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a b s t r a c t

In this paper, some sufficient conditions are obtained for the oscillation of all solutions of
even-order nonlinear neutral differential equations with variable coefficients. Our results
improve and generalize known results. In particular, the results are new evenwhen n = 2.
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1. Introduction

Neutral differential equations find numerous applications in natural science and technology. For instance, they are
frequently used for the study of distributed networks containing lossless transmission lines; see Hale [1, P292]. Recently,
many studies have been made on the oscillatory behavior of solutions of higher-order neutral differential equations; see,
for example, [2–6] and the references cited therein.
In this paper, we consider the even-order nonlinear neutral delay differential equation

[x(t)+ p(t)x(τ (t))](n) + q(t)f [x(σ (t))] = 0, n is even. (1)
Throughout this paper, the following conditions are assumed to hold.
(H1) 0 ≤ p(t) < 1, q(t) ≥ 0 and are continuous on [t0,∞);
(H2)σ(t), τ(t) are continuous nonnegative functionswith limt→∞ σ(t) = ∞, limt→∞ τ(t) = ∞, andσ(t) ≤ t , τ(t) ≤ t;
(H3) f (x) is a continuous function on (−∞,+∞), xf (x) > 0, and f ′(x) ≥ 0 for all x 6= 0.
In what follows, we restrict our attention to solutions of (1) which exist on some half-line and are nontrivial for all large

t . As is customary, a solution x(t) of (1) is said to be oscillatory if it has arbitrarily large zeros; otherwise, it is called non-
oscillatory. Eq. (1) is said to be oscillatory if all its solutions are oscillatory.
We notice that, in Eq. (1), if f (x) = x, then Eq. (1) can be written as the linear equation

[x(t)+ p(t)x(τ (t))](n) + q(t)x(σ (t)) = 0, n is even. (2)
In Eq. (2), if p(t) ≡ 0, then Eq. (2) can be written as the linear equation

x(n)(t)+ q(t)x(σ (t)) = 0, n is even. (3)
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In Eq. (3), if n = 2, then Eq. (3) can be written as the second-order linear equation

x′′(t)+ q(t)x(σ (t)) = 0. (4)

In 1986, Koplatadze [7], in 1988,Wei [8], and in 2000, Koplatadze [9], respectively, discussed oscillation criteria for Eq. (4),
and obtained some sufficient conditions for Eq. (4) to be oscillatory. In 1998, Zafer [6] generalized the results of Koplatadze
for Eq. (2); in 2004, Bai [10] studied oscillation criteria for Eq. (3), and obtained some sufficient conditions for Eq. (3) to be
oscillatory. So far, the study of the oscillation behavior of even-order nonlinear neutral differential equations has not been
sufficient. The purpose of this article is to improve and generalize the results of Koplatadze, Zafer, Wei and Bai, and show
that some results in [6,10,7–9] are special cases of those in this article. In particular, the results are new even when n = 2.
The following lemma is well known; see Kiguradge [2, Lemma 2.2.1].

Lemma 1. Let u(t) be a positive and n-times differentiable function on an interval [T ,∞) with its n-th derivative u(n)(t)
nonpositive on [T ,∞) and not identically zero on any interval of the form [T ′,∞), T ′ ≥ T . Then there exists an integer l,
0 ≤ l ≤ n− 1, with n+ l odd, such that, for some large T ∗ ≥ T ′,

(−1)l+ju(j) > 0 on [T ∗,∞)(j = l, l+ 1, . . . , n− 1)
u(i) > 0 on [T ∗,∞)(i = 1, 2, . . . , l− 1) when l > 1.

The next lemma is given in [2, P169].

Lemma 2. Let u(t) be as in Lemma 1. If limt→∞ u(t) 6= 0, then, for every λ, 0 < λ < 1, there is Tλ ≥ t0 such that, for all t ≥ Tλ,

u(t) ≥
λ

(n− 1)!
tn−1u(n−1)(t).

2. Main results

First, we establish a comparison theorem.

Theorem 1. Let |f (x)| ≥ |x|, for all |x| ≥ x0 > 0. Assume that there exists a constant 0 < λ0 < 1, such that the first-order
delay differential equation

z ′(t)+
λ0

(n− 1)!
q(t)σ n−1(t)[1− p(σ (t))]z(σ (t)) = 0 (5)

is oscillatory. Then (1) is oscillatory.

Proof. Let x(t) be an eventually positive solution of (1), say x(t) > 0 and x(σ (t)) > 0, when t ≥ t0. Let

y(t) = x(t)+ p(t)x(τ (t)). (6)

Then, from (H1), (H2) and (H3), there exists t1 ≥ t0 such that

y(t) > 0 and y(n)(t) ≤ 0 for all t ≥ t1.

By Lemma 1, there exists t2 ≥ t1 and an odd integer l ≤ n− 1 such that, for some large t3 ≥ t2,

(−1)l+jy(j)(t) > 0, j = l, l+ 1, . . . , n− 1, t ≥ t3,

y(i)(t) > 0, i = 0, 1, . . . , l− 1, t ≥ t3.
(7)

Thus, from (7), y′(t) > 0 and y(n−1)(t) > 0 for t ≥ t3. Hence, limt→∞ y(t) 6= 0. By Lemma 2, for every λ, 0 < λ < 1, there
exists Tλ such that, for all t ≥ Tλ,

y(t) ≥
λ

(n− 1)!
tn−1y(n−1)(t). (8)

From (6), x(σ (t)) = y(σ (t))− p(σ (t))x(τ (σ (t))), and consequently, we have

y(n)(t)+ q(t)f [y(σ (t))− p(σ (t))x(τ (σ (t)))] = 0, for all large t.

Noting that |f (x)| ≥ |x|, for all |x| ≥ x0 > 0, we obtain

y(n)(t)+ q(t)[y(σ (t))− p(σ (t))x(τ (σ (t)))] ≤ 0, for all large t.

Noting that y(t) > x(t) and y′(t) > 0, we obtain

y(n)(t)+ q(t)[1− p(σ (t))]y(σ (t)) ≤ 0, for all sufficiently large t.
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Now, using (8), we have that, for every 0 < λ < 1,

y(n)(t)+
λ

(n− 1)!
q(t)σ n−1(t)[1− p(σ (t))]y(n−1)(σ (t)) ≤ 0, for all large t.

Let u(t) = y(n−1)(t). Thus, for t large enough, u(t) satisfies

u′(t)+
λ

(n− 1)!
q(t)σ n−1(t)[1− p(σ (t))]u(σ (t)) ≤ 0, for every 0 < λ < 1. (∗)

Since the differential inequality (∗) has the nonoscillatory solution u(t) by a well-known result (see Corollary 3.2.2 in [4],
P67), the differential equation

z ′(t)+
λ

(n− 1)!
q(t)σ n−1(t)[1− p(σ (t))]z(σ (t)) = 0,

also has an eventually positive solution for every 0 < λ < 1. This contradicts the fact that (5) is oscillatory. In the case that
x(t) is an eventually negative solution,−x(t)will be an eventually positive solution. The proof of Theorem1 is complete. �

It is well known (see [3,4]) that if either

lim inf
t→∞

∫ t

σ(t)
q(s)ds >

1
e

(9)

or σ(t) is nondecreasing and

lim sup
t→∞

∫ t

σ(t)
q(s)ds > 1, (10)

then

x′(t)+ q(t)x(σ (t)) = 0 (11)

is oscillatory.
Thus, from Theorem 1, we can obtain the following result.

Corollary 1. Eq. (1) is oscillatory if either

lim inf
t→∞

∫ t

σ(t)
q(s)σ n−1(s)[1− p(σ (s))]ds >

(n− 1)!
e

(12)

or σ(t) is nondecreasing and

lim sup
t→∞

∫ t

σ(t)
q(s)σ n−1(s)[1− p(σ (s))]ds > (n− 1)!. (13)

Proof. From (12) and (13), one can choose a positive constant 0 < λ0 < 1 such that

lim inf
t→∞

λ0

∫ t

σ(t)
q(s)σ n−1(s)[1− p(σ (s))]ds >

(n− 1)!
e

or

lim sup
t→∞

λ0

∫ t

σ(t)
q(s)σ n−1(s)[1− p(σ (s))]ds > (n− 1)!.

By Theorem 1, and in view of (9) and (10), the conclusion of Corollary 1 is obtained. The proof of Corollary 1 is complete. �

Remark 1. In [6], the author obtains sufficient conditions for (2) to be oscillatory, namely, if

lim inf
t→∞

∫ t

σ(t)
q(s)σ n−1(s)[1− p(σ (s))]ds >

(n− 1)2(n−1)(n−2)

e
(14)

or

lim sup
t→∞

∫ t

σ(t)
q(s)σ n−1(s)[1− p(σ (s))]ds > (n− 1)2(n−1)(n−2). (15)

In the case of (15), σ(t) is nondecreasing. Since (n−1)! < (n−1)2(n−1)(n−2)when n ≥ 3, it follows that Corollary 1 improves
and generalizes Theorem 2 in [6].
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Remark 2. Recently, the following sufficient conditions for (3) to be oscillatory were obtained (see Theorems 1 and 2
in [10]): either

lim inf
t→∞

∫ t

σ(t)
q(s)σ n−1(s)ds >

1
e
2(n−1)

2
(n− 1)!

or σ(t) is nondecreasing and

lim sup
t→∞

∫ t

σ(t)
q(s)σ n−1(s)ds > 2(n−1)

2
(n− 1)!.

Clearly, Corollary 1 improves and generalizes the above results.

Remark 3. When p(t) ≡ 0 and n = 2, Corollary 1 reduces to being if

lim inf
t→∞

∫ t

σ(t)
q(s)σ (s)ds >

1
e
, (16)

or σ(t) is nondecreasing and

lim sup
t→∞

∫ t

σ(t)
q(s)σ (s)ds > 1, (17)

then Eq. (4) is oscillatory. These results have been established in [7,8]; also see [9].

3. Further results

Let δ(t) = maxt0≤s≤t σ(s) and δ
−1(t) = sup{s ≥ t0 : δ(s) = t}, δ−(k+1)(t) = sup{s ≥ δ−k(t0) : δ−k(s) = t}. Set

Q (t) = 1
(n−1)!q(t)σ

n−1(t)[1− p(σ (t))].
Define a sequence {Qk(t)} of functions as follows:

Q1(t) =
∫ t

δ(t)
Q (s)ds, t ≥ δ−1(t0),

Qk+1(t) =
∫ t

δ(t)
Q (s)Qk(s)ds, t ≥ δ−(k+1)(t0), k = 1, 2, . . . . (18)

Theorem 2. Assume that there exists a positive integer K such that

lim inf
t→∞

QK (t) >
1
eK
. (19)

Then (1) is oscillatory.

Proof. Let lim inft→∞ QK (t) > α > 0. In view of (19), we can choose a constant 0 < λ0 < 1 such that αλK0 >
1
eK
; that is,

lim inf
t→∞

λK0QK (t) >
1
eK
. (20)

Suppose, for the sake of contradiction, that (1) has an eventually positive solution x(t). Let y(t) = x(t) + p(t)x(τ (t)). We
can proceed as in the proof of Theorem 1 and show that for λ0 the equation

z ′(t)+
λ0

(n− 1)!
q(t)σ n−1(t)[1− p(σ (t))]z(σ (t)) = 0 (21)

has an eventually positive solution. On the other hand, by [11, Theorem 1] and (20), all the solutions of (21) are oscillatory.
This is a contradiction. The proof of Theorem 2 is complete. �

Remark 4. Theorem 2 is a new result, which improves and generalizes Theorem 2 in [6]; even for second-order neutral
differential equations, Theorem 2 still holds. In particular, when p(t) ≡ 0 and n = 2, for the delay differential equation (4),
we have the following result.

Corollary 2. Assume that there exists a K such that

lim inf
t→∞

QK (t) >
1
eK
. (22)

Then the Eq. (4) is oscillatory.
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Remark 5. Corollary 2 improves and generalizes the relative results from [7,8]. When K = 1, (22) reduces to (16).

Example. Consider the equation[
x(t)+

1
2
x(t − π)

](n)
+
(n− 1)!(1+ cos t)
e(t − π)n−1

x(t − π) ln[e+ x2(t − π)] = 0, t ≥ t0 > π, n is even. (23)

From (18), we have

Q (t) =
1
2e
(1+ cos t), t ≥ t0 and lim inf

t→∞

∫ t

t−π
Q (s)ds =

1
2e
(π − 2) <

1
e
.

It is easy to show that (see [12])

Q1(t) =
1
2e
(π + 2 sin t), t ≥ t0,

Q2(t) =
1
4e2

(π2 + 2π sin t − 4 cos t), t ≥ 2π,

Q3(t) =
1
8e3

[
π3 − 2π + (2π2 − 8) sin t − 4π cos t

]
, t ≥ 3π,

Q4(t) =
1
16e4

[
π4 − 4π2 + 2(π3 − 6π) sin t − 4(π2 − 4) cos t

]
, t ≥ 4π.

lim inf
t→∞

Qk(t) <
1
ek
, k = 2, 3. But lim inf

t→∞
Q4(t) >

1
e4
.

Thus, by Theorem 2, (23) is oscillatory. The known results in the literature are not applicable to (23).
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