X?,">

i=1 =1

(19)
Upon next using in (19) the convexity of the G, and (4), it follows that
F(S\, ... $,)Z F(S¥, .., S5 — Y, AFG(S,, .., S,) (20)
j=1

But (5) and the fact that G(S,,.., S,)<0, j=1,.., m, establish that
F(Sy, ... S,)= F(SE, ..., SF) to complete the proof. ||
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5. SADDLEPOINTS AND DUALITY

Saddlepoint optimality conditions are next obtained for (1) and a
Lagrangian duality theory is presented.

DEFINITION 5.1, Let L(Sy, ., Sy; 415w Ap) = F(Sy, . S,)+ X7 4G,
(Sy, - S,)- Then (SF, .., S¥) and (Af, .., A}¥) form a saddlepoint for (1) if
L(S}, .. SE Ay v A) S L(SE, ., S* A A
LS, . Sy AF, L AY) forall (S, .., S,)es/"and A, .., 4,,20.
(21)

THEOREM 5.2. Let (X, o, u) be a finite atomless measure space with
L\(X, o, u) separable and let F, G,, ..., G,, be convex. Suppose that there
exists (R, .., R,)e " such that G(R,,..,R,)<0, j=1,..m Then [
(S¥, .., S¥) is a minimum for (1), there exist A¥, .., AX=0 such that
(S¥, ..., S¥) and (Af, ..., A)) form a saddlepoint for (1).

Proof. Let

A=

{(vg, Uy, -, U, ): there exists (S, ..., S,) € /" such that
o= F(S,,..,8,),0,2G(S,,...8,), j=1,.,m
and
B={(vg, 0y, s 0,,): 0 S F(SF, s S¥),0,<0, j=1,..,m).
B is obviously convex, and we next show the closure 4 to be convex.

Assume A # J; otherwise A4 is trivially convex. Fix ¢>0, 1e[0, 1], and
a,,a,€ A. Then there exist (R}, ..., R}), (R, .., R2)e /" for which

a,> [F(Rf, Rg)—%, G\(R?, .., R,‘;)~§, oy G RY, .y RY) —g]
p=12,

where the inequality is meant componentwise here. Since L (X, o, u) is
separable, from Lemma 43 there exist sequences R!*< R!\R?,
R < R?\ R! for which

X == A prpes Kk ——— (1= A) Y papss  i=1,mn
It follows from the convexity of F, G|, .., G,, that there exist k and R,=
RFUR¥ U (RN R?)e o, i=1, .., n, such that

F(R,, . RS AF(R!, ., R + (1 — 1) F(RZ, .., R?) +%

GAR, s RYSIG(R!, ., R+ (1= A)G(RE, .., R2)+=,  j=1,.,m.

[\ Y-
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Thus Aa,+(l1—A)a, 2 [F(R,, .. R,)—¢, G,(R,,..,R,)—¢ .,G (R,
R,)—¢]. But ¢ is arbitrary, so ia; + (1 —4) a, 4 and hence A4 is convex.
Since 4 and B are clearly disjoint, there exists a hyperplane determined
by scalars AF, .., A* separating 4 and B, and therefore 4 and B. The
remainder of the proof follows standard arguments as in {9, p. 218]. }

CorOLLARY 5.3. Under the hypotheses of Theorem 5.2, let (S¥, .., S¥)
be a minimum for (1). Then there exist A¥, ..., 1% >0 such that

(S, 57) minimices | FUS,, o S,14 3. 4765000,

i=1

subject to (S,, .., S,)ed" (22)
G/(SF, .., $F)<0, j=1,.,m (23)
Y. AXG(SE ., SF)=0. {24)

i=1

The proof of the next theorem again follows standard arguments.

THEOREM 5.4. If (S¥, .., SF) and (A}, .., A}) form a saddlepoint for (1),
then (SE, ..., S¥} is a minimum for {1}

COROLLARY 5.5. If there exist (S¥, .., S¥) and A¥, .., A% =0 satisfying
(22)-(24), then (S¥, ..., S¥) is a minimum for (1).

A Lagrangian dual for problem (1) i1s next defined, and the duahty
relations between it and (1) are presented. Theorem 3.7 is the statement of
weak duality, while Theorem 5.9 is the strong dual relationship. Proofs are
omitted because they are similar to standard mathematical programming
arguments. For example, Theorem 5.9 follows from Theorem 5.2 as in [9].

DeriNiTiON 5.6. The Lagrangian dual for the primal problem (i) is the
problem

maximize A(A,, ..., 1,,), (25)
Aoomnin= 0
where hl,, .., 4,) = f{F(S,,.,S,) + XL,4G(S,. ...S,):

(Sy, .. S,) e}

THEOREM 5.7. If (S|, .., S,) is feasible to (1) and (X, .., 4,,) is feasible
to (25), then F(S, .., S,)Z h(A, .., 4,,).



204 H. W. CORLEY

COROLLARY 5.8. If (S¥, .., SF) is feasible to the primal, ¥, .., %) is
feasible to the dual, and F(SF, ..., S¥)<h(Af, ..., A%), then (S}, ..., S¥) and
(AF, ., AX) are optimal to (1) and (25), respectively. If (25) is unbounded,
then (1) has no feasible (S, ..., S,,); and if (1) is unbounded, then (25) has no
Seasible (A, ..., A,,).

THEOREM 5.9. Under the hypotheses of Theorem 5.2, then

(S|, s $,): GASy, o $,) <O, j=1, oy m}
=SUP{A(Ayy s A )i Ays ooy Ay 201}, (26)

and the rhs of (26) is attained by 1¥, .., X = 0. Furthermore, if the lhs of
(26) is attained by (s}, .., S¥)e A" (ie, (ST, .., S¥) minimizes (1)), then
Y7 A*G(SE, . S¥)=0.

j=1

6. REMARKS

There are two types of constraints that have not been considered here.
First, inequality constraints were not included in (1) because there is no
suitable version for set functions of the inverse function theorem to use in
proofs. Second, constraints involving the set operations v or n (such as
S:nS;=¢, i#j, and J7_, S;=X) were not considered. Since a theory
involving both of the above types of constraints was developed for the
special case in [3, 4], it is conceivable that a general theory including such
constraints can be established. Subsequent work will be directed at doing
s0.
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