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How do we track multiple moving objects in our visual environment? Some investigators argue that
tracking is based on a parallel mechanism (e.g., Cavanagh & Alvarez, 2005; Pylyshyn, 1989), others argue
that tracking contains a serial component (e.g. Holcombe & Chen, 2013; Oksama & Hyönä, 2008). In the
present study, we put previous theories into a direct test by registering observers’ eye movements when
they tracked identical moving targets (the MOT task) or when they tracked distinct object identities (the
MIT task). The eye movement technique is a useful tool to study whether overt focal attention is exploited
during tracking. We found a qualitative difference between these tasks in terms of eye movements. When
the participants tracked only position information (MOT), the observers had a clear preference for keep-
ing their eyes fixed for a rather long time on the same screen position. In contrast, active eye behavior
was observed when the observers tracked the identities of moving objects (MIT). The participants
updated over four target identities with overt attention shifts. These data suggest that there are two sep-
arate systems involved in multiple object tracking. The position tracking system keeps track of the posi-
tions of the moving targets in parallel without the need of overt attention shifts in the form of eye
movements. On the other hand, the identity tracking system maintains identity–location bindings in a
serial fashion by utilizing overt attention shifts.

� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Keeping track of multiple moving objects is a central part of our
everyday life. For example, a mother may be tracking the where-
abouts of her children on a crowded beach, or a car driver
approaching a busy intersection is monitoring other vehicles also
manoeuvring through the intersection. Moreover, professionals,
such as air traffic controllers and fighter pilots, constantly deal
with similar dynamic visual environments. However, the demands
of different tracking tasks may vary quite notably from each other.
Sometimes it is sufficient that we are simply aware of the members
of the target set as a whole, for example, when a soccer player is
attending to the whereabouts of the opponent team members.
Other times it is required that we are aware of the whereabouts
of individual members of the target set, for example when a soccer
player wishes to pass the ball to his team’s top scorer.

In the research literature on tracking of moving objects, the for-
mer task bears similarity to the multiple object tracking (MOT)
task (Pylyshyn & Storm, 1988), where observers track a set of tar-
gets that are visually identical to each other (likened to the track-
ing of a flock of white sheep). Thus, only location information
needs to be encoded, whereas object features are irrelevant to
the task (see Fig. 1, top). On the other hand, the latter task is similar
to the multiple identity tracking (MIT) task (Horowitz et al., 2007;
Oksama & Hyönä, 2004), where distinct objects (likened to individ-
ual soccer players) are tracked and where observers need to con-
stantly bind and update identity information with location
information (see Fig. 1, bottom). Thus, the MOT task is a position
tracking task whereas the MIT task is an identity tracking task by
nature.

Several theoretical controversies have emerged concerning the
mechanisms of position and identity tracking. Firstly, is tracking
achieved by a serial or by a parallel process? Secondly, do position
tracking and identity tracking share a common mechanism or are
they based on independent mechanisms?

1.1. Is multiple object tracking serial or parallel in nature?

Some investigators argue that tracking is based on a parallel
mechanism (Alvarez & Cavanagh, 2005; Cavanagh & Alvarez,
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Fig. 1. A schematic depiction of the multiple object tracking task (MOT) with identical objects (top) and the multiple-identity tracking task (MIT, bottom) with distinct
objects. Display a: six different objects are presented, and in this trial three of them are designated as targets by flashing a frame around them. Display b: all objects begin to
move randomly about the screen. The participant’s task is to track the location of the designated targets. Display c: when the motion stops, the participant is asked whether a
flashed probe was among the target set flashed at the outset (MOT) or to report the identity of the masked probe (MIT). The target pictures of objects used in MIT were
reprinted from Snodgrass and Vanderwart (1980), � 2007 Life Sciences Associates.
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2005; Franconeri, Jonathan, & Scimeca, 2010; Howe, Cohen, Pinto,
& Horowitz, 2010; Kazanovich & Borisyuk, 2006; Pylyshyn, 1989,
2001), others argue that tracking contains a significant serial com-
ponent (d’Avossa, Shulman, Snyder, & Corbetta, 2006; Holcombe &
Chen, 2013; Oksama & Hyönä, 2004, 2008; Tripathy, Ogmen, &
Narasimhan, 2011). Parallel theories are typically based on data
collected using the MOT paradigm (but see Howe & Ferguson,
2015), where observers track visually identical targets. According
to the FINST theory (Pylyshyn & Storm, 1988), tracking is carried
out in parallel for all targets within the capacity limit of about four
items. Moreover, the tracking mechanism is assumed to operate
pre-attentatively. According to the theory of Cavanagh and
Alvarez (2005), tracking requires attention and is based on multi-
ple attentional foci, between which limited attentional resources
are allocated. Both versions of the parallel theory assume that
serial switching of visual attention between target objects is not
needed, either because attention is not needed or because object
tracking is parallel in nature. Finally, Alvarez and Franconeri
(2007) have proposed a model in which tracking is achieved by a
flexibly allocated mental resource; however, they refrain from tak-
ing stand whether this resource is serial or parallel in nature.

Oksama and Hyönä (2008) have proposed a serial model espe-
cially designed for multiple identity tracking. According to their
MOMIT model, observers use only one attentional focus, which
needs to be shifted serially from one target to the next. When
visual attention is focused on a target, its identity–location binding
is created (or updated). In other words, binding identity with loca-
tion is carried out individually for each target. As other, non-
attended targets keep moving, it means that their bindings will
be outdated and will not be updated until they are focally attended
one at a time. It is further assumed that locations for the tracked
targets are temporarily stored in visuo-spatial short-term memory
(VSTM). This indexed location information (bound to identities) is
then utilized by a mechanism that programs shifts of visual atten-
tion between targets. As targets move continuously, location infor-
mation for all other than the focally attended targets are outdated.
The magnitude of this location error is a key factor in predicting
tracking accuracy as a function of object speed and target set-
size. The size of the location error increases with an increase in tar-
get speed and set-size, which results in less efficient switching of
attention between targets. Furthermore, it is assumed that serial
shifting of attention is controlled partly with the help of this
indexed location information stored in VSTM and partly with the
help of peripheral vision. According to MOMIT, peripheral vision
provides non-indexed (not bound to identities) location informa-
tion about all moving objects in parallel.

Engineering models describe a generic model for visual sam-
pling in dynamic situations. They are kin to MOMIT, as they are
based on serial switching of focal attention. Seminal engineering
models of supervisory control provide precise predictions about
how often a dynamic display (e.g., flight instruments in a cockpit)
should be sampled with focal attention and the eyes (e.g.,
Carbonell, 1966; Moray, 1984, 1986; Senders, 1964, 1983;
Sheridan, 1970; see also Horrey, Wickens, & Consalus, 2006).
According to Senders’ (1964) model, in order to effectively monitor
a dynamic display, it is necessary to sample the display at a rate
twice its information bandwidth (bandwidth measured in events/
s = Hz). For example, when relevant information in an information
channel occurs at a rate of 1 Hz, the optimal observer should visu-
ally sample this channel at a rate of 2 Hz. Later Moray (1986)
argued that the optimal sampling rate would be equal to the band-
width. Sampling of dynamic display at this rate is necessary,
because the more rapidly the dynamic signal varies, the more
quickly it will become impossible to predict its current value on
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the basis of past observations. In other words, uncertainty about
the channel’s current state increases as a function of time. Uncer-
tainty may increase either due to endogenous reasons like forget-
ting or due to exogenous reasons like signal bandwidth. The job of
the optimal observer is to reduce uncertainty by switching atten-
tion between relevant channels at an optimal rate.

Applied to MOT and MIT, information bandwidth refers to the
frequency with which the target objects change their movement
direction or their speed. When the targets continue moving in
the same direction with the same speed, uncertainty is low and
thus the need for sampling the visual environment is also small.
In contrast, when the targets change their direction and/or speed,
uncertainty increases and so does the need for increasing the visual
sampling rate. It should be noted that object speed itself is not rel-
evant, only the possible changes in speed.

Furthermore, Moray (1984) argues that observers are likely to
face a speed–accuracy trade-off in monitoring multiple informa-
tion channels. When the number of channels increases and/or
the information bandwidth (events/s) becomes high, the observer
either has to delay sampling in order to have enough observation
time or s/he must cut short the observation time of a display chan-
nel to maintain a desired sampling rate. Such a trade-off will result
in performance decrement and in important channel information
either being unnoticed or detected too late (e.g., the pilot does
not notice a critical value at a flight instrument or it is noticed
too late). However, to our knowledge, to date no experiments have
been carried out to test the existence of such trade-offs.

As noted above, according to the serial engineering models, the
optimal observer aims to minimize uncertainty by periodically
sampling the channels. If uncertainty is interpreted as location
error, MOMIT and the engineering models are very similar and
make similar predictions. Both models assume an increase in the
number of targets to also increase the visual sampling rate. Simi-
larly, both models predict variation in speed to influence the sam-
pling rate, albeit for slightly different reasons. As noted above,
engineering models do not assume speed as such to affect the sam-
pling rate. However, increase in object speed in MOT and MIT, is
associated with more frequent changes in motion direction due
to collision prevention.

1.2. Do position tracking and identity tracking share a common
mechanism?

Another theoretical controversy in tracking research concerns
whether position tracking and identity tracking share a common
resource. Pylyshyn (1989) proposed that a preattentive feature-
blind position tracking mechanism (FINST) works independently
of a feature/identity checking process. The object file theory
(Kahneman, Treisman, & Gibbs, 1992), on the other hand, suggests
that focusing on an object creates a file that contains location as
well as featural or identity information (see also a later model of
Pylyshyn, 2004). Thus, featural/identity information comes with
location information. More recently, however, Horowitz et al.
(2007) have proposed that there may be two separate and inde-
pendent systems involved in multiple object tracking, one respon-
sible for tracking positional information and one also carrying
identity information. Their proposal is based on finding capacity
differences between a task only requiring to keep track of target
positions versus a task where target identities are also maintained.
Horowitz et al. observed a ‘‘content deficit”: tracking capacity was
lower when observers needed to report the location of a particular
target rather than the locations of all targets (see also Botterill,
Allen, & McGeorge, 2011; Ren, Chen, Liu, & Fu, 2009). Recently,
however, Cohen, Pinto, Howe, and Horowitz (2011) and Pinto,
Howe, Cohen, and Horowitz (2010) have provided evidence in
favor of a unitary tracking model. Cohen et al. demonstrate that
observers can trade off performance between location and identity
tracking; that is, position and identity tracking may not be entirely
dissociable.

It is difficult to differentiate between serial and parallel process-
ing or whether location tracking and identity tracking are carried
out by separate systems on the basis of off-line performance accu-
racy and reaction time measures. In fact, Logan (2002) and
Townsend and Wenger (2004a) demonstrated that it is in principle
possible to simulate the same behavioral data (e.g., reaction times)
using either a serial or parallel model. However, studying tracking
in real time via eye movements is likely to be more informative.
The eye movement technique is a useful tool to study whether
overt focal attention is exploited during tracking. Moment-to-
moment allocation of visual attention can be reliably studied by
eye movement registration, as shifts of visual attention and eye
movements are intimately linked to each other (e.g., Deubel &
Schneider, 1996; Hoffman & Subramaniam, 1995; Kowler,
Anderson, Dosher, & Blaser, 1995; Shepherd, Findlay, & Hockey,
1986; see also Findlay & Gilchrist, 2003). If position tracking and
identity tracking are based on a common mechanism, we expect
to find similar eye-movement activity in both tasks. However, if
eye-movement activity qualitatively differs between the position
tracking and identity tracking tasks, it would be evidence for differ-
ent mechanisms being responsible for position versus identity
tracking.

1.3. Eye-movement studies of MOT

Recent eye movement studies of multiple object tracking pro-
vide some support for parallel models (but see below Landry,
Sheridan, & Yufik, 2001). Zelinsky and Neider (2008) registered
eye movements while observers tracked visually identical sharks
moving about on a computer screen. In order to study typical eye
movement strategies during MOT, they assigned, using a shortest
distance rule, each eye position sample to one of three possible
regions: centroid (the geometric center delineated by the moving
target objects), target object, or distracter object. With set-size 2,
observers looked longest at the centroid, with set-size 3 they
looked equally long at the centroid and target, and with set-size
4 they looked longest at the target. Tracking accuracy correlated
positively and strongly with fixation time on the centroid but neg-
atively with fixation time on the target, which suggests that the
centroid strategy is an optimal eye movement strategy in MOT
(see also Fehd & Seiffert, 2010).

Fehd and Seiffert (2008) recorded observers’ eye movements
when they tracked either one or three identical red dots for 3 s.
The analysis of the eye movement data was limited to the trials
where all targets were correctly identified. The fixations were
grouped either to the centroid or the target or distractor dots using
a shortest distance rule, similarly to Zelinsky and Neider (2008).
With only one target to be tracked, the eyes fixated almost exclu-
sively on the target. On the other hand, with set-size 3 fixations
were predominantly located close to the centroid. In a follow-up
experiment, this was also found to be the case for set-size 4 and
5. Fehd and Seiffert (2008, 2010) concluded that observers can
accurately maintain a mental representation of object locations
without constant foveation. Their data are also consistent with
the view that multiple identical items may be tracked in parallel
(by perhaps grouping them into single virtual object, see Yantis,
1992) without overtly attending to the individual targets. Finally,
Huff, Papenmeier, Jahn, and Hesse (2010) measured eye move-
ments to study tracking of three moving targets and obtained
results that were interpreted to be consistent with those of Fehd
and Seiffert.

On the other hand, Landry et al. (2001) found evidence for serial
processing during tracking. They used a simulated air traffic con-
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trol task in which participants monitored multiple aircraft for col-
lisions. They found evidence for switching and eye movements
between targets. Notice that their air traffic control task resembles
very closely the MIT task, as in both tasks distinct objects has to be
monitored.

To sum up the above discussion, the available evidence
obtained by eye movement studies is consistent with the view that
in MOT (identical targets) tracking is achieved using a parallel
mechanism without the need for eye movements made on the tar-
gets, whereas in MIT the process is based on serial switching (and
eye movements).

1.4. Present study

In the present study, we put the above theoretical reasoning
into direct test by registering observers’ eye movements when they
tracked identical (MOT) or distinct (MIT) objects. To examine the
likelihood of serial switching of attention between targets, we
measured the number of target visits and the number of fixated
targets as a function of target set-size and speed. Fixation fre-
quency was used as an additional measure of attentional switch-
ing. We also tested whether the average duration of target visits
would vary in response to an increase in target set-size and speed.
Third, based on eye fixations on targets we calculated the visual
sampling rate in Hz and compared it to the bandwidth of the track-
ing task (i.e., number of events per second, operationalized as
changes in movement direction of target objects). Finally, atten-
tional load was measured by pupil size and blink rate; increased
load is associated with larger pupil size (e.g., Beatty, 1982;
Hyönä, Tommola, & Alaja, 1995) and a smaller number of eyeblinks
(e.g., Kramer, 1991; Sirevaag, Kramer, Reisweber, Strayer, &
Grenell, 1993; Wilson & Eggemeier, 1991; for a review, see also
Irwin & Thomas, 2010). There is also evidence (Thomas & Irwin,
2006; see also Irwin & Thomas, 2010) demonstrating that memory
for spatial position as well as for identity–location bindings suffers
when an eyeblink occurs.

The present eye movement study differed from the seminal
work of Zelinsky and Neider (2008) and Fehd and Seiffert (2008)
in several important respects. First, we compared eye behavior
during two different tracking tasks (MOT and MIT). Second, we
made use of a number of different eye movement measures to
tap in more detail into the online tracking performance. Third,
unlike Zelinsky and Neider (2008) and Fehd and Seiffert (2008),
we did not apply a shortest distance rule; instead fixations were
assigned to the different areas of interest only when they actually
fell on those regions (for a similar analysis procedure, see also Huff
et al., 2010).

1.5. Predictions regarding eye-movements

As argued above, parallel theories predict that the number of
eye movements traversing between targets is minimal. Instead,
parallel tracking of location information may be optimized by
keeping the eyes fixed on a center position delineated by the mov-
ing target objects (Fehd & Seiffert, 2008; Zelinsky & Neider, 2008).
However, a constant computation and updating of the centroid
might be resource demanding, particularly with larger set-sizes
(Zelinsky & Neider, 2008), as it takes away limited resources from
the actual tracking. Thus, another possibility is to keep the eyes
fixed on one location, while the parallel processors (e.g., visual
indexes) take care of the tracking of moving objects. Different ver-
sions of the parallel theory (preattentative vs. attentative) make
the same predictions in terms of eye fixation patterns. However,
they differ from each other with respect to the two attentional load
measures employed in the present study, pupil size and blink rate.
Attentional models (such as the FLEX model by Alvarez &
Franconeri, 2007, interpreted as a covert parallel model) predict
that an increase in target set-size and speed should result in
increased attentional load, which in turn should be reflected in
pupil size and blink rate. However, preattentative models, such
as FINST (Pylyshyn, 1989), do not make such a prediction. Accord-
ing to single mechanism accounts, the predictions outlined above
would hold for both MOT and MIT. However, on the basis of the
dual-mechanism account of Horowitz et al. (2007), the above pre-
dictions would only hold for MOT.

On the other hand, the serial MOMIT model (Oksama & Hyönä,
2008) makes the following predictions regarding eye movement
behavior during MIT. First, number of fixations in general and
number of target visits especially increase linearly as a function
of set-size within the capacity limit (average capacity of MIT is
estimated to be around 3.5–4 items, although there are significant
individual differences, see Oksama & Hyönä, 2004). Thus, the
increase in fixation frequency is assumed to be monotonic up to
four targets, after which it should asymptote. On the other hand,
in order to optimize serial updating and tracking, previously cre-
ated identity–location bindings ought not to become grossly out-
dated. Thus, it is assumed that the average duration of target
visits becomes shorter with increased set-size and speed. However,
due to low-level oculomotor constraints, fixation durations cannot
decrease ad infinitum but are likely to asymptote to some mini-
mum level. Second, number of fixations made during tracking is
also predicted to vary as a function of target speed. When objects
move faster, their previously created identity–location bindings
become quicker outdated. Thus, the visual sampling rate (i.e., fixa-
tion frequency) should increase, but the number of successful tar-
get visits should decrease as a function of object speed. On the
other hand, average duration of target visits should become shorter
with increased object speed as a result of efforts in updating iden-
tity–location bindings at a maximal rate. Finally, attentional load,
as indexed by pupil size and blink rate, is assumed to increase both
as a function of set-size and speed.

The above predictions derived from MOMIT apply to MIT for
which the model was built. Although the model is not designed
to simulate MOT performance, it is in principle also possible to
extend it to MOT. The limited resources FLEX model of Alvarez
and Franconeri (2007) interpreted as an overt serial model (with
one trackingmechanism, ‘flex’, in use) would predict a flexible allo-
cation of eye movements in different speed and set-size conditions
in both tasks in a similar way as MOMIT. A flexible limited resource
system with one ‘flex’ should increase the number of fixations but
decrease the fixation duration on targets as a response to increases
in tracking load.

Finally, the engineering models (for a recent review, see Horrey
et al., 2006) of visual sampling make similar predictions as MOMIT
(Oksama & Hyönä, 2008) regarding the effect of set-size and speed
and the trade-off between number of fixations and average fixation
duration.
2. Experiment 1: MOT

In the MOT task, the participants tracked 2–5 identical moving
objects while their eye movements were registered. Target set-size
and speed were manipulated. To briefly recap the previous discus-
sion, parallel models do not stipulate any relationship between
eye-movements and tracking. On the other hand, previous eye
movement studies of MOT predict that observers keep their eyes
fixed in a position, defined by the gravitational center of the to-
be-tracked objects, irrespective of set-size and speed (Fehd &
Seiffert, 2008, 2010). Moreover, the limited-resource parallel
model (e.g., Alvarez & Franconeri, 2007; Cavanagh & Alvarez,
2005) predicts an increase in attentional load in response to
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increases in set-size and speed, whereas the preattentative parallel
model (Pylyshyn, 1989) predicts no effect of attentional load as a
function of set-size (up to the capacity limit of 4 items) and speed.
On the other hand, serial models (MOMIT and engineering models)
predict a linear increase in the number of fixations and number of
target visits as a function of set-size and speed. If target locations
are serially refreshed, increases in both the target set-size and
the target speed would raise the need for more frequent refreshing
of target locations. As for MOMIT, this is because an increase in
both set-size and speed would render the serially updated location
information increasingly outdated. Regarding engineering models,
an increase in set-size directly increases uncertainty and sampling
rate, while an increase in object speed does so indirectly by
increasing changes in movement direction (see above). Finally, as
it was possible to estimate the information bandwidth of the track-
ing task (we used off-line movement trajectories), we were able to
test engineering models’ predictions concerning the optimal sam-
pling rate. The objects changed their direction and speed on aver-
age of 2.75 Hz. The optimal visual sampling rate of targets will then
be either 5.5 Hz (Senders, 1964) or 2.75 Hz (Moray, 1986).

2.1. Method

2.1.1. Participants
Eleven participants (psychology students of the University of

Turku) were recruited for the experiment (twomales, nine females,
their mean age was about 21). All participants had normal or
corrected-to-normal vision. Previous eye movement studies of
MOT used quite comparable sample sizes.

2.1.2. Apparatus
Eye movements were recorded with a desktop mounted Eye-

link2000 (SR Research Ltd., Ontario, Canada) system. Sampling fre-
quency was 1000 Hz. The stimuli were presented on a 2100 CRT
screen with a screen resolution of 1280 � 1024 pixels and a 100-
Hz refresh rate. Participants were seated 57 cm from the screen,
and a chin rest was used to stabilize the head. Stimuli were created
with the E-prime software (Schneider, Eschman, & Zuccolotto,
2002a, 2002b). The software that generated the motion sequences
was written in Visual Basic.

2.1.3. Stimuli
The stimuli consisted of ten identical solid black circles, 2.1 deg

in diameter, presented on a white background (25 deg horizontally
and 32 deg vertically). Two to five of the total of ten dots was des-
ignated as targets by flashing a black frame (2.2 � 2.2 deg) around
them. Initial dot positions were generated at random. Dots never
overlapped with each other or with the frames of the screen. The
motion was created from 167, 233, or 300 static frames by present-
ing them one after another for 30 ms each. Movement direction for
each object was chosen randomly from among the eight compass
directions. Each object was assigned a movement duration that
was randomly selected from 7 to 37 in 30 ms increments (210–
1110 ms), and speed, randomly selected from 1 to 5.7 pixels per
frame in the slow condition (the average speed was 2.6 deg/s);
from 3 to 12.7 pixels per frame in the medium condition (the aver-
age speed was 6.3 deg/s); or from 7 to 18.4 pixels per frame in the
fast condition (the average speed was 10.7 deg/s). The range of
speeds used here was similar to that of Oksama and Hyönä
(2008). The movement duration determined the time for how long
the object maintained a certain direction and speed. When the
movement duration expired, new random speed, direction and
duration values were assigned to the object. Collisions to the other
dots and the edges of the display were prevented. If a collision was
going to happen, a reverse direction was chosen to these objects.
Thus, objects could not intersect each other. This procedure yielded
a sequence of frames in which each element moved in a random,
independent and continuous way for some period of time (210–
1110 ms, or until a collision was about to happen), and then chan-
ged direction and speed abruptly and began to move in a new
direction. As the coordinates for the moving objects were gener-
ated in a random fashion, the movement patterns of the objects
covered evenly the entire screen area.

2.1.4. Eye movement analysis
The eye movement data were first parsed into fixations and sac-

cades, after which fixations were assigned to one of five areas of
interest (target, distractor, centroid, screen center, or other area).
We considered it justified to use eye fixations as the primary data,
instead of assigning each eye movement data sample to an area of
interest regardless whether it belongs to a fixation or saccade
(Fehd & Seiffert, 2008; Zelinsky & Neider, 2008), as the intake of
visual information takes place during fixations. Fixation analysis
provides a real-time protocol of how observers allocate their visual
attention from moment to moment during tracking. Target and
distractor objects changed location every 30 ms. Thus, based on
their x and y coordinates, each fixation was assigned to an area
of interest separately for every 30-ms time slice. As the objects
moved during fixations, each fixation was subject to be assigned
to more than one area of interest. In order to prevent that from
happening, the fixations were assigned to the area of interest
within which it was located for more than 50% of its duration. Fix-
ations shorter than 80 ms were excluded. The target area for the
moving objects, the centroid, and the screen center was set to
3.4 degrees of visual angle in diameter. It was defined so that dif-
ferent target areas would not overlap with each other. The diame-
ter was only somewhat bigger than the actual diameter of the
moving objects.

The centroid was defined as the center of mass of a polygon
with the targets as it vertices. In target set-size two, the centroid
was the center of the two end points; in set-size three and four,
centroid was the center of mass (the centroid of a non-self-
intersecting closed polygon). In set-size five, the centroid cannot
be defined unambiguously (there could be many different cen-
troids depending on the order of vertices); thus, the results for
set-size 5 should be considered with some caution. In set-size five,
a geometrical ‘average’, or the center of two points was
determined.

2.1.5. Task
At the beginning of each trial the targets (2–5 objects) were des-

ignated by flashing a frame around them. The participants’ task
was to track the designated targets during the movement phase.
At the end of the movement phase, all the objects stopped moving
and the probed element was highlighted by flashing a frame
around it. Finally, the screen was cleared and a response screen
appeared where participants were asked to respond as accurately
and quickly as possible whether the probed element was one of
the target items. A computer mouse was used to collect the
responses (participants were asked to point and click either a
framed ‘yes’ or ‘no’ picture).

2.1.6. Procedure
A chinrest was used to reduce head movements and to control

the viewing distance. Participants were given written instructions
prior to the experiment, which outlined the general procedure and
explained the trial sequence. They were to note the positions of the
flashing targets at the start of each trial and to keep track of them
during the movement phase. They were free to move or not to
move their eyes during tracking. At the beginning of each block
the eye-tracker was calibrated using a 9-point calibration. Drift
correction was done after every trial. At the beginning of each trial,
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the objects were displayed for 1 s. After that, a black frame flashed
on and off for ten times (flashing duration was 150 ms; total flash-
ing time was 3000 ms) around the designated targets. The objects
then began to move in a random and continuous fashion around
the screen. The participants tracked them for 5, 7, or 9 s, after
which the movement stopped. This was followed by the flashing
of a black frame for five times (flashing duration was 150 ms; total
flashing time was 1500 ms) around one of the targets (i.e., the
probed item). After a response was given to the probe, the response
screen was cleared and an inter-trial screen was presented. The
next trial was initiated by the participant pressing the space bar,
or after the maximum inter-trial interval (3000 ms) expired. Par-
ticipants were provided with 10 practice trials; feedback was given
after each response during the practice session. Each participant
completed two blocks of 72 trials, altogether 144 trials. The order
of trials was randomized separately for each participant within
each block. The order of blocks was counterbalanced across partic-
ipants. There was a short rest period between the blocks. The entire
session took about 60 min.
2.1.7. Design
There were two manipulated factors in the experiment: number

of targets (2–5) and object speed (average speed of 2.6 deg/s,
6.3 deg/s, or 10.7 deg/s; coined ‘slow’, ‘medium’, and ‘fast’). Both
factors were within-subject variables. There were 12 trials in each
of the 12 conditions.
2.2. Results

2.2.1. Tracking accuracy (error percentage)
The results for the repeated measures analyses of variance

(ANOVA) are presented in Table 1. The results showed that tracking
performance deteriorated as a function of set-size and speed (see
Fig. 2, left panel). The Set-Size � Speed interaction was not signif-
icant. Overall tracking accuracies correspond very closely with
those obtained by Oksama and Hyönä (2004). We recomputed
the analysis for square-root transformed data, but the results
remained the same.
2.2.2. Eye-tracking data
The results for the repeated measures analyses of variance

(ANOVA) are presented in Table 1.
2.2.2.1. Number of fixations. As evident from Fig. 3 (left panel), the
number of fixations made during MOT did not vary as a function
of set-size. On the other hand, number of fixations decreased when
object speed increased. The significant interaction between set-
size and speed reflects the fact that in the slow speed condition
the number of fixations increased with set-size, in the medium
speed condition it remained constant, while in the high speed con-
dition it decreased slightly.
Table 1
Results of the repeated measures ANOVA (significant p values appear in bold) for the tracki
1).

Set-size Speed

F(3,30) p MSE gp2 F(2,20

Accuracy (% error) 4.86 <.01 20.90 .33 9.45
Number of fixations <1 .89 3.24 .02 7.59
Number of target visits <1 .60 .60 .06 19.18
Number of updated targets 4.03 .07 .77 .29 21.33
Pupil size 9.79 <.01 23,092 .50 24.75
Blinks 1.23 .31 .59 .11 15.02
Average fixation duration <1 .58 62,763 .05 4.37
2.2.2.2. Number of successful target visits. As apparent from Fig. 4
(left panel), the number of visits to target objects remained con-
stant across the different set-sizes, but decreased with increased
object speed. The significant Set-Size � Speed interaction is due
to the fact that in the slow speed condition the number of target
visits increased as a function of set-size, in the medium speed con-
dition remained at a constant level, while in the high speed condi-
tion it decreased slightly.

2.2.2.3. Number of updated targets. For this measure, each target
visit was regarded as an attempt to update the target location.
We then computed how many targets were updated (i.e., visited
at least once). As shown in Fig. 5, participants updated on average
one and a half target regardless of set-size. The number of updated
targets diminished slightly as a function of speed.

2.2.2.4. Average fixation duration. As apparent from Fig. 6 (left
panel), average fixation duration did not vary as a function of
set-size. It may be noted that the average fixation duration was
quite long (around 600 ms). The main effect of target speed
approached significance and so did the Set-Size � Speed interac-
tion. There was a tendency for average fixation duration to
decrease as a function of set-size in the slow speed condition, to
remain constant in the middle speed condition, and to increase
in the high speed condition.

2.2.2.5. Pupil size. Pupil size increased both as a function of set-size
and speed (Fig. 7, left panel). Their interaction was not significant.

2.2.2.6. Number of blinks. Number of blinks did not vary as a func-
tion of set-size but did so as a function of speed (Fig. 8, left panel).
Blink rate decreased as the speed increased. The interaction
between set-size and speed was non-significant.

2.2.2.7. Visual sampling rate. The participants sampled the visual
display on average at the rate of 2.2 Hz; in other words, they made
a fixation on average after every 445 ms. Interestingly, however,
they made a visit to a target only after every 1853 ms, i.e., at the
rate of 0.5 Hz. The optimal rate is estimated to be either 2.75
(Moray, 1986) or 5.5 Hz (Senders, 1964).

2.2.2.8. Average percentage of trial time spent looking at different
areas of interest. As apparent from Fig. 9, participants spent most of
their trial time (on average 48.2%) looking at some position on the
background of the screen that was neither the centroid nor the
screen center. They spent much less time looking at the targets
(on average 21.0%) and, surprisingly short time looking at the cen-
troid (on average 7.0%), the screen center (on average 3.7%), or dis-
tractors (on average 4.0%). What is also apparent from Fig. 9 is that
the faster the targets moved, the less time the participants spent
looking on the target objects and the more on the background.
ng accuracy and the eye measures obtained during the MOT performance (Experiment

Set-Size � Speed

) p MSE gp2 F(6,60) p MSE gp2

<.01 50.30 .49 2.22 .13 98.20 .18
<.05 13.92 .43 7.29 <.001 .99 .42
<.01 4.51 .66 3.67 <.01 .48 .27
<.001 .05 .68 1.89 .10 .04 .16
<.001 15,713 .71 1.59 .21 6437 .14
<.001 .09 .60 2.57 .09 .11 .21
.06 98,266 .30 3.55 .07 57,291 .26



Fig. 3. Number of fixations in Experiment 1 for MOT (left panel) and in Experiment 2 for MIT (right panel). Error bars represent the SEMs.

Fig. 4. Number of successful target visits in Experiment 1 for MOT (left panel) and in Experiment 2 for MIT (right panel). Error bars represent the SEMs.

Fig. 2. Error percentage in Experiment 1 for MOT (left panel) and in Experiment 2 for MIT (right panel). Error bars represent the standard error of means (SEMs).

L. Oksama, J. Hyönä / Cognition 146 (2016) 393–409 399
2.2.2.9. Fixation heatmap. As apparent from Fig. 9, a substantial
number of fixations fell on an area outside any area of interest.
In order to get an idea of where the fixations were located during
MOT, the distribution of fixation locations was plotted as a fixation
heatmap. Fig. 10 shows the statistical differences (t-test values
based on a multivariate normal distribution) in the fixation distri-
bution for the entire screen area, separately for each pixel. The
heatmap depicts how frequently each pixel was fixated during
the task performance. As apparent from Fig. 10, the fixation
locations during MOT formed an ellipse-shaped area just above
the center of the screen.
2.3. Discussion

The results of Experiment 1 provide strong support for parallel
models of MOT and evidence against serial models. The clearest
supportive evidence comes from the number of fixations, number
of target visits and number of updated targets, none of which



Fig. 5. Number of updated targets in Experiment 1 for MOT (left panel) and Experiment 2 for MIT (right panel). Error bars represent the SEMs.

Fig. 6. Average fixation duration in Experiment 1 for MOT (left panel) and Experiment 2 for MIT (right panel). Error bars represent the SEMs.

Fig. 7. Pupil size (in pixels) in Experiment 1 for MOT (left panel) and Experiment 2 for MIT (right panel). Error bars represent the SEMs.
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was even minimally influenced by target set-size. During MOT,
participants appear to fixate at some point on only about one tar-
get, regardless of how many targets they track. Thus, these data
suggest parallel tracking of visually identical objects in a covert
fashion. An increase in pupil size as a function of set-size favor
attentative parallel models over preattentative models. Yet, as is
apparent from Fig. 7, set-size 2 and 3 did not differ from each other
in pupil size. Thus, a preattentative model with a capacity of 3
items may still be defended. Finally, slow object speed appears to
encourage participants for serial tracking: In the slow speed condi-
tion, number of fixations, target visits and updated targets
increased with an increase in set-size. On the other hand, with fas-
ter speeds participant resorted to parallel tracking.

The fixation heatmap revealed that the fixations made during
MOT formed an ellipse-shape structure located slightly above the
screen center (see Fig. 10). This ellipse-shaped area bears similarity
to Previc’s (1998) model of 3D space. Previc’s model proposes sev-
eral areas responsible for interactions within 3D space. One of



Fig. 8. Number of blinks in Experiment 1 for MOT (left panel) and Experiment 2 for MIT (right panel). Error bars represent the SEMs.

Fig. 9. Percentage of the trial time spent looking at the targets, distractors, centroid
of targets, screen center, or elsewhere on the background of the screen in the three
speed conditions separately for MOT and MIT. The time is calculated from fixation
durations on the aforementioned areas of interest. The rest of the trial time
participants spent on saccades, blinks, looking out of the screen (18.7% in MIT and
16.2% in MOT), or fixations lasting less than 80 ms (they were excluded).
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those areas, ‘focal extrapersonal’, is described as ‘an (American)
football-shaped’ region in the front visual space resembling closely
the ellipse-shaped fixation pattern found here and is important for
visual search and object recognition.

Finally, it is worth noting that the participant’s visual sampling
rate during MOT differed substantially from those predicted by the
engineering models of Moray (1986) Senders (1964). We observed
a sampling rate of 0.5 Hz, whereas the optimal rate is estimated by
Moray (1986) to be 2.75 Hz and by Senders (1964) to be 5.5 Hz. We
return to this issue in the General Discussion.
3. Experiment 2: MIT

In the MIT task, participants tracked 2–5 objects with distinct
identities while their eye movements were registered. Analogously
to Experiment 1, also target speed was manipulated. The predic-
tions of the parallel and serial models are the same as in MOT.
The objects changed their direction and speed during MIT on aver-
age of 1.33 Hz. The optimal visual sampling rate of targets will then
be either 1.33 Hz (Senders, 1964) or 2.66 Hz (Moray, 1986). The
information bandwidth was smaller in MIT than MOT, as MIT
included fewer objects, and therefore there were fewer object
and edge collisions in MIT than MOT.
3.1. Method

3.1.1. Participants
Thirteen participants (psychology students of the University of

Turku) were recruited for the experiment (one male, 12 females,
their mean age was about 21). All participants had normal or
corrected-to-normal vision.

3.1.2. Apparatus
The same apparatus was used as in Experiment 1.

3.1.3. Stimuli
A set of six stimuli were used. They were vertically oriented line

drawings of real objects (flower, coat, lobster, rocking chair, roos-
ter, and watch) also used by Oksama and Hyönä (2008, see Fig. 1,
bottom). The pictures were selected from a standardized set of
black-and-white line drawings (Snodgrass & Vanderwart, 1980).
The stimuli (75 pixels in height and 41–69 pixels in width) were
black outline drawings on a white background subtending a visual
angle of 1.9 � 1.1–1.8 deg. A subset of two to five objects was des-
ignated as targets. After the movement phase, probing was carried
out by flashing a black frame (75 � 75 pixels, 2 pixels in width,
1.9 � 1.9 deg) around the target. The frames were not visible dur-
ing the movement phase. Visual masks (75 � 75 pixels) of variable
kind that replaced the pictures at the end of the movement phase
were created for the stimuli by copying, rotating and combining
parts of the stimulus pictures.

3.1.4. Eye movement analysis
The analysis procedure was identical to that of Experiment 1.

Areas that were 3.4 deg in diameter were defined for each moving
stimulus, the centroid of the target group and the screen center.

3.1.5. Task and procedure
At the beginning of each trial, the targets (2–5 objects) were

designated by flashing a frame around them. The participants’ task
was to track the identity of these designated targets during the
movement phase. After the movement stopped, all the objects
were masked and one of the target objects was probed by flashing
a frame around it. Finally, the screen was cleared and a response
screen appeared where all the six stimuli present during the track-
ing phase were arranged into an array of two rows and three col-
umns. A computer mouse was used to collect the responses. A
response frame (100 � 100 pixels) surrounded the stimuli. The
mouse pointer was initially positioned in the middle of the stimu-
lus array. Participants were asked to select (point and click within a



Fig. 10. Statistical differences in the fixation distribution on the entire screen area during MOT. T-values over 10 were filtered out (only 0.006% of the total number of pixels
was excluded). As the object trajectories were generated randomly, during a trial the positions of the tracked targets were distributed evenly across the screen area (see the
Method).
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framed picture) the placeholder of the probed target as quickly as
possible. They were asked to guess if they did not know the
answer. Other aspects of the procedure were identical to that of
Experiment 1.
3.1.6. Design
The experimental design was identical to that of Experiment 1.
3.2. Results

3.2.1. Tracking accuracy (error percentage)
The results for the repeated measures ANOVAs are presented in

Table 2. The results showed that tracking performance deteriorated
as a function of set-size and speed (see Fig. 2, right panel). In addi-
tion, their interaction was significant. The interaction reflects the
fact that the size of the speed effect increased as set-size increased.
Overall tracking accuracies were slightly better than those
observed by Oksama and Hyönä (2008), who used more distrac-
tors. We recomputed the analysis for square-root transformed
data, but the results remained the same.
3.2.2. Eye-tracking data
The results for the repeated measures ANOVAs are presented in

Table 2.
Table 2
Results of the repeated measures ANOVA for the tracking accuracy and the eye measures

Set-size Spe

F(3,36) p MSE gp2 F(2

Accuracy (% error) 37.83 <.001 299.57 .76 5.3
Number of fixations 37.42 <.001 9.14 .76 24.9
Number of visits 63.17 <.001 3.31 .84 30.1
Number of updated targets 916.11 <.001 .06 .99 13.7
Pupil size 28.43 <.001 13,011 .70 45.4
Blinks 7.76 <.01 .73 .39 15.9
Average fixation duration 21.44 <.001 5875 64 12.1
3.2.2.1. Number of fixations. The number of fixations made during
MIT increased as a function of set-size and speed (Fig. 3, right
panel). The Set-Size � Speed interaction was not significant.

3.2.2.2. Number of successful target visits. The number of target vis-
its also increased as a function of set-size, but decreased as a func-
tion of speed (Fig. 4, right panel). Their interaction reflects the fact
that in the slow and medium speed the number of target visits
increased notably as a function of set-size, whereas in the fast
speed condition the increase was negligible.

3.2.2.3. Number of updated targets. As is evident from Fig. 5 (right
panel), the number of updated targets increased as a function of
set-size. Participants were able to update with overt attention
shifts the identity–location binding for over four moving targets.
Moreover, the number of updated targets decreased as a function
of speed (see Fig. 5, right panel). The reliable Set-Size � Speed
interaction demonstrates that with slow and medium speed the
number of updated targets reached up to almost five targets, while
in the high speed condition there is quadratic downward trend in
relation to increase in set-size. In the high speed condition partic-
ipants were able to update with their eyes about four targets.

3.2.2.4. Average fixation duration. Average fixation duration
decreased both as a function of set-size and speed (Fig. 6, right
obtained during the MIT performance (Experiment 2).

ed Set-Size � Speed

,24) p MSE gp2 F(6,72) p MSE gp2

3 <.05 76.83 .31 3.56 <.01 59.27 .23
6 <.001 3.73 .68 1.85 .18 3.63 .13
9 <.001 3.46 .72 19.67 <.001 .57 .62
5 <.001 .04 .53 7.16 <.001 .02 .37
5 <.001 5730 .79 4.56 <.01 2091 .28
0 <.01 .73 .57 2.94 <.05 .13 .20
0 <.01 3479 .50 1.37 .27 2005 .10
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panel). The decrease levelled off at set-size 4, where the average
fixation duration was about 220 ms, which may be close to the
lower boundary for a fixation.
3.2.2.5. Pupil size. The pupil dilated both as a function of set-size
and speed (Fig. 7, right panel). The reliable interaction is due to
the fact that the pupil dilated more robustly as a function of set-
size with high than slow speed.
3.2.2.6. Number of blinks. Blink rate decreased both as a function of
set-size and speed (Fig. 8, right panel). The interaction reflects the
fact that the decrease in blink rate as a function of set-size asymp-
totes at set-size 4 (approaches zero) in the medium and fast speed
conditions, whereas in the slow speed condition it continues to
decrease from set-size 4 to set-size 5. The interaction is likely to
reflect a floor effect is thus not readily interpretable.
3.2.2.7. Sampling rate. The participants sampled the visual display
on average at the rate of 3.3 Hz, i.e., they made a fixation on aver-
age after every 306 ms. A target was visited on average after every
690 ms, at the rate of 1.5 Hz, almost exactly (1.33 Hz) as predicted
by Moray (1986).
3.2.2.8. Average percentage of trial time spent looking at different
areas of interest. As apparent from Fig. 9, participants spent most of
the trial time (on average 52.9%) looking at the targets. They spent
much less time looking at the background (on average 24.5%)
excluding the centroid, screen center and distractors. The time
spent looking at the centroid (on average 1.5%), screen center (on
average 0.7%), or distractors (on average 1.7%) was negligible.
3.2.2.9. Fixation heatmap. Analogously to Experiment 1, we created
a heatmap of fixations made during MIT. As apparent from Fig. 11,
the participants’ fixations were distributed evenly around the
entire screen area, excluding only the area next to the monitor’s
edges.
Fig. 11. Statistical differences in the fixation distributions on the screen area during MIT
object trajectories were generated randomly, during a trial the positions of the tracked
3.3. Discussion

The MIT results are perfectly in line with the predictions of
serial models. The number of fixations and target visits increased
monotonously up to set-size 4, which is shown to be the average
tracking capacity in MIT (Oksama & Hyönä, 2004). The data on
the number of updated targets showed that participants updated
over four targets with overt attention shifts. With respect to the
speed manipulation, the results demonstrated an increase in the
number of fixations and a decrease in the average fixation dura-
tion. That is, participants made more fixations of shorter durations
in response to speed increase. The measures reflecting fluctuations
in attentional load (pupil size and blink rate) demonstrated a
strong involvement of attention in MIT: more demanding condi-
tions were associated with increased attentional load.

As a substantial portion of fixations landed on the targets, it is
not surprising that the fixation heatmap (see Fig. 11) covers the
entire screen area, where the targets moved about. Finally, the
visual sampling rate observed during MIT (1.5 Hz) corresponds
with closely with the prediction (1.33 Hz) derived from Moray’s
(1986) engineering model.

4. Experiment 3: MIT & MOT

Although the MOT results (Experiment 1) differed very clearly
from those for MIT (Experiment 2), it may be argued that the dif-
ferences were due to stimulus differences between the two exper-
iments. In the MOT task filled black circles were used as stimuli,
whereas in MIT the stimuli consisted of black and white line draw-
ings. This difference in stimuli may have particularly influenced
the pupil size data. There appeared also a peculiarity in the pupil
size data in that the overall pupil size appears to be larger in
MOT than MIT, which is counterintuitive. However, this may not
be real but rather reflect differences in the overall pupil size among
the participants who took part in Experiment 1 and 2. To eliminate
and control for the differences in stimuli and participants in Exper-
iments 1 and 2, we conducted Experiment 3, where the same par-
ticipants performed both MOT and MIT with similar stimuli.
. T-values over 10 were filtered out (only 0.06% of the pixels was excluded). As the
targets were distributed evenly across the screen area (see the Method).
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In Experiment 3 participants tracked identical black-and-white
line drawings of lobsters during MOT, while in MIT they tracked
four distinct line drawings including the lobster. Similarly to
Experiment 1 and 2, the participants’ eye movements were regis-
tered during task performance. The objects changed their direction
and speed at the same rate as in the previous experiments as the
same set of trajectories were used (2.75 Hz for MOT and 1.33 Hz
for MIT). In order to be able to run the two tasks within a single
experimental session, the number of trials employed in Experi-
ment 1 and 2 were distributed between the MOT and MIT tasks.
Thus, each task included half the number of trials of Experiment
1 and 2. In order to obtain more reliable condition mean estimates,
we excluded from the ANOVA design the speed factor and analyzed
the data using a 2 (task: MOT vs MIT) � 4 (set-size: 2–5 targets)
within-participants design.

4.1. Method

4.1.1. Participants
Thirteen participants (psychology students of the University of

Turku) were recruited for the experiment (three males, ten
females, their mean age was about 22). All participants had normal
or corrected-to-normal vision. Data from one participant were
excluded from the analysis because of poor calibration.

4.1.2. Apparatus
The same apparatus was used as in Experiment 1 and 2.

4.1.3. Stimuli
The stimuli in the MIT condition were the same as in Experi-

ment 2. The stimuli in the MOT condition consisted of six identical
line drawings of a lobster, which also appeared as one of the target
pictures in MIT. A subset of two to five objects was designated as
targets. The MIT procedure was identical to that in Experiment 2
and the MOT procedure was identical to that in Experiment 1.
The MOT and MIT trials were presented in separate blocks.

4.1.4. Eye movement analysis
The analysis procedure was identical to that of Experiment 1

and 2.

4.1.5. Design
ANOVAs were computed using two manipulated variables:

number of targets (2–5) and task (MOT vs. MIT). Both factors were
within-participant variables. There were 18 trials in each of the 8
conditions.

4.2. Results

4.2.1. Tracking accuracy (error percentage)
The results for the repeated measures ANOVAs are presented in

Table 3. In tracking accuracy, a significant main effect was found
for the number of targets but the main effect of task type was
Table 3
Results of the repeated measures ANOVA for the tracking accuracy and the eye measures

Set-size Task

F(3,36) p MSE gp2 F(1,12

Accuracy (% error) 27.52 <.001 2.83 .70 <1
Number of fixations 9.26 <.001 2.25 .44 39.21
Number of visits 26.23 <.001 1.79 .69 94.15
Number of updated targets 127.73 <.001 .14 .91 110.72
Pupil size 40.12 <.001 3243.48 .77 6.53
Blinks 13.99 <.001 .08 .54 3.81
Average fixation duration 1.48 .24 128963.87 .11 9.18
not significant. However, the interaction between set-size and task
type was significant. That is, the performance deteriorated steeper
for MIT than for MOT as a function of set-size (see Fig. 12). The
overall tracking accuracy in MIT corresponds closely with that in
Experiment 2. However, the overall tracking accuracy in MOT
was slightly lower here than in Experiment 1. We recomputed
the analysis for square-root transformed data, but the results
remained the same.
4.2.2. Eye-tracking data
The results for the repeated measures ANOVAs are presented in

Table 3.
4.2.2.1. Number of fixations. The main effects of set-size, task type
and their interaction were all significant (see Table 3). As evident
from Fig. 13 (top left), the number of fixations in MIT increased
as a function of set-size, but in MOT it remained constant.
4.2.2.2. Number of successful target visits. The main effects of set-
size, task type and their interaction were significant. As evident
from Fig. 13 (top middle), the number of visits in MIT increased
as a function of set-size, but in MOT it remained constant.
4.2.2.3. Number of updated targets. The main effects of set-size, task
type and their interaction were significant (Table 3). That is, the
number of updated targets in MIT increased as a function of set-
size, whereas in MOT it remained constant (see Fig. 13, top right).
In MIT, the number of updated targets reached up to over four tar-
gets, whereas in MOT participants updated on average one and a
half targets regardless of set-size.
4.2.2.4. Average fixation duration. A main effect of set-size was not
significant (Table 3). However, the main effect of task type was sig-
nificant and the Set-Size � Task interaction was marginally signif-
icant. That is, average fixation duration decreased in MIT, whereas
in MOT it remained constant (see Fig. 13, bottom left). It decreased
in MIT with set-size 5 to about 270–280 ms in the medium and fast
speed conditions.
4.2.2.5. Pupil size. In pupil size, a significant main effect was found
for the number of targets, the task type and the interaction
between set-size and task type (Table 3). That is, pupil size
increased more steeply in MIT than MOT as a function of set-size
(see Fig. 13, bottom middle).
4.2.2.6. Number of blinks. Number of blinks revealed a significant
main effect for the number of targets, but the main effect of task
type was not significant (Table 3). However, the interaction
between set-size and task type was significant. That is, blink rate
decreased more steeply for MIT than for MOT as a function of
set-size (see Fig. 13, bottom left).
obtained during the MIT and the MOT performance (Experiment 3).

Set-Size � Task

) p MSE gp2 F(3,36) p MSE gp2

.45 1.57 .05 15.16 <.001 1.00 .56
<.001 17.32 .77 25.52 <.001 1.77 .68
<.001 5.31 .89 64.65 <.001 .70 .84
<.001 .47 .90 124.99 <.001 .06 .91
<.05 26043.55 .35 22.41 <.001 787.69 .65
.08 .24 .24 4.07 <.05 .13 .25

<.05 354471.38 .43 3.19 .07 66324.70 .21



Fig. 14. Percentage of the trial time spent looking at the targets, distractors,
centroid of targets, screen center, or elsewhere in the background of the screen in
Experiment 3. The time is calculated from fixation durations on the aforementioned
areas of interest. The rest of the trial time participants spent on saccades, blinks,
looking out of the screen (15.9% in MIT and 13.3% in MOT), or fixations lasting less
than 80 ms (they were excluded).

Fig. 12. Error percentages in Experiment 3 for MOT and MIT. Error bars represent
the SEMs.
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4.2.2.7. Sampling rate. The participants sampled the visual display
in MIT on average at the rate of 2.8 Hz (a fixation was made after
every 358 ms), whereas in MOT the rate was 2.1 Hz (a fixation
was made after every 485 ms). A target was visited in MIT on aver-
age after every 902 ms, that is, at the rate of 1.1 Hz, whereas in
MOT a target was visited after every 2074 ms, that is, at the rate
of 0.5 Hz. The MOT results are practically identical to those in
Experiment 1, but in MIT the sampling rate is slightly lower than
in Experiment 2.

4.2.2.8. Average percentage of trial time spent looking at different areas
of interest. As apparent from Fig. 14, participants spent most of the
trial time inMIT looking at the targets (52.4%), whereas inMOT they
spent much less time on the targets (24.4%). During MOT the
Fig. 13. Number of fixations (top left), number of successful target visits (top middle), num
size in pixels (bottom middle) and number of blinks (bottom right) during a trial (avera
participants spent most of their trial time (48.4%) looking at some
position in the background of the screen that was neither the cen-
troidnor the screencenter,whereas inMITmuch less timewas spent
looking at the background (26.1%). The time spent looking at the
centroid (MIT 2.1%, MOT 6.5%), screen center (MIT 1.6%, MOT
2.4%), or distractors (MIT 1.9%, MOT 5.1%) were again surprisingly
short. The results are highly similar to those of Experiment 1 and 2.
4.3. Discussion

Experiment 3 differed from Experiment 1 and 2 in two respects.
First, the stimuli in Experiment 3 were comparable across the two
ber of updated targets (top right), average fixation duration (ms; bottom left), pupil
ge duration was 7 s) in Experiment 3. Error bars represent the SEMs.
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tasks in that now also in MOT the stimuli were line drawings (lob-
sters) instead of filled black circles (Experiment 1). Second, the key
comparison between MOT and MIT was now made using a within-
participants design. All the key results obtained in Experiment 1
and 2 were replicated in Experiment 3. Most importantly, in MIT
a linear increase was observed as a function of set-size in fixation
frequency, number of target visits, and number of updated targets,
whereas in MOT set-size did not reliably affect these measures
indexing sampling of the dynamically changing visual environ-
ment. Moreover, pupil size indexing cognitive load increased lin-
early in MIT as a function of set-size, whereas in MOT the
increase was not as robust. Similarly, blink rate decreased more
steeply in MIT than in MOT as a function of set-size. Finally, aver-
age fixation duration decreased linearly in MIT as a function of
set-size, whereas no such trend was visible in MOT. Overall, when
performing the MIT task, the participants sampled the dynamic
visual display much more frequently than when performing the
MOT task.

Experiment 3 clarified one peculiar finding of Experiments 1
and 2. The between-experiment comparison for the pupil size sug-
gested that the pupil size would have been generally larger in MOT
(Experiment 1) than in MIT (Experiment 2). We suspected this
unexpected result to reflect overall between-participant variation
in pupil size unrelated to the performed task. Experiment 3 indi-
cated this claim to be correct. When the same participants per-
formed both tasks, we found generally larger pupil sizes in MIT
than MOT, suggesting that MIT is generally a more demanding task
to perform than MOT. Alnæs et al. (2014) recently demonstrated
that in MOT pupil size faithfully reflects increases in set-size from
2 to 5 targets. Our MOT results are less robust, as there is no differ-
ence in pupil size between set-size 2 and 3, and the set-size effect
is generally smaller than in MIT. The difference between the pre-
sent results and those of Alnæs et al. may be ascribed to stimulus
differences. In our MOT task, the target stimuli were almost three
times bigger than those of Alnæs et al. (a diameter of 1.9 versus
0.7, respectively).
5. General discussion

In the present study, we investigated observers’ eye movements
when they kept track of the positions of identical moving targets
(the MOT task, Experiment 1 and 3) or when they tracked the
whereabouts of distinct object identities (the MIT task, Experiment
2 and 3). We found a dramatic difference between these tasks in
terms of eye movements. When the participants tracked only posi-
tion information of the moving objects (the MOT task), the eye-
movement measures were not influenced by the set-size manipu-
lation. Moreover, only minimal eye-movement activity was found;
rather, the observers had a clear preference for keeping their eyes
fixed for a relatively long time in the same position of the screen
(typically in the upper center area). In contrast, active eye behavior
was observed when the observers tracked position-bound identity
information. Now the participants sampled the moving target
identities at the same rate as the objects changed their direction
(1.3 Hz). Also, the participants updated over four target identities
with overt attention shifts (i.e., by making eye fixations on targets),
and the eye-movement measures were sensitive to the set-size and
speed manipulations.
5.1. Eye-movement strategies in MOT and MIT

Fehd and Seiffert (2008, 2010) have provided evidence in sup-
port of a centroid-target-switching strategy in MOT, in which
participants alternate between looking at the centroid (the geo-
metrical center of the moving targets) and the targets. According
to Fehd and Seiffert (2010), observers spend about 20% of the trial
time employing this strategy. They also found that participants
viewed the centroid more often than the targets or distractors.
Consistent with this, Huff et al. (2010) found that centroid looking
became more frequent with increasing object speed. However, in
their study only about 10% of the gaze time was identified as cen-
troid looking.

The present MOT results are inconsistent with the centroid-
target switching strategy. Our observers did not spend much time
on the centroid (only 7% of the total viewing time). This compares
favorably with the study of Zelinsky and Neider (2008) who also
failed to find support for the centroid strategy for tracking four tar-
gets (see also Doran, Hoffman, & Scholl, 2009). Our finding is also
similar to that of Huff et al. (2010), who found observers to spend
only little viewing time on the centroid. However, unlike us they
interpret their data to be supportive of the centroid looking strat-
egy. Similarly to the present study, Huff et al. defined the areas of
interest dynamically, which is a more stringent system than the
shortest distance rule used in other previous studies. When apply-
ing the shortest distance rule, every fixation is assigned to one of
the chosen interest areas (e.g., centroid, target, or distracter)
depending what is closest to the fixation. However, when dynamic
interest areas are used, the fixation has to actually land on one of
the chosen interest areas, otherwise it is coded as a miss (Huff
et al.) or be positioned on the background (the present study).
Understandably, the latter procedure yields significantly lower
estimates for the time spent on looking at the centroid than the
shortest distance rule. Yet, we consider it difficult to interpret
these data to suggest the centroid looking strategy to be most
prevalent in MOT. In the present study, the observers spent much
more time on the targets (a bit over 20%) and, particularly on an
unspecified area of the screen (48%) that was neither the centroid
nor the screen center. The fixation heatmaps showed this area to
form an ellipse-shaped area positioned slightly up from the screen
center. Moreover, observers updated only about one target with
their eyes during the MOT task. That is, they did not switch their
gaze between targets. Fehd and Seiffert (2010) admit that the
centroid-target switching strategy does not necessarily reflect par-
ticipants’ natural behavior during tracking. When they instructed
the participants to use a centroid-looking, target-looking or free-
looking strategy, both the centroid-looking and the target-
looking strategy was observed to impair the tracking performance
relative to the free-looking condition (the centroid-looking strat-
egy was better than the target-looking strategy).

Another possible eye-movement strategy in MOT is the look-at-
one-target-strategy (see Zelinsky & Neider, 2008), in which obser-
vers track one target with their gaze, while keeping the other tar-
gets in their peripheral vision. Zelinsky and Neider did not find
support for this strategy when multiple identical targets were
tracked. Interestingly, however, our results somewhat resemble
the look-at-one-target-strategy in that the observers updated with
their eyes only one target. Yet, they spent ample time looking at
the upper center area of the screen. One possibility is that obser-
vers choose one target among the target set to be overtly tracked
by the eyes. They would fixate that target but more often the blank
space in the vicinity of that target. The rest of the targets would be
tracked peripherally in a covert fashion. Such a strategy seems both
psychologically and computationally more plausible than the con-
tinuous computation of the centroid dynamically delineated by the
moving targets, which appears computationally quite demanding
(cf. a similar kind argument put forth by Fehd & Seiffert, 2010). A
non-precise look-at-one-target-strategy is not computationally
difficult and may thus serve as a readily available heuristic to be
used in MOT.

There is only one prior study that has examined eye behavior
during MIT. In a simulated air traffic control task, Landry et al.
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(2001) found evidence for attentional switching between targets.
The present MIT results are consistent with those of Landry et al.
They both speak very clearly in favor of an eye movement strategy
where the eyes are sent from one target to the next. Participants
spend clearly most of their tracking time on the targets.
5.2. Trade-off between sampling rate and observation time may be a
key to capacity limitation in MIT

Moray (1984) argues that observers trade off between sampling
rate and observation time (i.e., the time needed to process the
visual information at hand) when several channels of dynamic
information have to be monitored. Moray speculates that this
trade-off can be solved either by shortening the observation time
(and increasing the sampling rate) or by delaying the sampling rate
(and keeping the observation time constant). Studying multiple
identity tracking via eye movements and manipulating the track-
ing load provides a direct test of this hypothesis, as was done in
the present study.

Our results suggest that in MIT participants use both strategies.
With smaller set-sizes (2–4) in Experiment 2 participants
increased sampling rate and decreased observation time in
response to an increase in the tracking load. The strategy proved
successful: the identity tracking accuracy was over 90% for 2–4 tar-
gets. However, in set-size 4 the observation time and sampling rate
levelled off: fixation duration asymptoted at 220 ms and the visual
sampling rate (fixations per second) reached its maximum value of
3.7 Hz (where a fixation was made on average after every 270 ms).
With set-size 5 the observers changed their strategy: they no
longer decreased fixation durations or increased fixation fre-
quency. As a consequence, the tracking accuracy for set-size 5
dropped dramatically (from 90% to 65%). This drop was less dra-
matic in Experiment 3. Moreover, in Experiment 3 we observed a
linear decrease in average fixation duration with no asymptote
reached.

The minimum fixation duration observed in Experiment 2 for
MIT (about 220 ms) is comparable to average fixation duration
on objects during the recognition of single objects: Leek,
Patterson, Paul, Rafal, and Cristino (2012) observed the fixation
duration to be 218 ms in such a task. In visual search, also mimick-
ing multiple object tracking, average fixation duration varies
between 180 ms and 275 ms, depending on the complexity of the
search array (Rayner, 2009). The fixation duration of 220 ms is
located toward the lower boundary for what is obtained in visual
search. Thus, we argue that fixation duration of 220 ms may
approximate the minimum time required to update an identity–lo-
cation binding with overt attention; hence, a serial updating mech-
anism cannot increase its sampling rate below this limit. In
Experiment 3, this lower boundary was not reached; the shortest
average fixation duration with set-size 5 was 280 ms. In Experi-
ment 3, the MIT task lasted for only half the time than in Experi-
ment 2. Thus, it is possible that the participants in Experiment 3
did not have enough exposure to the task to obtain sufficient prac-
tice in order to reach the asymptote in fixation duration. Hence, we
consider the data of Experiment 2 to be more informative than the
data of Experiment 3 with respect to the trade-off notion discussed
above. If so, the asymptote observed in fixation duration in Exper-
iment 2 may be a root cause for the capacity limit of three or four
objects in identity tracking, as within the speed range of Experi-
ment 2 the serial mechanism cannot update and track more than
three or four moving targets. Notice also that the shortest fixation
times observed in Experiment 2 and 3 for MIT are very close to the
‘binding refresh time’ estimate obtained by mathematical simula-
tions of the MOMIT model (the best fitting refresh time was about
240 ms, see Oksama & Hyönä, 2008).
Interestingly, in MOT fixation frequency and duration were not
influenced by target set-size. Clearly, the MOT performance is not
related to overt gaze behavior that would be reflected as fluctua-
tions in fixation duration or sampling rate. Therefore, the capacity
limitations in MOT must come from a different source. However,
after 25 years of MOT research, the nature of the capacity limita-
tions in MOT is still under discussion. Several candidates have been
proposed and debated, such as fixed-limit architecture (Cavanagh
& Alvarez, 2005; Pylyshyn, 1989), flexible resources (Alvarez &
Franconeri, 2007), spatial interference (Franconeri et al., 2010;
but see Holcombe & Chen, 2012), and temporal frequency
(Holcombe & Chen, 2013).

5.3. Is tracking parallel or serial?

The present eye movement results suggest an ‘‘ecumenical”
solution to the recent theoretical controversy about whether track-
ing is achieved by a serial or parallel processing mechanism. The
present study demonstrates that the answer depends on the type
of tracking task. The pattern of results strongly points to two sep-
arate systems with different processing qualities: position tracking
in the MOT task is achieved by a covert parallel system, whereas
identity tracking in the MIT task is achieved by an overt serial sys-
tem. The position tracking system is surprisingly effective: it can
keep track of positions of multiple moving objects without direct-
ing the eyes toward the targets. The identity tracking, on the other
hand, is based on more laborious visual scanning of the to-be-
tracked items.

The present results rule out a unitary parallel tracking mecha-
nism (such as the object file theory of Kahneman et al., 1992), as
the eye-movement data during MIT speak against such mecha-
nism. A unitary serial tracking mechanism for MIT and MOT seems
also unlikely in the light of the present data. It is unlikely because,
to be consistent with the present data, we should propose a covert
serial mechanism for MOT but an overt serial mechanism for MIT.
We cannot think of a reason why a unitary serial system would use
overt attention in one task and covert attention in another task.
Thus, it seems more coherent, plausible and economical to assume
a tracking system with two components: an effective parallel posi-
tion tracking component and a serial, identity tracking component.
Note, however, that the above theorizing is not in line with some
recent evidence that is in favor of serial processing in MOT
(Holcombe & Chen, 2013; Tripathy et al., 2011).

Howe and Ferguson (2015) recently presented evidence sup-
porting the idea that in some instances MIT can be carried out in
parallel. They applied the simultaneous-sequential paradigm
(Eriksen & Spencer, 1969; Shiffrin & Gardner, 1972) and systems
factorial technology (Townsend & Nozawa, 1995; Townsend &
Wenger, 2004b) to MIT tasks and found evidence in favor of paral-
lel processing. While their results are interesting, it seems that the
employed techniques changed the nature of the MIT tasks in a seri-
ous way. For instance, eye movements were prevented, identities
were not visible or simultaneous dual-tasks were introduced.
These differences may have encouraged their participants to try
to use more parallel strategies during MIT. Nevertheless, more
research is needed on this interesting and theoretically relevant
topic. Clearly, the present eye movement results are inconsistent
with the idea of parallel processing in MIT.

5.4. Is tracking achieved by a unitary or two independent tracking
systems?

Are the position and identity tracking systems truly separate
and independent of each other? Our results suggest an affirmative
answer to this question. They must be independent, because the
covert position tracking system cannot yield identity information.
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Otherwise, the observers would not have needed to make eye
movements to successfully perform the MIT task. Yet, eye fixations
on targets are needed to keep the target identities separate from
each other and dynamically update identity–location bindings for
each target. Thus, in addition to position tracking, another system
is needed which dynamically recognizes the target identities with
overt attention shifts (eye fixations) as the objects move about in
the visual environment and which attaches position information
to them.

On the other hand, there are strong reasons to believe that the
two systems work in close co-operation in MIT. The idea is that the
parallel position tracking system provides location information to
the serial identity tracking system. Position information for the
moving objects located in the peripheral vision is required to pro-
gram serial attention shifts between the moving targets (cf. the
assumptions of the MOMIT model, Oksama & Hyönä, 2008). It is
assumed that only the position tracking system is in operation dur-
ing MOT, whereas both systems are activate during MIT. The find-
ing that people are able to report more locations than identities
(Horowitz et al., 2007) support this claim: the effective position
tracking system provides location information also for those tar-
gets that cannot be bound to identities.

Recently, however, Cohen et al. (2011) have provided evidence,
which may be taken as evidence in favor of a unitary tracking
model. They demonstrated that observers can trade off perfor-
mance between location and identity tracking during a high track-
ing load (fast speed or large set-size). They also found some
evidence for flexible and strategic attention allocation between
the identity and location information. Clearly, this trade-off is not
consistent with the idea of two fully independent systems, as inde-
pendent systems not demonstrate mutual trade-offs. Yet, these
data do not necessarily point to a unitary tracking system, as it
possible that the two systems share a common component/
resource but differ in other important respects. The common
resource between MIT and MOT may be a general attentive or
executive resource, maybe related to sustained attention (see
Oksama & Hyönä, 2004). Our pupil data (see also Alnæs et al.,
2014) indicate that both MIT and MOT are attention-demanding
(thus ruling out preattentive models, such as FINST of Pylyshyn,
1989), so it is feasible to expect some kind of trade off in difficult
tracking conditions (Cohen et al. did not find trade off in the low
tracking load conditions). If position tracking becomes more diffi-
cult and demands more attention, then attention resources may
be withdrawn from identity tracking and the MIT performance
would suffer (this may also work the other way around, but to
our knowledge this have not been observed).

Moreover, Papenmeier, Meyerhoff, Jahn, and Huff (2013) pre-
sented evidence supporting the view that the mechanism behind
location tracking can utilize feature information in solving the cor-
respondence problem during motion, especially when spatiotem-
poral information is not reliable. In particular, they claim that
feature information can be processed automatically. These data
go clearly against the idea of feature-blind position tracking mech-
anism (cf. theories of Pylyshyn, 1989, 2001; and Kahneman et al.,
1992). These results also lend some support to the unitary view
on tracking in which a single (parallel) mechanism can utilize both
location and feature information. However, a single automatic fea-
ture/location tracking mechanism is not consistent with the pre-
sent data or other results attesting effortful maintenance of
feature-location bindings (Oksama & Hyönä, 2008; Pinto et al.,
2010; Saiki, 2003a, 2003b). In fact, the idea that the location track-
ing mechanism can utilize also feature information does not neces-
sarily go against the view of two separate tracking systems. The
position tracking system may utilize both spatiotemporal and fea-
ture information as its input, but it may yield only unbounded and
unindexed location information as its output. On the other hand, a
separate identity tracking mechanism may utilize both feature and
location information as its input but yield identity–location-bind
ings as its output. What is critical is not the input but the output
of the system. Moreover, it may be that the correspondence prob-
lem and the maintenance of what–where-bindings are not dealt
with by the same process or mechanism. The correspondence
problem may related to the position tracking mechanism and the
maintenance of what–where-binding to the identity tracking
mechanism.

Finally, the postulation of two separate tracking mechanisms
fits nicely with the idea proposed by Leibowitz and Post (1982),
Previc (1998) and Horrey et al. (2006). They distinguish between
the focal and ambient visual systems. The focal system, operating
mainly with visual information available in the foveal vision, is
specialized in tasks requiring high visual acuity, such as visual
search and object recognition. In contrast, the ambient visual sys-
tem is involved in the maintenance of spatial orientation and pos-
tural control in locomotion. The focal system is tightly linked with
eye fixations, whereas the ambient system is not. The two systems
are probably in some way connected to each other; ambient vision
provides position information to the focal system. According to
Previc (1998), ambient vision serves as the bedrock for focal vision.
A similar distinction has been made between two cortical path-
ways, the ‘‘what” and ‘‘where” systems (Milner & Goodale, 1993;
Ungerleider & Mishkin, 1982). The ‘‘what” system is responsible
for visual object recognition, while the ‘‘where” system encodes
object positions in space. As we have argued above, the present
eye movement data are perfectly in line with this theorizing.

6. Conclusions

The present eye movement study suggests that there are two
separate subsystems involved in multiple object tracking. The
ambient position tracking system keeps track of the positions of
the moving targets in parallel without the need of overt attention
shifts in the form of eye movements. On the other hand, the focal
system recognizes individual object identities and binds them to
their locations one by one by using overt visual scanning. We argue
that in MOT observers employ the ambient position tracking sys-
tem, whereas in MIT both the position and focal identity tracking
systems are in operation. Hence, in future studies (e.g., in engineer-
ing psychology, traffic psychology or neuropsychology) the MOT
task can be used as a tool to measure the workings of the ambient
vision and the MIT task as a tool to measure the workings of both
the ambient and focal vision.
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