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Abstract Angiogenesis is the process by which new blood vessels
are formed from existing vessels. The vascular endothelial growth
factors (VEGFs) are considered as key molecules in the process
of angiogenesis. The VEGF family currently includes VEGF-A,
-B, -C, -D, -E, -F and placenta growth factor (PlGF), that bind
in a distinct pattern to three structurally related receptor tyrosine
kinases, denoted VEGF receptor-1, -2, and -3. VEGF-C and
VEGF-D also play a crucial role in the process of lymphangio-
genesis. Here, we review the biology of VEGFs and evaluate their
role in pathological angiogenesis and lymphangiogenesis.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Vascular endothelial growth factor (VEGF) is a specific

mitogen for vascular endothelial cells (EC). VEGF family con-

sists of seven members – VEGF-A, VEGF-B, VEGF-C,

VEGF-D, VEGF-E, VEGF-F and placental growth factor

(PlGF). They share a common structure of eight characteristi-

cally spaced cysteine residues in a VEGF homology domain.

These members have different physical and biological proper-

ties and act through specific tyrosine kinase receptors –

VEGFR-1, VEGFR-2 and VEGFR-3. Neuropilin-1 (Nrp-1)

and Nrp-2 are receptors for semaphorins, but they also bind

to some members of the VEGF family. VEGF/VEGF-receptor

system is a key component in the complex process of angiogen-

esis that also includes many other stimulators, inhibitors and

angiogenic modulators. VEGFR-3 and its ligands VEGF-C

and VEGF-D are important regulators of lymphangiogenesis,

while PlGF has been associated with arteriogenesis. VEGFs

are crucial in embryonic development and in other physiolog-

ical and pathological conditions, including wound healing,

rheumatoid arthritis, ocular neovascularization, tumor pro-

gression, endometriosis and cardiovascular diseases.
2. VEGF-A

VEGF-A is a key molecule in induction of angiogenesis and

vasculogenesis it causes proliferation, sprouting, migration
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and tube formation of ECs [1]. VEGF-A gene is located at

chromosome 6p21.3 and is encoded by 8 exons separated by

7 introns. VEGF induces angiogenesis in a variety of physio-

logical and pathological conditions including embryogenesis,

corpus luteum formation, tumor growth, wound healing, and

compensatory angiogenesis in the heart.

VEGF-A mediates its responses primarily by activating

VEGFR-1 and VEGFR-2 but it also binds to Nrp-1 and

Nrp-2 [2]. Overexpression of VEGF-A produces a pronounced

strong angiogenic response in different tissues. However result-

ing vessels are often large, dilated and leaky [3–5].

VEGF-A was initially described as a vascular permeability

factor secreted by carcinoma cell lines that enhanced perme-

ability in skin blood vessels and also stimulated the produc-

tion of ascites [6]. Molecular mechanisms by which VEGF-A

induces these effects are not well characterized. It has been

postulated that VEGF-A increases permeability by binding

to VEGFR-2 and thereafter activating guanylyl cyclase and

cGMP via a nitric oxide dependent pathway. Increased

cGMP levels probably enhance endothelial permeability by

increasing the vesico-vascular organelles, fenestrations and

transcellular gaps [7]. VEGF-A mediated extravasation of

fluid and plasma proteins, including fibrin might contribute

to enhanced migration of ECs in extracellular matrix [8].

VEGF-A also causes vasodilatation by induction of endothe-

lial nitric oxide synthase (eNOS) and increasing nitric oxide

production [9].

VEGF-A promotes EC survival by inducing the expression

of anti-apoptotic proteins Bcl-2 and A1 in the ECs. This action

of VEGF-A might be related to the activation of phosphatidyl-

inositol-3 kinase and Bcl-2 pathways [10]. Most of the studies

on VEGF-A have primarily focused on their action on ECs.

However, the actions of VEGF-A on other cell types have also

been described. VEGF-A is mitogenic for retinal pigment epi-

thelial cells and Schwann cells. VEGF-A also has a neuropro-

tective effect on hypoxic motor neurons, and is a modifier of

amyotrophic lateral sclerosis [11]. Role of VEGF-A in vascular

smooth muscle cell proliferation and migration has also been

reported [12]. VEGF-A is also reported to have hematopoietic

effects. It induces colony formation by mature subsets of gran-

ulocyte-macrophage progenitor cells and regulates hematopoi-

etic stem cell survival by an internal autocrine loop mechanism

[13] and promotes monocyte chemotaxis [14]. It also exerts

procoagulant activity via its ability to stimulate the production

of the potent initiator of coagulation tissue factor in ECs and

monocytes [14].
blished by Elsevier B.V. All rights reserved.
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At least six different isoforms, of VEGF-A polypeptides of

different sizes (121, 145, 165, 183, 189 and 206 amino acid res-

idues) are known to exist. These isoforms have distinct but

overlapping functions in angiogenesis due to their differential

binding to heparan sulphate and neuropilins [1,15]. Through

alternative mRNA splicing, the VEGF-A isoforms differ by

the presence or absence of sequences encoded by exons 6 and

7. VEGF-A121 does not bind to heparin or extracellular matrix

while VEGF-A165 has moderate heparin binding ability.

VEGF-A145 also contains a heparin binding domain and ele-

ments that enable the binding of VEGF-A145 to the extracellu-

lar matrix. VEGF-A189 and VEGF-A206 bind heparin more

strongly and are sequestered in the extracellular matrix and

at the cell surface and these two isoforms are probably less ac-

tive than either VEGF-A121 or VEGF-A165 in vivo. The three

secreted VEGF-A splice forms are VEGF-A121, VEGF-A145,

and VEGF-A165 while the VEGF-A183, VEGF-A189 and

VEGF-A206 are the matrix bound forms. Most VEGF-pro-

ducing cells express VEGF-A121, VEGF-A165, VEGF-A183

and VEGF-A189, but VEGF-A 145 and VEGF-A206 seem

to be restricted to cells of placental origin [1,15].

Homozygous VEGF-A knockout mice die at E8–E9 and

mice lacking even a single VEGF-A allele die at E11–E12 indi-

cating that VEGF-A expression at appropriate level is essential

during embryogenesis. Knockout studies in mice have also

suggested that the VEGF165 is probably the major isoform

that brings about the VEGF-A actions [1,15].

VEGF-A mRNA expression is induced by hypoxia. It is now

recognized that hypoxia-inducible factor-1a [HIF-1a] is a key

mediator of the hypoxic responses. In response to hypoxia,

HIF-1a binds to specific enhancer elements, resulting in

increased gene transcription. Hypoxia induces binding of

HIF-1a to the Hypoxia responsive element (HRE) in the

VEGF-A gene promoter region, which in turn increases

VEGF-A transcription. A role of von Hippel–Lindau (VHL)

tumor suppressor gene in HIF-1a dependent hypoxic re-

sponses has also been described [15,16]. Mutations in the

VHL gene are associated with increased angiogenesis, and

tumors with VHL mutation display increased VEGF-A expres-

sion. While hypoxia is important for VEGF-A regulation,

other pathways including growth factors, inflammatory

cytokines and hormones also up-regulate VEGF-A mRNA

expression [17].
Fig. 1. Adenovirus mediated gene transfer of: (A) VEGF-A; (B) VEGF-D;
(D) PlGF to periadventital tissue resulted in formation of large tortuous bl
blocks the PlGF mediated angiogenesis; (F) sVEGFR-2 gene transfer with Pl
suggesting a role of VEGFR-1 and VEGFR-2 in PlGF mediated angiogene
3. PlGF

Placental growth factor (PIGF) is a member of the VEGF

family which was first identified in placenta but is also known

to be present in heart and lungs. Human PlGF gene has been

mapped to chromosome 14q24. PlGF-coding sequence is en-

coded by seven exons spanning an 800-kb-long DNA interval.

Four isoforms – PlGF-1, PlGF-2, PlGF-3 and PlGF-4, have

been described [18]. PlGF-1 and PlGF-3 are non-heparin

binding diffusible isoforms PlGF-2 and PlGF-4 have heparin

binding domains. PlGFs mediate their effects through

VEGFR-1 [19]. PlGF-2 is also able to bind Nrp-1 and NrP-2

due to the insertion of 21 basic amino acids at the carboxy

terminus, while both PlGF-1 and PlGF-3 lack this amino acid

insert.

Results available from in vitro studies on the angiogenic role

of PlGF are inconsistent. In some studies PlGF binding to

VEGFR-1 failed to produce EC growth and angiogenesis

[20], while other studies show that PIGF/VEGFR-1 signaling

promotes EC viability and angiogenesis [20]. In placenta and

in PlGF-1 expressing tumors increased PlGF levels inhibit

EC growth [21]. PlGF has direct effects on ECs, both by induc-

ing its own signaling and by amplifying VEGF-driven angio-

genesis [22]. PlGF-2 overexpression results in the production

of significant angiogenesis in different tissues [21,23]. Various

mechanisms by which PlGFs can enhance angiogenesis include

(a) intracellular signal transduction through VEGFRs; (b)

Increasing the fraction of VEGF-A available to activate

VEGFR-2 by displacing VEGF-A from the ‘VEGFR-1 sink’,

[22]; (c) Activation of VEGFR-1 by PlGFs results in intermo-

lecular transphosphorylation of VEGFR-2 that could increase

VEGF-A mediated angiogenesis [22]; (d) PlGF/VEGF-A het-

erodimer formation, which could act through VEGFR-1/

VEGFR-2 [22]. Our recent results show that PlGF-2 overex-

pression in perivascular tissue increased VEGF-A165 and

VEGF-A121 levels and produces significant angiogenesis

(Fig. 1). These blood vessels were tortuous and well perfused.

PlGF-2 mediated angiogenesis was effectively blocked by solu-

ble VEGFR-1 and VEGFR-2 receptors. This data suggests

that angiogenic responses to PlGF-2 are also indirectly medi-

ated through VEGFR-2 [20]. The proposed role of PlGF in

the process of arteriogenesis [24] is significant and holds prom-

ise for the treatment of ischemic diseases.
(C) VEGF-DDNDC (proteolytically processed form of VEGF-D); and
ood vessels in the adventitia; (E) sVEGFR-1 gene transfer with PlGF
GF also significantly reduces the PlGF mediated angiogenesis, thereby
sis.



H. Roy et al. / FEBS Letters 580 (2006) 2879–2887 2881
PlGF has a powerful chemotactic effect on monocytes and

increased macrophage accumulation occurs after injection of

PlGF protein [24] and adenovirus mediated PlGF gene transfer

[20]. Increased infiltration of macrophages presumably con-

tributes to the VEGF-A upregulation in the PlGF-2 trans-

duced arteries [21].

PlGF expression is upregulated during a number of patho-

logical conditions including non-small cell lung carcinoma

(NSCLC), colorectal cancer and wound healing, while, PlGF

levels are decreased in preeclampsia. A possible role of PlGF

in atherosclerosis has also been described [25].
4. VEGF-B

The human VEGF-B gene spans about 4000 bp, contains

eight exons and six introns, and is located on chromosome

11, band q13. The promoter region of VEGF-B is different

to that of VEGF-A, and this might explain differences in reg-

ulation by physiological stimuli. While both promoters are

associated with a CpG island and contain transcription factor

binding sites for Sp1 and AP-2, the VEGF-B promoter con-

tains Egr-1 sites, but lacks hypoxia-inducible factor-1 and

AP-1 sites found in the VEGF-A promoter. Consequently,

stimuli such as hypoxia which can induce VEGF-A expression

do not appear to regulate levels of VEGF-B [26].

VEGF-B167 and VEGF-B186 are the two isoforms that are

expressed in humans. The VEGF-B167 isoform is mainly ex-

pressed in the most tissues including skeletal muscles, myocar-

dium and brown fat and accounts for more than 80% of the

total VEGF-B transcripts. The VEGF-B186 isoform is ex-

pressed at lower levels and only in a limited number of tissues.

VEGF-B is a ligand for VEGFR-1 and Nrp-1, and it can form

heterodimers with VEGF-A [15,27]. Neither isoform binds

VEGFR-2 or VEGFR-3. VEGF-B167 binds heparan sulfate

proteoglycans and is mostly sequestered in the extracellular

matrix while VEGF-B186 is freely diffusible.

The precise role of VEGF-B in vivo is not precisely known.

Study with mice deficient in VEGF-B reported development of

smaller hearts and impaired recovery after induced myocardial

infarction suggesting that formation of coronary collaterals

might be partly attributed to VEGF-B [28]. Also, VEGF-B

has been reported to be weakly angiogenic after adenoviral

delivery to periadventitial tissue or hindlimb skeletal muscle

[3,4]. Reduced synovial angiogenesis in VEGF-B knockout

arthritis models suggest a role of VEGF-B in inflammatory

angiogenesis [29].
5. VEGF-C

The VEGF-C gene is located on chromosome 4q34. VEGF-

C genes comprise over 40 kb pairs of genomic DNA and

consist of seven exons. VEGF-C is produced as a precursor

protein and is proteolytically activated in the extracellular

space by proteases to generate a homodimeric protein with

high affinity for both VEGFR- 2 and VEGFR-3. VEGF-C in-

duces mitogenesis, migration and survival of ECs. VEGF-C is

expressed in the heart, small intestine, placenta, ovary and the

thyroid gland in adults. Developmental studies, knockout

models and gene transfer experiments suggest that VEGF-C

is primarily a lymphangiogenic growth factor and its lymphan-
giogenic effects are mediated by VEGFR-3 [30,31]. However,

the increase in blood vascular permeability induced by

VEGF-C is mediated by VEGFR-2 [31]. Disruption of the

VEGF-C gene in mice demonstrates that the growth factor is

indispensable in embryonic lymphangiogenesis [32]. VEGF-C

is also involved in tumor and inflammation associated lym-

phangiogenesis. Examination of VEGF-C function in a num-

ber of assays has also shown an angiogenic activity,

presumably via activation of VEGFR-2. VEGF-C gene trans-

fer produced moderate angiogenesis in rabbit skeletal muscle

[3] and perivascular tissue [4].
6. VEGF-D

VEGF-D is a secreted glycoprotein and is structurally 48%

identical to VEGF-C. VEGF-D is expressed in many adult tis-

sues including the vascular endothelium, heart, skeletal muscle,

lung, and bowel. The human VEGF-D gene is 2.0 kb in size

and is located on chromosome Xp22.31. The human VEGF-

D is proteolytically processed in its N-terminal and C-terminal

ends; the mature form binds to and activates VEGFR-2 and

VEGFR-3 [32]. However the mouse VEGF-D binds only to

VEGFR-3. VEGF-D has been shown to be responsible for

proliferation of ECs, and it shows angiogenic properties

in vitro and in vivo. Similar to VEGF-C, it also shows lymph-

angiogenic potential. The lack of a profound lymphatic vessel

defect in VEGF-D deficient mice may reflect a subtle, redun-

dant, or nonexistent role of this growth factor during embry-

onic development [33]. Nonetheless, VEGF-D may induce

lymphatic vessel growth in adult life in response to pathologi-

cal conditions.

VEGF-D has been proposed to have a role in tumor angio-

genesis and lymphangiogenesis [34,35]. VEGF-D is able to in-

duce strong angiogenesis in addition to lymphangiogenesis in

the rabbit hindlimb muscles [7]. Adenovirus mediated gene

transfer of VEGF-D and mature VEGF-D in the periadventitial

space produces significant activation of angiogenesis (Fig. 1)

and vascular smooth muscle cell (SMC) proliferation [4,12].
7. VEGF-E

VEGF-E was discovered in the genome of the parapoxvirus

(Orf virus) that infects sheep, goats, and occasionally humans

[36]. Infection by this virus causes proliferative skin lesions in

which extensive capillary proliferation and dilation are prom-

inent histological features. Several strains of the virus encode

different VEGF-E variants, which bind specifically to

VEGFR-2 and Nrp-1 and are able to stimulate EC mitogenesis

and vascular permeability. Gene expression of VEGF-E in-

duces a strong angiogenic response. Edematous lesions and

hemorrhagic spots on the ear which were reported as side ef-

fects in VEGF-A transgenic mice were not detectable in

VEGF-E transgenic mice [37,38].
8. VEGF-F

Recently a seventh member of the VEGF family, VEGF-F,

was identified from snake (viper) venom. VEGF-F consists of
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two VEGF-related proteins designated vammin (110 residues)

and VR-1 (109 residues) that have a 50% primary structure

identity with VEGF-A165 and bind selectively to VEGFR-2

[39]. VEGF-F contains a short C-terminal heparin-binding

region and the C-terminal peptide of VEGF-F exhibits a spe-

cific blockage of VEGF-A165 activity both in vitro and

in vivo [40].
9. VEGF receptors (VEGFR)

9.1. VEGFR-1

VEGFR-1 is expressed in ECs as well as pericytes, placental

trophoblasts, osteoblasts, monocytes/macrophages, renal mes-

angial cells and also in some hematopoietic stem cells [41].

VEGFR-1 binds VEGF-A, VEGF-B and PlGF with high

affinity (Fig. 2). VEGFR-1 knockout mice die at early stages

of embryogenesis due to disorganization of blood vessels and

overgrowth of EC. VEGFR-1 transmits only weak mitogenic

signals in ECs, but it is known to form a heterodimer with

VEGFR-2, that has strong signaling properties [42].

VEGFR-1 activation at least by PlGF can also promote angi-

ogenesis, presumably through intracellular crosstalk with

VEGFR-2 [22]. VEGFR-1 is associated with monocyte chemo-

taxis and in the recruitment and survival of bone marrow de-

rived progenitor cells. VEGFR-1 expression is upregulated

during angiogenesis and also by hypoxia, unlike that of
VEGFR-1 VEG
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VEGFR-2 and VEGFR-3. A soluble form of VEGFR-1

(sVEGFR-1), consisting of the extracellular domain of

VEGFR-1, is able to inhibit VEGF action in humans and mice

and has been linked to preeclampsia [43].

9.2. VEGFR-2

VEGFR-2 (kinase-insert domain receptor, KDR/fetal liver ki-

nase, Flk-1) binds VEGF-A, VEGF-C and VEGF-D. VEGFR-2

is the primary receptor transmitting VEGF signals in ECs

[38,41]. The VEGFR-2 signaling pathway is crucial in bringing

about the effects of VEGFs including vasodilatation, endothelial

cell migration and proliferation (Fig. 2). Besides endothelial

cells, VEGFR-2 is also expressed by circulating endothelial pro-

genitor cells, pancreatic duct cells, retinal progenitor cells and

megakaryocytes [1]. VEGFR-2 may be associated with inte-

grin-dependent migration of ECs, as it forms a complex with

integrin aVb3 upon binding VEGF-A [44].

9.3. VEGFR-3

VEGFR-3 (fms-like tyrosine kinase 4, Flt4) binds VEGF-C

and VEGF-D. VEGFR-3 is present on all endothelia during

development but in the adult it becomes restricted to lymphatic

ECs and certain fenestrated blood vascular ECs [45]. Knock-

out and developmental studies suggest that VEGFR-3 signal-

ing is essential for development of blood vessels during

embryonic stage but becomes redundant in mature vessels.

However, VEGFR-3 is upregulated on ECs of vascular tu-
FR-2 VEGFR-3
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mors. VEGFR-3 signaling pathway is crucial in the process of

lymphangiogenesis (Fig. 2) Transgenic mice overexpressing a

soluble VEGFR-3-Ig fusion protein in the skin lack dermal

lymphatic vessels [46].
9.4. Neuropilins

The neuropilins, Nrp-1 and Nrp-2, have roles in immunol-

ogy and neuronal development but they are also involved in

angiogenesis [2]. Neuropilins bind class 3 semaphorins, which

are secreted molecules that mediate repulsive signals during

neuronal axon guidance. Nrp-1 also binds VEGF-A165,

VEGF-B and PlGF while Nrp-2 binds VEGF-A165, VEGF-

C and PlGF [2]. Nrp-1 acts as a co-receptor enhancing

VEGF-VEGFR-2 interactions, forming complexes with

VEGFR-1. Overexpression of Nrp-1 in chimeric mice leads

to excessive formation of capillaries and blood vessels and

hemorrhages in addition to cardiac malformations [47]. It is

thought that Nrp-1 is required for cardiovascular development

because it regulates VEGF-A165 levels. In chick embryos,

endothelial Nrp-1 expression is mostly confined to arteries,

whereas Nrp-2 primarily marks veins [48]. Nrp-2 is expressed

also on lymphatic ECs, and mutated Nrp-2 induces abnormal-

ities in the formation of small lymphatic vessels and lymphatic

capillaries in mice [49].
10. VEGFs in cardiovascular pathology

10.1. Therapeutic angiogenesis for coronary artery disease and

peripheral artery disease (see Table 1)

Atherosclerotic narrowing of blood vessels causes a deceased

tissue perfusion and ischemia. Narrowing or occlusion of cor-

onary arteries and large peripheral arteries due to atheroscle-

rotic lesions could result in coronary artery disease (CAD)

and peripheral artery disease (PAD) [50,51]. Formation of col-

lateral vessels can improve perfusion in the ischemic tissues.

VEGFs have been used to promote development of collateral

blood vessels in clinical trials and animal models [3,51].

Improvement in exercise tolerance was reported after adenovi-

rus mediated VEGF-A121 gene transfer to ischemic myocar-

dium [51]. Animal experiments using intramuscular or

intramyocardial injections of adenovirus encoding VEGF-A

and VEGF-D, have shown high angiogenic efficacy [3,5].

VEGF-A and VEGF-D enlarge the preexisting capillaries in

skeletal muscle and also enhance collateral growth. PlGF also

induces angiogenesis and arteriogenesis in animal models of

myocardial infarction and lower limb ischemia [23]. VEGF

overexpression increases vascular permeability and may cause

substantial tissue edema, pericardial effusion in the heart and

angioma formation. Use of combination therapy using differ-

ent growth factors like VEGF and angiopoietin might reduce

the side effects [52].
10.2. Intimal hyperplasia

Neointima formation occurs following an acute injury to the

blood vessels as seen after angioplasty, stent placement and in

vein graft stenosis. Multiple factors tend to influence the neo-

intima formation but vascular smooth muscle cell proliferation

is perhaps the most important factor responsible for the devel-

opment of restenosis [12]. VEGF-A, VEGF-D and PlGF can

influence smooth muscle cell migration.
The role of VEGFs in intimal hyperplasia has remained con-

troversial. VEGF expression was detected in vascular SMC

after balloon injury which suggests that VEGFs may play a

role in the development of restenotic lesions [53]. Increased

neovascularization has also been observed at sites of intimal

hyperplasia. A correlation between adventitial angiogenesis

following VEGF gene transfer and intimal hyperplasia was

seen in a collar model of neointima formation [12]. However,

in a balloon denudation model of neointima formation, trans-

fer of VEGF gene to vessel wall has been shown to decrease

neointima formation [50,51]. VEGF stimulates endothelial

regeneration in injured blood vessels. It has been hypothesized

that the rapid regeneration of ECs results in secretion of sub-

stances like nitric oxide, C-type natriuretic peptide and prosta-

cyclin-I2, which have anti-proliferative effects on smooth

muscle cells [51].

10.3. Atherosclerosis

Plaque angiogenesis may be associated with increased ath-

erogenesis and unstable vulnerable plaques. These vulnerable

plaques are more likely to rupture and cause sudden intra-arte-

rial occlusion. An abrupt, coronary artery occlusion following

a plaque rupture could result in fatal acute coronary syn-

drome. VEGFs are potent angiogenic factors that can affect

plaque neovascularization and thereby influence atheroscle-

rotic process. Use of VEGFs for therapeutic angiogenesis in

CAD and PAD has been questioned because of the concerns

that the VEGFs might enhance the atherosclerotic lesion for-

mation. VEGF along with other growth factors and cytokines

can initiate and/or accelerate atherosclerosis by influencing

monocyte activation, adhesion, migration and enhancing vas-

cular permeability [54]. VEGF-A and VEGF-D, are expressed

in medial smooth muscle cells and in macrophages of human

atherosclerotic lesions. A role of PlGF in macrophage infiltra-

tion and development of early atherosclerotic lesions has also

been suggested [25]. The debate over the role of VEGFs in ath-

erosclerosis continues with a recent study in an animal model

showing that the increased systemic levels of VEGF-A,

VEGF-B, VEGF-C, and VEGF-D have no effect on athero-

sclerotic lesions [55].
11. Tumor angiogenesis and lymphangiogenesis

Malignant neoplasms are characterized by uncontrolled cel-

lular proliferation. Adequate blood supply and nutrients are

required to sustain their growth. Tumor growth and metastasis

are angiogenesis-dependent events. Role of VEGF in tumor

angiogenesis, especially in lung, gastrointestinal, ovarian and

breast cancers has been investigated and tumor angiogenesis

has become a potential target for cancer therapy [56]. Bev-

acizumab (Avastin�), a neutralizing monoclonal antibody to

VEGF, was the first antiangiogenic agent that was approved

for the treatment of metastatic colorectal cancer. Since then

it has also been experimentally used for treatment of other can-

cers (see Table 1).

VEGF-B and PlGF act through VEGFR-1 and their role in

tumor angiogenesis has also been investigated. Increased PlGF

expression has been associated with pathological angiogenesis

[18]. PlGF expression is significantly increased in non-small

cell lung carcinoma tissues and in certain brain tumors.

VEGF-B presumably has a role in early tumor development



Table 1
Potential clinical applications of VEGFs and VEGF inhibitors

Disease Therapeutic agent Potential clinical use Comments

CAD PAD VEGF-A, VEGF-D, PlGF Therapeutic angiogenesis Neo-angiogenesis/arteriogenesis
to restore blood supply to
ischemic areas

Wound healing and bone
healing

VEGF-A, VEGF-C, VEGF-D,
PlGF

Therapeutic angiogenesis,
lymphangiogenesis

Angiogenesis to hasten wound/
bone healing. Restore lymphatic
supply across incisional wounds.

Lymphedema VEGF-C, VEGF-D Therapeutic lymphangiogenesis Improved lymphatic drainage
Restenosis – post

angioplasty, stent
VEGF-A, VEGF-C, VEGF-D Suppress intimal hyperplasia Rapid endothelial regeneration

Vein graft VEGF-D (Trinam�) Improved vein graft survival Increased adventitial
angiogenesis

Tumor angiogenesis,
lymphangiogenesis

VEGF inhibitors e.g. monoclonal
antibody
VEGF-A (Avastin�), soluble
VEGF receptors (VEGF Trap)

Inhibit tumor angiogenesis,
lymphangiogenesis

Can be used in conjunction with
other therapies. Reduce tumor
growth and metastasis

Rheumatoid arthritis VEGF inhibitors Reduce angiogenesis in pannus Can be used in conjunction with
other therapies to reduce
inflammation and angiogenesis

Psoriasis VEGF-A inhibitors Decrease angiogenesis and
inflammation

Can be used in conjunction with
other therapies to reduce
inflammation and angiogenesis

Ocular disorders – DR,
AMD, ROP

VEGF-A inhibitors, VEGF trap,
Macugen�

Suppress angiogenesis These ocular diseases are
characterized by abnormal
angiogenesis

PAD, peripheral arterial disease; CAD, coronary artery disease; DR, diabetic retinopathy; AMD, age related macular degeneration; ROP, reti-
nopathy of prematurity.
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and in oral squamous cell carcinomas but there is a paucity of

conclusive data to indicate a significant role of VEGF-B in tu-

mor progression [27].

Lymphatic vasculature provides another route for tumor

metastasis. Certain tumors like carcinomas of breast, lung

and gastrointestinal tract have a propensity to metastasize

through lymphatic vessels. The production of lymphangio-

genic growth factors VEGF-C, VEGF-D and their receptor

VEGFR-3 stimulate lymphatic growth in the region of the tu-

mor, enabling cancer cells to gain access to the lymphatic vas-

culature [57]. VEGF-C and VEGF-D have been associated

with tumor lymphangiogenesis and metastatic spread of tumor

cells and a role of VEGF-A in peritumoral lymphangiogenesis

and lymphatic metastasis has also been proposed.
12. Lymphedema

Impaired drainage results in the retention of lymphatic fluid

in subcutaneous tissues. Lymphedemas can be classified as

hereditary (primary) or acquired (secondary). VEGFR-3 is

important for normal lymphatic vascular functions. In some

patients with congenital hereditary lymphedema (Milroy dis-

ease), missense mutations in the TK domain of VEGFR-3

interferes with the signaling and results in lymphedema [58].

VEGF-C gene therapy in lymphedema animal model has

shown promising results.
13. Role of VEGFs in wound healing

Revascularization of damaged tissue is an important compo-

nent of wound healing. Inadequate or unregulated vessel

growth could result in a delayed healing. VEGF is widely ex-
pressed during different phases of wound healing and its role

is critical in this process. Several preclinical studies have been

done to study VEGF as a potential therapeutic factor in

wound healing [59]. The overexpression of VEGF using gene

therapy techniques resulted in an increased vascular density

in the wound and a more rapid closure of the wound, but there

is a significantly greater deposition of granulation tissue.

Adenovirus mediated VEGF-A165 gene transfer and adeno-

associated virus mediated VEGF gene transfer has been used

to promote flap survival and wound healing in animal models

[59]. Adenoviral VEGF-C gene transfer at the edges of epigas-

tric skin flaps in mice results in the formation of anastomoses

between the lymphatic vessels of the skin flap and the sur-

rounding lymphatic vasculature [60]. In skin, PlGF expression

is upregulated during wound healing and PlGF-deficient mice

show delayed wound closure, indicating that this factor pro-

motes angiogenesis during skin repair [61].
14. VEGF in rheumatoid arthritis (RA)

Angiogenesis constitutes an early event of synovial hyperpla-

sia which presumably promotes the destruction of cartilage

and bone in later stages of RA. The role of angiogenesis is

intricate and varied in RA. Angiogenesis helps in supplying

nutrients for hyperplastic synovium but also promotes persis-

tence of synovial inflammation through the influx of inflamma-

tory cells and by producing inflammatory mediators [62]. The

neovascular network in RA is dysfunctional and the joint af-

fected by rheumatoid arthritis is hypoxic. VEGF is upregu-

lated by proinflammatory cytokines and by hypoxia in RA

[63]. Anti-angiogenic strategies including bevacizumab (a neu-

tralizing monoclonal antibody to VEGF) may have a potential

therapeutic role in RA [64].
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15. Role of VEGF in ocular disorders

15.1. Diabetic retinopathy

Diabetic retinopathy (DR) becomes clinically apparent sev-

eral years after the onset of diabetes mellitus (DM). Non-pro-

liferative diabetic retinopathy (NPDR) is characterized by

increased vascular permeability, leading to edema, and lipo-

protein accumulation (hard exudates) in the outer plexiform

layer and small haemorrhages and microaneurysms in retina

[65]. In later stages there is periretinal neovascularization

which typifies the proliferative diabetic retinopathy (PDR). In-

creased VEGF-A expression has been described in NPDR in

humans and elevated levels of VEGF-A have been found in

the aqueous humor and vitreous of patients with PDR. VEGF

receptors are also upregulated in DR [66]. Increased VEGF-A

levels presumably result in vascular leakage and periretinal

neovascularization in DR.
15.2. Age-related macular degeneration

Age-related macular degeneration (AMD) is the major cause

of central vision loss in elderly. There are two forms of AMD,

neovascular and non-neovascular. The non-neovascular form

of AMD is more common. Visual loss in AMD occurs from

photoreceptor damage due to development of choroidal neo-

vascularization (CNV) and related manifestations such as sub-

retinal hemorrhage, detachment of the retinal pigmentary

epithelium (RPE), and fibrovascular disciform scarring [67].

Vitreous VEGF-A levels were found to be significantly higher

in patients with AMD and CNV [66]. Although the exact

mechanisms for development of CNV are poorly understood,

tissue hypoxia and VEGF overexpression presumably play a

key role in the development of CMV [66,67].
15.3. Retinopathy of prematurity (ROP)

ROP is characterized by the proliferation of the retinal

blood vessels in premature babies who receive prolonged

mechanical ventilation and are therefore exposed to high con-

centrations of oxygen. Role of VEGF has been clearly estab-

lished in the pathogenesis of ROP [66,68]. Hyperoxia causes

obliteration of developing retinal vessels. Once the infant re-

turns to normoxic environment retina become hypoxic, result-

ing in VEGF upregulation and vascular proliferation [66,68].

VEGF is expressed by the astrocytes and the Müller cells

which participate in the development of the superficial and

deep vascular layers, respectively. Insulin like growth factor

(IGF)-1 also plays an important role in development of

ROP. It has been suggested that VEGF may not be able to

stimulate vascular growth in absence of IGF-1 [66].
16. Psoriasis

Psoriasis is a chronic inflammatory skin disease character-

ized by epidermal hyperplasia, impaired epidermal differentia-

tion, and accumulation of distinct leukocyte subpopulations.

VEGF is strongly upregulated in psoriatic skin lesions [69].

Single nucleotide polymorphisms of the VEGF gene occur

more frequently in patients with early onset psoriasis and these

haplotypes may contribute to the elevated VEGF levels ob-

served in these patients [70]. Thus VEGF plays an important

role in the pathogenesis of psoriasis and that therapeutic
blockade of the VEGF/VEGF-receptor system might represent

a novel, pharmacogenomic approach for the future treatment

of psoriasis.
17. Conclusions

Recent advancements in vascular research have enhanced

our understanding of VEGF/VEGF-receptor biology. These

molecules are crucial regulators of vasculogenesis, angiogene-

sis and lymphangiogenesis. Several, VEGF/VEGF-receptor

inhibition strategies have emerged for treating the diseases

associated with pathological angiogenesis. Similarly ‘therapeu-

tic angiogenesis’ is an emerging treatment modality for ische-

mic disorders. Future advances in our understanding of

biology of VEGFs are likely to identifying newer functions

and potential therapeutic uses for these molecules.
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