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This paper deals with the problem of finite-time stability and stabilization of nonlinear
Markovian switching stochastic systems which exist impulses at the switching instants.
Using multiple Lyapunov function theory, a sufficient condition is established for finite-
time stability of the underlying systems. Furthermore, based on the state partition of
continuous parts of systems, a feedback controller is designed such that the corresponding
impulsive stochastic closed-loop systems are finite-time stochastically stable. A numerical
example is presented to illustrate the effectiveness of the proposed method.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Nowadays, stochastic modeling, control, and optimization have played a crucial role in many applications especially in
the areas of controlling science and communication technology [1,2]. A lot of dynamical systems have variable structures
subject to stochastic abrupt changes, which may result from abrupt phenomena such as stochastic failures and repairs of
the components, changes in the interconnections of subsystems, sudden environment changes, etc. Markovian switching
stochastic system can be considered as a class of stochastic hybrid systems consisting of a family of subsystems perturbed
by Brown motion, and a rule governed by a Markov process that orchestrates the switching between subsystems. Literatures
considering stability analysis and design of such systems have appeared in [3–6].

Many stochastic systems exhibit impulsive and switching behaviors due to abrupt changes and switches of state at certain
instants during the dynamical processes; that is, the systems switch with impulsive effects [7–10]. Moreover, impulsive and
switching phenomena can be found in the fields of physics, biology, engineering and information science. Many sudden and
sharp changes occur instantaneously, in the form of impulses and switches, which cannot be well described by using pure
continuous or pure discrete models. Therefore, it is important and in fact, necessary to study hybrid impulsive and switching
stochastic systems.

On the other hand, literatures on finite-time stability (FTS) (or short-time stability) of systems have attracted particular
interests of researchers. Comparing with classical Lyapunov stability, which currently is the focus of a large and growing
interdisciplinary area of research, FTS concerns the stability of a system over a finite interval of time and plays an important
part in the study of the transient behavior of systems. It is important to emphasize the disconnection between classical
Lyapunov stability and finite-time stability. The concept of Lyapunov asymptotic stability is largely known to the control
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community; conversely a system is said to be finite-time stable if, once we fix a time-interval, its state starting within a
specified bound does not exceed some bounds during this time-interval. The classical control theory focuses mainly on the
asymptotic behavior and seldom specifies bounds on the trajectories. In fact, a system may be finite-time stable, but may
become unstable after the specified interval of time. In addition, the state trajectory might exceed the given bound over a
certain time interval, but asymptotically go to zero.

Some early results on FTS can be found in [11–13]. The concept of FTS has been revisited recently and discussed for
linear and nonlinear systems [14–17]. A stochastic version of FTS developed in [18] and [19] for analysis of continuous
and discrete stochastic system, respectively, and in [20,21] for optimal control design. But in these references, they just
discussed the pure stochastic system and did not consider the impulsive and switching behaviors. It is interesting to notice
the time gap between 1972 and recent papers. To the best of authors’ knowledge, to date, the problems of FTS for Markovian
switching stochastic systems has not been investigated. The problem is interesting but also challenging, which motivates us
to study.

The organization of the paper is as follows. In Section 2, we present some preliminary materials and a formulation of
problems to be considered in this paper. In Section 3, the finite-time stability of hybrid impulsive and Markovian switching
stochastic systems is studied. Section 4 solves the finite-time stabilization problem by designing a state feedback controller.
A numerical example is provided in Section 5. Concluding remarks are given in Section 6.

2. Problem statement and preliminaries

Throughout this paper, unless otherwise specified, we let (Ω, F , {Ft}t�0, P ) be a complete probability space with a
filtration {Ft}t�0 satisfying the usual conditions (i.e. it is right continuous and F0 contains all P -null sets). Let w(t) =
(w1(t), . . . , wm(t))T be an m-dimensional Brownian motion defined on the probability space. Let ‖ · ‖ denote the Euclidean
norm in Rn . If A is a vector or matrix, its transpose is denoted by AT. If A is a matrix, its trace norm is denoted by
|A| =√trace(AT A) while its operator norm is denoted by ‖A‖ = sup{|Ax|: |x| = 1}. If A is a symmetric matrix, denoted by
λmax(A) and λmin(A) its largest and smallest eigenvalues, respectively.

Let {r(t), t � 0} be a Markov chain on the probability space taking values in a finite state space S = {1,2, . . . , N} with
generator Γ = (γi j)N×N given by

P
{

r(t + �) = j
∣∣ r(t) = i

}=
{

γi j� + o(�), if i �= j,

1 + γii� + o(�), if i = j,

where � > 0, lim�→0 o(�)/� = 0. Here γi j � 0 is the transition rate from i to j if i �= j while γii = −∑ j �=i γi j . The Markov
chain r(·) is independent of the Brownian motion w(·), it ensures that the switchings are finite in any finite-time interval
of R+ (:= [0,∞)).

Let us consider a nonlinear stochastic hybrid system with N modes described by {r(t), t � 0} and suppose that the
dynamics is described by the following:{

dx(t) = f
(
x(t), t, r(t)

)
dt + g

(
x(t), t, r(t)

)
dw(t), if r

(
t+)= r(t),

x
(
t+)= Ir(t+),r(t)

(
x(t), t

)
, if r

(
t+) �= r(t),

(1)

for t � 0 with initial value x(0) = x0 ∈ Rn , where f : Rn × R+ × S → Rn , g : Rn × R+ × S → Rn×m , I : Rn × R+ → Rn , x(t) ∈ Rn

is the state vector, x(t+) := limh→0+ x(t + h), x(t−) := limh→0+ x(t − h), x(t−) = x(t), which implies that the solution of the
system (1) is left continuous. At the switching times, there exists an impulse described by the second equation of (1).

For system (1), we impose following hypotheses:

(H1) Both f and g satisfy the local Lipschitz condition and the linear growth condition with respect to x.
(H2) I satisfies the global Lipschitz condition with respect to x.

Before giving the results, we need to present the definition and useful lemma.
The general idea of finite-time stochastic stability concerns the boundedness in probability of the state of a system over

a finite-time interval for given initial conditions; this concept can be formalized through the following definition.

Definition 1 (Finite-time stochastic stability, FTSS). (See [18].) The stochastic hybrid system (1) is FTSS with respect to
(α,β,λ, T ), if for any switching law r(t),

P
{

sup
0�t�T

∥∥x(t)
∥∥� β; ‖x0‖ � α

}
� λ, where α,β,λ, T � 0.

Remark 1. In [18], the research object was just a single stochastic system and did not consider the influence of switching
part and impulsive effects. Therefore, our result is an extension of [18].
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Let C2,1(Rn × R+ × S;R+) denote the family of all nonnegative functions on Rn × R+ × S which are continuously twice
differentiable in x and once differentiable in t . If V (x, t, r(t)) ∈ C2,1(Rn ×R+ × S;R+), define an operator LV from Rn ×R+ × S
to R by

LV
(
x, t, r(t)

) := Vt
(
x, t, r(t)

)+ V x
(
x, t, r(t)

)
f
(
x, t, r(t)

)
+ 2−1 tr

{
gT(x, t, r(t)

)
V xx
(
x, t, r(t)

)
g
(
x, t, r(t)

)}+
N∑

j=1

γr(t), j V (x, t, j) (2)

where

Vt
(
x, t, r(t)

)= ∂V (x, t, r(t))

∂t
, V x

(
x, t, r(t)

)= (∂V (x, t, r(t))

∂x1
, . . . ,

∂V (x, t, r(t))

∂xn

)
,

V xx
(
x, t, r(t)

)= (∂2 V (x, t, r(t))

∂xi∂x j

)
n×n

.

Lemma 1 (Generalized Ito formula). (See [22].) If V (x, t, r(t)) ∈ C2,1(Rn × R+ × S;R+), then for any two switching instants t1 , t2 ,
0 � t1 � t2 < +∞, we have

E V
(
x(t2), t2, r(t2)

)= E V
(
x(t1), t1, r(t1)

)+ E

t2∫
t1

LV
(
x(s), s, r(s)

)
ds

as long as the integrations involved exist and are finite.

We will show next how FTSS can be indirectly determined by studying the probability associated with a function
V (x, t, r(t)) defined for the stochastic hybrid system.

3. Finite time stability analysis

For given T � 0, we assume that the switching instants are t1, t2, . . . , tK , and 0 � t1 � t2 � · · · � tK � T , where K denotes
the number of switchings during the time interval [0, T ].

Theorem 1. Consider the system (1), if there exist a function V (x, t, r(t)) ∈ C2,1(Rn × R+ × S;R+), Lebesgue integrable bounded pos-
itive functions ϕr(t)(x, t), r(t) ∈ S, positive constants C1, C2, M,μr(t) > 0, r(t) ∈ S, and 0 < a < 1, such that the following conditions
hold:

(1) C1‖x‖ � V
(
x, t, r(t)

)
� C2‖x‖, t � 0,

(2) LV
(
x, t, r(t)

)
� ϕr(t)(x, t), if r

(
t+)= r(t),

(3) V
(
x
(
t+), t+, r

(
t+))� μr(t)V

(
x(t), t, r(t)

)
, r

(
t+) �= r(t),

(4)
(1 +∑K

j=k+1
∏ j

i=k+1 μr(ti))(Φr(tk+1)(x(tk+1), tk+1) − Φr(tk+1)(x(tk), tk))

(1 +∑K
j=1
∏ j

i=1 μr(ti))(V 0 + Φr1 (x(t1), t1))
� ak,

where k = 1, . . . , K − 1,Φr(t)(x, t) denotes the primitive function of ϕr(t)(x, t), i.e., Φr(t)(x(t), t) = ∫ t
0 ϕr(s)(x(s), s)ds,

(5)

K∑
j=1

j∏
i=1

μr(ti) � M.

Then, for given α,β, T � 0,

P
{

sup
0�t�T

∥∥x(t)
∥∥� β; ‖x0‖ � α

}
� (1 + M)C2α + (2 + M − a)Φsup(T )

C1β(1 − a)
, (3)

where Φsup(T ) = sup0�t�T Φr(t)(x(t), t).

Proof. From condition (1), we have

P
{

sup
0�t�T

∥∥x(t)
∥∥� β; ‖x0‖ � α

}
� P

{
sup

0�t�T
V
(
x, t, r(t)

)
� r; V 0 � r0

}
,

where r = C1β , r0 = C2α.
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Then, to prove (3) holds, it suffices to show the following inequality holds:

P
{

sup
0�t�T

V
(
x, t, r(t)

)
� r; V 0 � r0

}
� (1 + M)C2α + (2 + M − a)Φsup(T )

C1β(1 − a)
.

Noting that the switching instants are t1, t2, . . . , tK , and 0 � t1 � t2 � · · · � tK � T ,

P
{

sup
0�t�T

V
(
x, t, r(t)

)
� r
}

� P
{

sup
0�t�t1

V
(
x, t, r(t)

)
� r
}

+ P
{

sup
t+1 �t�t2

V
(
x, t, r(t)

)
� r
}

+ · · · + P
{

sup
t+K �t�T

V
(
x, t, r(t)

)
� r
}

� P0 + P1 + · · · + P K ,

E V
(
x(tk), tk, r(tk)

)= E V
(
x
(
t+
k−1

)
, t+

k−1, r
(
t+
k−1

))+ E

tk∫
t+k−1

LV
(
x(s), s, r(s)

)
ds

� E V
(
x
(
t+
k−1

)
, t+

k−1, r
(
t+
k−1

))+ E

tk∫
t+k−1

ϕr(s)
(
x(s), s

)
ds, k = 1, . . . , K + 1

(
t+

0 = 0, tK+1 = T
)
.

From the definition of Φr(t)(x, t), we know that

Φr(b)

(
x(b),b

)− Φr(b)

(
x(a),a

)=
b∫

a

ϕr(s)
(
x(s), s

)
ds,

and also noticing that P {supt+k−1�t�tk
V (x, t, r(t)) � r} � E V (x(tk),tk,r(tk))

r , we have

r P
{

sup
t+k−1�t�tk

V
(
x, t, r(t)

)
� r
}

� E V
(
x(tk), tk, r(tk)

)
� E V

(
x
(
t+
k−1

)
, t+

k−1, r
(
t+
k−1

))+ E

tk∫
t+k−1

ϕr(s)
(
x(s), s

)
ds

= E V
(
x
(
t+
k−1

)
, t+

k−1, r
(
t+
k−1

))+ Φr(tk)

(
x(tk), tk

)− Φr(tk)

(
x(tk−1), tk−1

)
.

That is

Pk−1 � 1

r

[
E V
(
x
(
t+
k−1

)
, t+

k−1, r
(
t+
k−1

))+ Φr(tk)

(
x(tk), tk

)− Φr(tk)

(
x(tk−1), tk−1

)]
, k = 1, . . . , K + 1,

and

P0 + P1 + · · · + P K � 1

r

[
V (x0, t0, r0) + Φr(t1)

(
x(t1), t1

)+ E V
(
x
(
t+

1

)
, t+

1 , r
(
t+

1

))+ Φr(t2)

(
x(t2), t2

)
− Φr(t2)

(
x(t1), t1

)+ · · · + E V
(
x
(
t+

K

)
, t+

K , r
(
t+

K

))+ Φr(T )

(
x(T ), T

)− Φr(T )

(
x(tK ), tK

)]
. (4)

Since V satisfies condition (3), we have

E V
(
x
(
t+
k

)
, tk, r

(
t+
k

))
� μr(tk)E V

(
x(tk), tk, r(tk)

)
, k = 1, . . . , K . (5)

For convenience, we write r(tk) as k in the following proof.
Combining (4) with (5), we obtain

P0 + P1 + · · · + P K � 1

r

[(
1 + μ1 + μ2μ1 + μ3μ2μ1 +

K∏
k=1

μk

)(
V 0 + Φ1

(
x(t1), t1

))

+
(

1 + μ2 + μ3μ2 +
K∏

k=2

μk

)(
Φ2
(
x(t2), t2

)− Φ2
(
x(t1), t1

))+ · · · + (1 + μK )
(
ΦK
(
x(tK ), tK

)

− ΦK
(
x(tK−1), tK−1

))+ ΦT
(
x(T ), T

)− ΦT
(
x(tK ), tK

)]
.
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Consider conditions (4) and (5), we have

P0 + P1 + · · · + P K � 1

r

[
(1 +∑K

j=1
∏ j

i=1 μi)(V 0 + Φ1(x(t1), t1))

1 − a
+ ΦT

(
x(T ), T

)− ΦT
(
x(tK ), tK

)]

� 1

r

[
(1 + M)(V 0 + Φsup(T ))

1 − a
+ Φsup(T )

]
.

That is

P
{

sup
0�t�T

V
(
x, t, r(t)

)
� r
}

� 1

r

[
(1 + M)(V 0 + Φsup(T ))

1 − a
+ Φsup(T )

]
� 1

r

[
(1 + M)(r0 + Φsup(T ))

1 − a
+ Φsup(T )

]

� (1 + M)C2α + (2 + M − a)Φsup(T )

C1β(1 − a)
. �

For convenience in application, we often use the functions of the form

V
(
x, t, r(t)

)= xT Pr(t)x (6)

for some symmetric positive-definite matrices Pr(t) .
Note that for x �= 0, V x(x, t, r(t)) = 2xT Pr(t) and V xx(x, t, r(t)) = 2Pr(t) .
Hence, applying operator (2), we have

LV
(
x, t, r(t)

) := 2xT Pr(t) f
(
x, t, r(t)

)+ tr
{

gT(x, t, r(t)
)

Pr(t) g
(
x, t, r(t)

)}+
N∑

j=1

γr(t), j
(
xT P j x

)
. (7)

Based on Theorem 1, the following useful corollary can be easily established:

Corollary 1. Assume that there exist N symmetric positive-definite matrices Pr(t) , Lebesgue integrable bounded positive functions
ϕr(t)(x, t), r(t) ∈ S, and positive constants M,μr(t) , r(t) ∈ S, 0 < a < 1, such that for given α,β, T � 0, the following conditions hold:

(1) 2xT Pr(t) f (x, t, r(t)) + tr{gT(x, t, r(t))Pr(t) g(x, t, r(t))} +∑N
j=1 γr(t), j(xT P j x) � ϕr(t)(x, t),

(2) IT
r(t+),r(t)(x(t), t)Pr(t+) Ir(t+),r(t)(x(t), t) � μr(t)xT Pr(t)x,

(3) ϕsup(T ) = C1βλ(1−a)−(1+M)C2α
(2+M−a)T ,

(4) conditions (4), (5) of Theorem 1 are satisfied, where ϕsup(T ) = sup0�t�T ϕr(t)(x, t), C1 = min1�r(t)�N λmin(Pr(t)), C2 =
max1�r(t)�N λmax(Pr(t)).

Then the system (1) is finite-time stochastically stable w.r.t. (α,β,λ, T ).

Proof. Let V (x, t, r(t)) be defined by Eq. (6). The conditions of Theorem 1 can be easily checked.
Therefore, the assertion of Theorem 1 follows:

P
{

sup
0�t�T

‖x(t)‖ � β; ‖x0‖ � α
}

� (1 + M)C2α + (2 + M − a)Φsup(T )

C1β(1 − a)
. (8)

Using condition (3), we have

Φsup(T ) � C1βλ(1 − a) − (1 + M)C2α

(2 + M − a)
.

Substituting it into Eq. (8), we have

P
{

sup
0�t�T

∥∥x(t)
∥∥� β; ‖x0‖ � α

}
� λ.

Thus, we get the desired result. �
4. Finite time stabilization

The previous section focuses on FTSS analysis, and the result may extended to design controllers that stochastically
stabilize a system over a finite-time. Next, based on the result of Corollary 1, we aim to design a state-feedback control law
u(t) which consists of two parts u1(t) and u2(t) such that the closed-loop system
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⎧⎪⎪⎨
⎪⎪⎩

dx(t) = [ f
(
x(t), t, r(t)

)+ h1
(
x(t), t, r(t)

)
u1(t)

]
dt

+ [g(x(t), t, r(t)
)+ h2

(
x(t), t, r(t)

)
u2(t)

]
dw(t), if r

(
t+)= r(t),

x
(
t+)= Ir(t+),r(t)

(
x(t), t

)
, if r

(
t+) �= r(t),

(9)

is FTSS with respect to the parameter (α,β,λ, T ). Here h1 : Rn × R+ × S → Rn×n , h2 : Rn × R+ × S → Rn×1, u1(t) ∈ Rn×l ,
u2(t) ∈ R1×m , note that different control u1(t) and u2(t) appears in shift parts and diffusion parts of the underlying stochas-
tic subsystems.

For the system (9), we define V (x, t, r(t)) = ηr(t)|x|2 for (x, t, r(t)) ∈ Rn × R+ × S , where ηr(t) > 0, r(t) ∈ S . Using Eq. (7)
with Pr(t) = the identity matrix and condition (1) of Corollary 1, we can derive that

2ηr(t)xTh1
(
x, t, r(t)

)
u1(t) + ηr(t)h

T
2

(
x, t, r(t)

)
h2
(
x, t, r(t)

)∣∣u2(t)
∣∣2 + 2ηr(t)

∣∣gT(x, t, r(t)
)
h2
(
x, t, r(t)

)∣∣∣∣u2(t)
∣∣

+ 2ηr(t)xT f
(
x, t, r(t)

)+ ηr(t)
∣∣g(x, t, r(t)

)∣∣2 +
N∑

j=1

γr(t), jη j |x|2 � ϕr(t)(x, t). (10)

And the other conditions of Corollary 1 can be easily checked. Thus, we can choose the set of possible control laws of u1(t)
and u2(t) such that Eq. (10) holds.

Case 1. xTh1(x, t, r(t)) = 0, u1(t) = u2(t) = 0, for hT
2(x, t, r(t))h2(x, t, r(t)) = |gT(x, t, r(t))h2(x, t, r(t))| = 0.

u1(t) = 0, 0 � |u2(t)| � u′(t), for hT
2(x, t, r(t))h2(x, t, r(t)) �= 0, |gT(x, t, r(t))h2(x, t, r(t))| �= 0, and

hT
2

(
x, t, r(t)

)
h2
(
x, t, r(t)

)(
2ηr(t)xT f

(
x, t, r(t)

)+ ηr(t)
∣∣g(x, t, r(t)

)∣∣2 +
N∑

j=1

γr(t), jη j |x|2
)

� ηr(t)
∣∣gT(x, t, r(t)

)
h2
(
x, t, r(t)

)∣∣2 + hT
2

(
x, t, r(t)

)
h2
(
x, t, r(t)

)
ϕr(t)(x, t).

Let A1 = 2ηr(t)xT f (x, t, r(t)) + ηr(t)|g(x, t, r(t))|2 +∑N
j=1 γr(t), jη j |x|2−ϕr(t)(x, t),

u′(t) = −ηr(t)|gT(x, t, r(t))h2(x, t, r(t))| + B1

ηr(t)hT
2(x, t, r(t))h2(x, t, r(t))

where B1 =
√

η2
r(t)|gT(x, t, r(t))h2(x, t, r(t))|2 − ηr(t)hT

2(x, t, r(t))h2(x, t, r(t))A1.

Case 2. xTh1(x, t, r(t)) �= 0,

u1(t) � −A1

2ηr(t)xTh1(x, t, r(t))
, u2(t) = 0,

for hT
2(x, t, r(t))h2(x, t, r(t)) = |gT(x, t, r(t))h2(x, t, r(t))| = 0.

u1(t) � λ1(t)

2ηr(t)xTh1(x, t, r(t))
, 0 �

∣∣u2(t)
∣∣� u′(t),

for hT
2(x, t, r(t))h2(x, t, r(t)) �= 0, |gT(x, t, r(t))h2(x, t, r(t))| �= 0.

Let A2 = 2ηr(t)xT f (x, t, r(t)) + ηr(t)|g(x, t, r(t))|2 +∑N
j=1 γr(t), jη j |x|2−λ2(t),

u′(t) = −ηr(t)|gT(x, t, r(t))h2(x, t, r(t))| + B2

ηr(t)hT
2(x, t, r(t))h2(x, t, r(t))

where

B2 =
√

η2
r(t)

∣∣gT
(
x, t, r(t)

)
h2
(
x, t, r(t)

)∣∣2 − ηr(t)hT
2

(
x, t, r(t)

)
h2
(
x, t, r(t)

)
A2,

0 < λ1(t) + λ2(t) � ϕr(t)(x, t).

Remark 2. The set of possible control laws under the situation that hT
2(x, t, r(t))h2(x, t, r(t)) �= 0, |gT(x, t, r(t))h2(x, t, r(t))| =

0 can be deduced by similar discussion.
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Fig. 1. x1(t) (solid curve) and x2(t) (dashed curve) of the closed-loop system.

5. Numerical example

In this section, we present an example to illustrate the effectiveness of the proposed methods. Let ω(t) be a one-
dimensional Brownian motion and r(t) be a Markov chain taking values in S = {1,2} with generator Γ = (γi j)2×2 = (−1 1

1 −1

)
.

Consider the Markovian switching stochastic controlled systems with impulsive effects of the form

⎧⎪⎨
⎪⎩

dx(t) = [ f
(
x(t), t, r(t)

)+ h1
(
x(t), t, r(t)

)
u1(t)

]
dt

+ [g(x(t), t, r(t)
)+ h2

(
x(t), t, r(t)

)
u2(t)

]
dw(t), if r

(
t+)= r(t),

x
(
t+)= Ir(t+),r(t)

(
x(t), t

)
, if r

(
t+) �= r(t),

(11)

for t � 0, where

f (x, t,1) =
[

x1 cos 2t
x2 cos 2t

]
, f (x, t,2) =

[
x1 sin t
x2 sin t

]
, g(x, t,1) = g(x, t,2) =

[
x1

1
2 x2

]
,

h1(x, t,1) =
[

1
2 x1
1
4 x2

]
, h1(x, t,2) =

[
1
4 x1
1
2 x2

]
, h2(x, t,1) = h2(x, t,2) =

[
x1

1
3 x2

]
,

I1,2(x(t), t) =
[

1.1x1
1.1x2

]
, I2,1(x(t), t) =

[
0.3x1
0.3x2

]
.

We would like to choose u1(t) and u2(t) in such a way that the closed-loop system (11) is finite-time stable with
respect to α = 0.25, β = 3, λ = 0.3, T = 2. For that we fix the number of switching times K = 2. By applying Theorem 2
with η1 = 2, η2 = 2.01, M = 1.3, a = 0.3, we can compute that ϕsup(2) = 0.053. Therefore, we can choose ϕ1(x, t) as
cos π

2 (1 + t) + 0.053 sin π
2 t , and ϕ2(x, t) as 0.053 cos π

2 (t − 1) + sin π
2 (t + 2) and choose u1(t) and u2(t) as following:

u1(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos π
2 (1 + t)

2x2
1 + x2

2

, r(t) = 1,

sin π
2 (2 + t)

1.005x2 + 2.01x2
, r(t) = 2,

(12)
1 2
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u2(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−2(x2
1 + 1

6 x2
2) + √

Ω1

2(x2
1 + 1

9 x2
2)

, r(t) = 1,

−2.01(x2
1 + 1

6 x2
2) + √

Ω2

2.01(x2
1 + 1

9 x2
2)

, r(t) = 2,

(13)

where Ω1 = (8 cos 2t − 0.02)(x2
1 + 1

9 x2
2)(x2

1 + x2
2) + 0.053 sin π

2 t − 1
9 x2

1x2
2, Ω2 = (8 cos 2t + 0.02)(x2

1 + 1
9 x2

2)(x2
1 + x2

2) +
0.053 cos π

2 (t − 1) − 1
9 x2

1x2
2.

Under the control law (12), (13), let x0 = (0.15,0.2)T, the system trajectory x(t) is shown in Fig. 1. During the interval
[0,2], although the system is not asymptotically stable, we can compute that the probability when ‖x‖ exceeds the given
bound β = 3.5 is 0.137, which is less than λ = 0.3. (Considering the effect of Brown motion, we have done several simula-
tions. In each of simulation, the probability is always less than 0.3. What we have showed in Fig. 1 is just a typical one.)
Therefore, the closed-loop system is finite-time stable w.r.t. (0.25,3.5,0.3,2). Thus, our design goals have achieved.

6. Conclusion

The issues of finite-time stability and stabilization for nonlinear stochastic hybrid systems have been studied and cor-
responding results have been presented. Using multiple Lyapunov functions theory, a sufficient condition for finite-time
stability has been given. Furthermore, based on the state partition of continuous parts of systems, a feedback controller has
been designed such that the corresponding impulsive stochastic closed-loop systems are finite-time stochastically stable.

More research effects will be devoted to more relaxed conditions of FTSS for stochastic hybrid systems and the applica-
tions of the results presented here to packet-dropping problems in network control systems and time-delayed systems.
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