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Abstract

We prove that there exists a dimension group G whose positive cone is not isomorphic to the
dimension monoid DimL of any lattice L. The dimension group G has an order-unit, and can be
taken of any cardinality greater than or equal to ℵ2. As to determining the positive cones of dimension
groups in the range of the Dim functor, the ℵ2 bound is optimal. This solves negatively the problem,
raised by the author in 1998, whether any conical refinement monoid is isomorphic to the dimension
monoid of some lattice. Since G has an order-unit of index 2, this also solves negatively a problem
raised in 1994 by K.R. Goodearl about representability, with respect to K0, of dimension groups with
order-unit of index 2 by unit-regular rings.
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Introduction

The nonstable K-theory of a ring R studies the category of finitely generated projective
right R-modules. The lattice-theoretical analogue of nonstable K-theory is encoded by the
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dimension monoid functor. The dimension monoid of a lattice L (see [16]) is the commu-
tative monoid defined by generators Δ(x,y), for x � y in L, and relations

(D0) Δ(x,x) = 0, for all x ∈ L;
(D1) Δ(x, z) = Δ(x,y) + Δ(y, z), for all x � y � z in L;
(D2) Δ(x ∧ y, x) = Δ(y,x ∨ y), for all x, y ∈ L.

The dimension monoid DimL is a precursor of the semilattice Conc L of compact congru-
ences of L, in the sense that Conc L is isomorphic to the maximal semilattice quotient of
DimL, see [16, Corollary 2.3]. Furthermore, although it is still an open problem whether
DimL is a refinement monoid (see Section 1 for a definition) for every lattice L (see [16,
Problem 3]), the answer is known for a few large classes of lattices, namely, the class of
all modular lattices [16, Theorem 5.4] and the class of all lattices without infinite bounded
chains (see Theorem 6.18 and Corollary 7.8 in [16]).

The question of a converse, namely whether every refinement monoid is isomorphic
to the dimension monoid of some lattice, was raised by the author in [16, Problem 4].
This question is an analogue, for the Dim functor, of the Congruence Lattice Problem
that asks whether every distributive (∨,0)-semilattice is isomorphic to Conc L, for some
lattice L (see [14] for a survey). Partial positive answers were known. For example, it
follows from [6, Theorem 1.5] and results in [16] (see the proof of Corollary 6.3) that for
every dimension group G of cardinality at most ℵ1, the positive cone G+ is isomorphic
to DimL for some sectionally complemented, modular lattice L. For the cardinality ℵ2
and above, the problem was still open. Different, though related, positive results about
the dimension theory of complete modular lattices but also of self-injective modules or
AW∗-algebras, are established in [7]. In particular, the dimension monoids of complete,
complemented, modular, upper continuous lattices are completely characterized.

Main theorem. There exists a dimension group G with order-unit of index 2 such that for
any lattice L, the positive cone G+ of G is not the image of DimL under any V-homomor-
phism. Furthermore, G may be taken of any cardinality greater than or equal to ℵ2.

(We refer to Section 1 for precise definitions.) In particular, G+ is not isomorphic to
DimL, for any lattice L. This solves [16, Problem 4]. Also, G is not isomorphic to K0(R),
for any unit-regular ring R (see Corollary 6.3), which solves negatively the problem raised
by K.R. Goodearl on the last page of [4]. A stronger and more precise statement of the
main theorem is presented in Theorem 6.2.

The proof of our result is based on the proofs of earlier counterexamples, the first of this
sort, due to the author in [15], being a dimension group with order-unit of cardinality ℵ2
that is not isomorphic to K0(R), for any von Neumann regular ring R. Later counterexam-
ples to related questions in lattice theory appeared in [12,13,17]. A common point of their
proofs is that they all use the Kuratowski Free Set Theorem, in the form of Lemma 1.6.
Also, they all express that certain distributive semilattices cannot be expressed as Conc L,
for lattices L with permutable congruences.

By contrast, the proof of our main theorem does not require any assumption about per-
mutable congruences on the lattice L. Also, unlike the construct of [15], our dimension
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group counterexample is not a rational vector space. This is also the case for the dimen-
sion groups considered in [4], in which the order-unit has finite index. However, in [4] are
proven positive results, not from the viewpoint of the dimension theory of lattices but from
the closely related (see Lemma 1.4) viewpoint of the nonstable K-theory of von Neumann
regular rings. For example [4, Theorem 4.3], whenever G is an abelian lattice-ordered
group with order-unit of finite index, there exists a biregular locally matricial algebra R

such that G ∼= K0(R); hence G+ ∼= DimL, where L is the lattice of all principal right
ideals of R, see the proof of Corollary 6.3 (as R is unit-regular, it is sufficient to use R

instead of M2(R)).

1. Basic concepts

Every commutative monoid will be endowed with its algebraic quasi-ordering, defined
by

x � y ⇔ (∃z)(x + z = y).

We say that M is conical, if x � 0 implies that x = 0, for all x ∈ M . For commutative
monoids M and N , a monoid homomorphism μ :M → N is a V-homomorphism, if when-
ever c ∈ M and a, b ∈ N such that μ(c) = a + b, there are a, b ∈ M such that c = a + b,
μ(a) = a, and μ(b) = b. An o-ideal of a commutative monoid M is a nonempty subset I

of M such that x + y ∈ I iff x, y ∈ I , for all x, y ∈ M . For an o-ideal I of a commutative
monoid M , the least monoid congruence ≡I that identifies all elements of I to zero is
defined by

x ≡I y ⇔ (∃u,v ∈ I )(x + u = y + v), for all x, y ∈ M.

We denote by M/I the quotient monoid M/≡I , and we denote by [x]I the ≡I -class of
any x ∈ M . The proof of the following lemma is straightforward.

Lemma 1.1. Let M and N be commutative monoids with N conical and let μ :M → N be
a monoid homomorphism. Then the subset I = {x ∈ M | μ(x) = 0} is an o-ideal of M , and
there exists a unique monoid homomorphism μ :M/I → N such that μ([x]I ) = μ(x) for
all x ∈ M . Furthermore, if μ is a V-homomorphism, then so is μ.

A commutative monoid M is a refinement monoid, if a0 + a1 = b0 + b1 in M implies
the existence of ci,j ∈ M , for i, j < 2, such that ai = ci,0 + ci,1 and bi = c0,i + c1,i , for all
i < 2. A (∨,0)-semilattice S is distributive, if it is a refinement monoid. Equivalently, the
ideal lattice of S is distributive, see [8, Section II.5].

We use the notation, terminology, and results of [2] for partially ordered abelian groups.
For partially ordered abelian groups G and H , a group homomorphism f :G → H is a
positive homomorphism, if f [G+] ⊆ H+. For a partially ordered abelian group G and a
positive integer n, we say that an element e ∈ G+ has index at most n, if (n + 1)x � e
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implies that x = 0, for all x ∈ G+. We say that e ∈ G+ is an order-unit of G, if for all
x ∈ G, there exists a natural number n such that x � ne.

We say that a partially ordered abelian group G is

• an interpolation group, if for all x, x′, y, y′ ∈ G, if x, x′ � y, y′, then there exists z ∈ G

such that x, x′ � z � y, y′;
• unperforated, if mx � 0 implies that x � 0, for every x ∈ G and every positive inte-

ger m;
• directed, if G = G+ + (−G+);
• a dimension group, if G is a directed, unperforated interpolation group.

Particular cases of dimension groups are the simplicial groups, that is, the partially
ordered abelian groups isomorphic to finite powers of the additive group Z of all integers,
ordered componentwise. A theorem of Effros, Handelman, and Shen states that dimension
groups are exactly the direct limits of simplicial groups, but we shall not need this result in
the present paper.

A pointed partially ordered abelian group is a pair (G, eG), where G is a partially or-
dered abelian group and eG ∈ G+. We shall call eG the distinguished element of (G, eG).
For pointed partially ordered abelian groups (G, eG) and (H, eH ), a positive homomor-
phism f :G → H is normalized, if f (eG) = eH . We shall write pointed partially ordered
abelian groups either in the form (G, eG) in case the distinguished element eG needs to be
specified, or simply G otherwise.

For any lattice L, the symbol Δ(−,−) is extended to any pair of elements of L, by
defining Δ(x,y) = Δ(x ∧ y, x ∨ y), for all x, y ∈ L. The map Δ thus extended satisfies all
the basic properties defining distances, see [16, Proposition 1.9].

Lemma 1.2. The following statements hold, for all x, y, z ∈ L:

(i) Δ(x,y) = 0 iff x = y;
(ii) Δ(x,y) = Δ(y,x);

(iii) Δ(x, z) � Δ(x,y) + Δ(y, z).

Of course, in (iii) above, the commutative monoid DimL is endowed with its algebraic
quasi-ordering.

The following result is an immediate consequence of [16, Lemma 4.11], applied to the
partial semigroup of closed intervals of L endowed with projectivity as in [16, Section 5].
It concentrates most of the nontrivial information that we will need about the dimension
monoid.

Lemma 1.3. Let L be a modular lattice, let u � v in L, and let a,b ∈ DimL. If a + b =
Δ(u,v), then there are a positive integer n and a decomposition u = w0 � w1 � · · · �
w2n = v such that

a =
∑(

Δ(w2i ,w2i+1) | i < n
)

and b =
∑(

Δ(w2i+1,w2i+2) | i < n
)
.
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For a unital ring R, we denote by FP(R) the category of all finitely generated projective
right R-modules, and by V (R) the monoid of all isomorphism classes of members of
FP(R), see [5]. The monoid V (R) encodes the so-called nonstable K-theory of R. If [X]
denotes the isomorphism class of a member X of FP(R), then the addition of V (R) is
defined by [X] + [Y ] = [X ⊕ Y ], for all X,Y ∈ FP(R). The monoid V (R) is, of course,
always conical. In case R is von Neumann regular (that is, for all x ∈ R there exists y ∈ R

such that xyx = x), V (R) is a refinement monoid, see [3, Theorem 2.8].
It is well known that for a von Neumann regular ring R, the matrix ring M2(R) is

von Neumann regular [3, Theorem 1.7]. Denote by L(R) the (complemented, modular)
lattice of principal right ideals of R. The nonstable K-theory of von Neumann regular
rings and the dimension theory of lattices are related by the following result, which is an
immediate consequence of [16, Proposition 10.31].

Lemma 1.4. Let R be a von Neumann regular ring, and put L = L(M2(R)). Then V (R) ∼=
DimL.

An example due to G.M. Bergman, see [3, Example 4.26], shows that L(M2(R)) cannot
be replaced by L(R) in the statement of Lemma 1.4.

For a set X and a natural number n, we denote by [X]n (respectively [X]�n) the set of
all subsets Y of X such that |Y | = n (respectively, |Y | � n). Furthermore, we denote by
[X]<ω the set of all finite subsets of X. The set-theoretical core of the proof of the main
theorem consists of the following two results.

Lemma 1.5. Let X be a set of cardinality at least ℵ2 and let Φ :X → [X]<ω . Then there
exists a subset Y of X of cardinality ℵ2 such that η /∈ Φ(ξ), for all distinct ξ, η ∈ Y .

Proof. This is a particular case of a result proved by D. Lázár [10]. See also [1, Corol-
lary 44.2]. �
Lemma 1.6. Let X be a set of cardinality at least ℵ2, let Ψ : [X]2 → [X]<ω. Then there
are distinct α,β, γ ∈ X such that α /∈ Ψ ({β,γ }), β /∈ Ψ ({α,γ }), and γ /∈ Ψ ({α,β}).

Proof. This is a particular case of a result proved by C. Kuratowski [9]. See also [1, The-
orem 46.1]. �

We denote by Z
(X) the additive group of all maps f :X → Z such that the support

of f , namely {x ∈ X | f (x) �= 0}, is finite. A subset X in a partially ordered set P is
cofinal, if every element of P lies below some element of X. We identify n with the set
{0,1, . . . , n − 1}, for every natural number n.

2. The functor I on partially ordered abelian groups

We shall denote by L= (−,0, e,�,��) the first-order signature consisting of one binary
operation − (interpreted as the ‘difference’), one binary relation �, two constants 0 and e,
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and one 4-ary operation ��. Let D denote the class of models of the following axiom
system (Σ), written in L:

(Σ):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(POAG) All axioms of partially ordered abelian groups in (−,0,�).

(POINT) 0 � e.

(UNPERF) Unperforation.

(INDEX) (∀x)(0 � 3x � e ⇒ x = 0).

(INTERP) (∀x, x′, y, y′)(x, x′ � y, y′ ⇒ x, x′ � ��(x, x′, y, y′) � y, y′).
(SYMM) (∀x, x′, y, y′)(��(x, x′, y, y′) = ��(x′, x, y, y′) = ��(x, x′, y′, y)).

As all axioms of (Σ) are universal Horn sentences, it follows from basic results of the
algebraic theory of quasivarieties (see [11, Section V.11]) that every model G for a subsig-
nature L′ of L has a unique (up to isomorphism) L′-homomorphism jG :G → I(G) which
is universal among L′-homomorphisms from G to some member of D. This means that
I(G) is a member of D, and for every L′-homomorphism f :G → H with H a member
of D, there exists a unique L-homomorphism h : I(G) → H such that f = h ◦ jG.

Applying the universality to the L-substructure of I(G) generated by the image of jG

yields immediately, in the particular case of pointed partially ordered abelian groups, the
following lemma.

Lemma 2.1. For any pointed partially ordered abelian group G, the structure I(G) is the
closure, under the operations (x, y) �→ x − y and (x, x′, y, y′) �→ ��(x, x′, y, y′), of the
image of jG.

The operation �� on I(G) is a particular instance of the following notion.

Definition 2.2. An interpolator on a partially ordered abelian group G is a map ı :G4 → G

that satisfies the axioms (INTERP) and (SYMM) of the axiom system (Σ). That is,

(∀x, x′, y, y′ ∈ G)
(
x, x′ � y, y′ ⇒ x, x′ � ı(x, x′, y, y′) � y, y′),

(∀x, x′, y, y′ ∈ G)
(
ı(x, x′, y, y′) = ı(x′, x, y, y′) = ı(x, x′, y′, y)

)
.

It is obvious that a partially ordered abelian group has an interpolator iff it is an interpo-
lation group. We shall naturally view each member of D as an ordered pair (G, ı), where G

is an unperforated partially ordered abelian group and ı is an interpolator on G.
For pointed partially ordered abelian groups, the meaning of I takes the following form:

I(G) is a member of D, the map jG is a positive homomorphism from G to I(G), and for
every (H, ı) ∈ D and every normalized positive homomorphism f :G → H , there exists
a unique L-homomorphism h : (I(G),��) → (H, ı) such that f = h ◦ jG. We shall denote
this h by f[ı], see the left-hand side diagram of Fig. 1. In case both G and H are partially
ordered abelian groups and f :G → H is a normalized positive homomorphism, the map
I(f ) = (jH ◦ f )[��] is the unique L-homomorphism h : I(G) → I(H) such that h ◦ jG =
jH ◦ f , see the middle diagram of Fig. 1.

Standard categorical arguments give the following two lemmas.
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(H, ı)
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(f ◦ϕ)[ı]
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E

jE

ϕ
F

jF

f

Fig. 1. Illustrating f[ı] , I(f ), and Lemma 2.4.

Lemma 2.3. The correspondences G �→ I(G), f �→ I(f ) define a functor from the cate-
gory of pointed partially ordered abelian groups with normalized positive homomorphisms
to the category D with L-homomorphisms. This functor preserves direct limits.

Lemma 2.4. Let E, F , G be pointed partially ordered abelian groups, let ϕ :E → F and
f :F → G be normalized positive homomorphisms, and let ı be an interpolator on G.
Then (f ◦ ϕ)[ı] = f[ı] ◦ I(ϕ) (see the right-hand side diagram of Fig. 1).

The following lemma expresses that f[ı] is not ‘too far’ from f .

Lemma 2.5. Let G and H be pointed partially ordered abelian groups, let f :G → H be
a normalized positive homomorphism, and let ı be an interpolator on H . Then the image
of f[ı] is the least ı-closed subgroup of H containing the image of f .

Proof. Denote by H ′ the least ı-closed subgroup of H containing imf . The subset G′ =
{x ∈ I(G) | f[ı](x) ∈ H ′} is a subgroup of I(G), closed under the interpolator �� as H ′ is
closed under ı and f[ı] is a L-homomorphism. Since G′ contains im jG, it follows from
Lemma 2.1 that G′ = I(G). �

The following lemma is even more specific to pointed partially ordered abelian groups.

Lemma 2.6. Let G be a pointed partially ordered abelian group. Then the following state-
ments hold.

(i) (I(G), jG(eG)) is an unperforated pointed interpolation group with jG(eG) of index
at most 2.

(ii) The subset jG[G] is cofinal in I(G).
(iii) If G is directed, then I(G) is a dimension group.
(iv) If eG is an order-unit of G, then jG(eG) is an order-unit of I(G).

Proof. (i) is trivial.
(ii) Denote by H the convex subgroup of I(G) generated by the image of jG. Observe

that H is closed under the canonical interpolator �� of I(G), so it is naturally equipped
with a structure of model for L. Denote by f the restriction of jG from G to H , and by
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e′ :H ↪→ I(G) the inclusion map. Denote by h the unique L-homomorphism from I(G) to
H such that h ◦ jG = f . From e′ ◦ h ◦ jG = e′ ◦ f = jG and the universal property of jG,
it follows that e′ ◦ h = idI(G), and so h(x) = x, for all x ∈ I(G). Therefore, H = I(G).

(iii) follows immediately from (i) and (ii), while (iv) follows immediately from (ii). �

3. The functors E and F

It follows from [11, Theorem V.11.2.4] that in any quasivariety, one can form the “ob-
ject defined by a given set of generators and relations.” The following definition uses this
general construction in the case of pointed partially ordered abelian groups.

Definition 3.1. For a set X, we denote by (E(X), eX) the pointed partially ordered abelian
group defined by generators aX

ξ , for ξ ∈ X, and relations 0 � aX
ξ � eX , for ξ ∈ X. We put

bX
ξ = eX − aX

ξ , for all ξ ∈ X.

For Y ⊆ X, there are unique positive homomorphisms eY,X : E(Y ) → E(X) and
rX,Y : E(X) � E(Y ) such that

eY,X

(
eY

) = eX, eY,X

(
aY

η

) = aX
η , for all η ∈ Y, (3.1)

rX,Y

(
eX

) = eY , rX,Y

(
aX

ξ

) =
{

aY
ξ , for all ξ ∈ Y,

0, for all ξ ∈ X \ Y.
(3.2)

Hence rX,Y ◦ eY,X = idE(Y ), and hence E(Y ) is a retract of E(X). Therefore, we shall
identify E(Y ) with its image eY,X[E(Y )] in E(X), so that eY,X becomes the inclusion map
from E(Y ) into E(X). Similarly, we shall from now on write e instead of eX , aξ instead
of aX

ξ , and bξ instead of bX
ξ .

Definition 3.2. For sets X and Y and a map f :X → Y , we denote by E(f ) the unique
positive homomorphism from E(X) to E(Y ) such that E(f )(e) = e and E(f )(aξ ) = af (ξ),
for all ξ ∈ X.

The proof of the following lemma will introduce a useful explicit description of the
pointed partially ordered abelian group E(X).

Lemma 3.3. The correspondences X �→ E(X), f �→ E(f ) define a functor from the cat-
egory of sets to the category of all unperforated partially ordered abelian groups with
order-unit. This functor preserves direct limits.

Proof. All items are established by standard categorical arguments, except the state-
ments about order-unit and, especially, unperforation, that require an explicit description
of E(X). Denote by P(X) the powerset of X, and by e the constant function on P(X)

with value 1. Furthermore, for all ξ ∈ X, we denote by aξ the characteristic function of
{Y ∈ P(X) | ξ ∈ Y }. Finally, we let FX be the additive subgroup of Z

P(X) generated by
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{aξ | ξ ∈ X} ∪ {e}, endowed with its componentwise ordering. The proof of the following
claim is immediate.

Claim 1. For all m ∈ Z and all (nξ | ξ ∈ X) ∈ Z
(X), me + ∑

(nξaξ | ξ ∈ X) � 0 in FX iff
m + ∑

(nξ | ξ ∈ Y) � 0 in Z for every Y ∈ P(X).

Claim 2. There exists an isomorphism from E(X) onto FX that sends e to e and each aξ

to the corresponding aξ .

Proof. It suffices to verify that FX satisfies the universal property defining E(X), that is,
for every pointed partially ordered abelian group (G, e) with elements aξ ∈ G such that
0 � aξ � e, for ξ ∈ X, there exists a (necessarily unique) positive homomorphism from
FX to G that sends e to e and each aξ to the corresponding aξ . This, in turn, amounts to
verifying the following statement:

me +
∑

(nξaξ | ξ ∈ X) � 0 ⇒ me +
∑

(nξ aξ | ξ ∈ X) � 0, (3.3)

for all m ∈ Z and all (nξ | ξ ∈ X) ∈ Z
(X). As (nξ | ξ ∈ X) has finite support, we may

assume without loss of generality that X is finite. By Claim 1, the premise of (3.3) means
that m + ∑

(nξ | ξ ∈ Y) � 0 in Z for every Y ∈ P(X). We shall conclude the proof by
induction on |X|. For |X| = 0 it is immediate. For X = {ξ}, m � 0, and m + n � 0, we
compute

me + naξ � me + (−m)aξ = m(e − aξ ) � 0.

Now the induction step. Pick η ∈ X, and set k = max{0,−nη}. Hence

−nη � k � m +
∑

(nξ | ξ ∈ Y), for all Y ⊆ X \ {η}. (3.4)

Therefore, the element

me +
∑

(nξ aξ | ξ ∈ X) = (ke + nηaη) +
(
(m − k)e +

∑(
nξaξ | ξ ∈ X \ {η}))

is, by the induction hypothesis, expressed as the sum of two elements of G+, thus it belongs
to G+. �

It follows from Claim 2 that

me +
∑

(nξaξ | ξ ∈ X) � 0 iff m +
∑

(nξ | ξ ∈ Y) � 0 for all Y ⊆ X, (3.5)

for all m ∈ Z and all (nξ | ξ ∈ X) ∈ Z
(X). Both statements about unperforation and order-

unit follow immediately. �
Notation 3.4. We put F = I ◦ E, the composition of the two functors I and E.
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By using Lemmas 2.3 and 2.6, we obtain that F is a direct limits preserving functor
from the category of sets (with maps) to the category of dimension groups (with positive
homomorphisms).

Lemma 3.5. The canonical map jE(X) : E(X) → F(X) is an embedding, for every set X.

Proof. We use the explicit description of E(X) given in the proof of Lemma 3.3. Denote
by BX the additive group of all bounded maps from P(X) to Z. Observe, in particular,
that e has index 1 in BX . Hence, E(X) ∼= FX embeds into the dimension group (BX, e)

with order-unit of index at most 1. For any interpolator ı on BX , the structure (BX, ı) is a
member of D, in which E(X) embeds. �

We shall always identify E(X) with its image in F(X), so that jE(X) becomes the in-
clusion map from E(X) into F(X). Observe that despite what is suggested by the proof
of Lemma 3.5, the element e does not, as a rule, have index 1 in F(X), but 2. The rea-
son for this discrepancy is that for nonempty X, the canonical map g : F(X) → BX is
not one-to-one, even on the positive cone of F(X). Indeed, picking ξ ∈ X and putting
x = ��(0,0,aξ , e−aξ ), we get x ∈ F(X)+. Furthermore, there exists a normalized positive
homomorphism h : (E(X), e) → (Z,2) such that h(aξ ) = 1 and there exists an interpolator
ı on Z such that ı(0,0,1,1) = 1, so h[ı](x) = ı(0,0, h(aξ ), h(e − aξ )) = ı(0,0,1,1) = 1,
and so x > 0. However, 2x � aξ + (e − aξ ) = e, thus 2g(x) � g(e) = e, and so g(x) = 0.

4. Supports and subgroups in F(X)

Throughout this section we shall fix a set X. For all Y ⊆ X, we put fY,X = I(eY,X),
the canonical embedding from F(Y ) into F(X). A support of an element x ∈ F(X) is a
subset Y of X such that x ∈ fY,X[F(Y )]. As the functor F preserves direct limits, every
element of F(X) has a finite support.

Now put sX,Y = I(rX,Y ), rX,Y = eY,X ◦ rX,Y , and sX,Y = I(rX,Y ). Hence rX,Y is an
idempotent positive endomorphism of E(X), and it can be defined as in (3.2). Furthermore,
sX,Y : F(X) → F(Y ) while sX,Y is an idempotent positive endomorphism of F(X).

Lemma 4.1. The following equations hold, for all Y , Z ⊆ X.

(i) fY,X ◦ sX,Y ◦ fY,X = fY,X .
(ii) sX,Y ◦ sX,Z = sX,Y∩Z .

(iii) sX,Y ◦ fZ,X = fY∩Z,Y ◦ sZ,Y∩Z .

Proof. Apply the functor I to the following equations, whose verifications are immediate
(actually, it is easy to infer the first two equations from the third one):

eY,X ◦ rX,Y ◦ eY,X = eY,X,

rX,Y ◦ rX,Z = rX,Y∩Z,

rX,Y ◦ eZ,X = eY∩Z,Y ◦ rZ,Y∩Z. �
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Lemma 4.2. Let x ∈ F(X) and let Y ⊆ X. Then Y is a support of x iff sX,Y (x) = x.

Proof. Suppose first that sX,Y (x) = x, and put y = sX,Y (x). Then x = sX,Y (x) = fY,X(y)

belongs to fY,X[F(Y )]. Conversely, suppose that x = fY,X(y), for some y ∈ F(Y ). Then,
using Lemma 4.1(i), we obtain

sX,Y (x) = fY,X ◦ sX,Y ◦ fY,X(y) = fY,X(y) = x. �
Corollary 4.3. Every element of F(X) has a least support, which is a finite subset of X.

Proof. Let Y and Z be supports of x ∈ F(X). It follows from Lemmas 4.2 and 4.1(ii)
that x = sX,Y (x) = sX,Z(x), thus x = sX,Y ◦ sX,Z(x) = sX,Y∩Z(x), and so, again by
Lemma 4.2, Y ∩ Z is a support of x. As x has a finite support, the conclusion follows. �

We shall denote by supp(x) the least support of an element x of F(X).

Lemma 4.4. Let x ∈ F(X) and let Y ⊆ X. Then supp(sX,Y (x)) ⊆ supp(x) ∩ Y .

Proof. Put Z = supp(x). There is z ∈ F(Z) such that x = fZ,X(z), thus, by Lemma 4.1(iii),
sX,Y (x) = sX,Y ◦ fZ,X(z) = fY∩Z,Y ◦ sZ,Y∩Z(z), and so sX,Y (x) belongs to the image of
fY∩Z,Y . �

Now we shall define certain additive subgroups GX
Z of F(X), for Z ∈ [X]�2. First, we

put GX
∅ = Ze. Next, for any ξ ∈ X, we denote by GX{ξ} the subgroup of F(X) generated by

{aξ ,bξ }. Finally, for all distinct ξ, η ∈ X, we put

cξ,η = ��(0,aξ + aη − e,aξ ,aη),

and we denote by GX{ξ,η} the subgroup of F(X) generated by {aξ ,aη,bξ ,bη, cξ,η}. As,
by axiom (SYMM) (see Section 2), cξ,η = cη,ξ , this definition is correct. For ξ ∈ X, we
define a positive homomorphism ϕξ : Z2 → GX{ξ}, and for ξ �= η in X, we define a positive
homomorphism ψξ,η : Z4 → GX{ξ,η}, by the rules

ϕξ (x0, x1) = x0aξ + x1bξ , (4.1)

ψξ,η(x0, x1, x2, x3) = x0cξ,η + x1(aξ − cξ,η) + x2(aη − cξ,η)

+ x3(cξ,η + e − aξ − aη), (4.2)

for all x0, x1, x2, x3 ∈ Z.

Lemma 4.5.

(i) All maps ϕξ , for ξ ∈ X, and ψξ,η , for ξ �= η in X, are isomorphisms.
(ii) GX

Y ∩ GX
Z = GX

Y∩Z , for all Y,Z ∈ [X]�2.
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Proof. By the definition of E(X), there exists a unique positive homomorphism τξ : E(X) →
Z

2 that sends e to (1,1), aξ to (1,0), and aζ to (0,0) for all ζ ∈ X \ {ξ}. Fix any interpo-
lator ı on Z

2 and set πξ = (τξ )[ı]. Then πξ ◦ ϕξ fixes both vectors (1,0) and (1,1), thus it
is the identity. Therefore, ϕξ is an embedding, and thus an isomorphism.

Now let ξ �= η in X. There exists a unique positive homomorphism σξ,η : E(X) → Z
4

such that

σξ,η(aξ ) = (1,1,0,0), σξ,η(aη) = (1,0,1,0),

σξ,η(e) = (1,1,1,1), σξ,η(aζ ) = (0,0,0,0), for all ζ ∈ X \ {ξ, η}.

Let ı be any interpolator on Z
4 and set ρξ,η = (σξ,η)[ı]. As

(0,0,0,0), (1,0,0,−1) � ρξ,η(cξ,η) � (1,1,0,0), (1,0,1,0),

the only possibility is ρξ,η(cξ,η) = (1,0,0,0). It follows that ρξ,η ◦ ψξ,η fixes each of
the vectors (1,0,0,0), (1,1,0,0), (1,0,1,0), and (1,1,1,1), whence it is the identity. In
particular, ψξ,η is an embedding, but it is obviously surjective, thus it is an isomorphism.

Now let ξ �= η in X, and let z ∈ GX{ξ} ∩ GX{η}. There are x, y, x′, y′ ∈ Z such that

z = xaξ + ybξ = x′aη + y′bη.

Applying ρξ,η yields (x, x, y, y) = (x′, y′, x′, y′), whence x = x′ = y′ = y, and so z =
xe ∈ GX

∅ . Therefore, GX{ξ} ∩ GX{η} = GX
∅ .

Finally, let ξ , η, ζ be distinct elements of X, and let z ∈ GX{ξ,η} ∩ GX{ξ,ζ }. There are
xi, yi ∈ Z, for i < 4, such that

z = x0cξ,η + x1(aξ − cξ,η) + x2(aη − cξ,η) + x3(cξ,η + e − aξ − aη)

= y0cξ,ζ + y1(aξ − cξ,ζ ) + y2(aζ − cξ,ζ ) + y3(cξ,ζ + e − aξ − aζ ). (4.3)

From ρξ,η(aζ ) = (0,0,0,0) it follows that ρξ,η(cξ,ζ ) = (0,0,0,0). Hence, applying ρξ,η

to (4.3) yields that (x0, x1, x2, x3) = (y1, y1, y3, y3), and thus x0 = x1, x2 = x3, whence
z = x0aξ + x2bξ ∈ GX{ξ}. All other instances of (ii) can be easily deduced from the two
above. �

5. Smoothening interpolators on F(X)

In the present section we shall also fix a set X.

Definition 5.1. An interpolator ı on F(X) is smoothening of level 2, if all subgroups GX
Z

(see Section 4), for Z ∈ [X]�2, are closed under ı.

Lemma 5.2. There exists a smoothening interpolator of level 2 on F(X).
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Proof. For all p = (x, x′, y, y′) ∈ F(X)4, we put rngp = {x, x′, y, y′}. It follows from
Lemma 4.5(ii) that the set

I (p) = {
Z ∈ [X]�2 | rngp ⊆ GX

Z

}
is closed under intersection, hence it has a greatest lower bound Zp in (P(X),⊆), which
belongs to I (p) in case I (p) is nonempty (otherwise Zp = X). Put

Hp = GX
Zp

,

where we define GX
X = F(X). So Hp contains rngp, and it follows from Lemma 4.5(i)

that Hp is a dimension group. Now we consider the equivalence relation ∼ on F(X)4

generated by all pairs (x, x′, y, y′) ∼ (x′, x, y, y′) and (x, x′, y, y′) ∼ (x, x′, y′, y), for
x, x′, y, y′ ∈ F(X), and we pick a subset C of F(X)4 such that for each p ∈ F(X)4 there
exists a unique p ∈ C such that p ∼ p. For each p ∈ F(X)4, we put

ı(p) =
{

any z ∈ Hp such that x, x′ � z � y, y′, if x, x′ � y, y′,
0, otherwise,

and then we define ı(p) = ı(p), for all p ∈ F(X)4. Observe that if rngp ⊆ GX
Z , with

Z ∈ [X]�2, then Zp ⊆ Z, thus

Hp = GX
Zp

⊆ GX
Z,

and thus ı(p) ∈ Hp ⊆ GX
Z . Hence, all GX

Z , for Z ∈ [X]�2, are closed under ı. Therefore, ı

is a smoothening interpolator of level 2 on F(X). �
Lemma 5.3. Let ı be a smoothening interpolator of level 2 on F(X). Then for all Z ∈
[X]�2 and all x ∈ F(X) with support Z, the element (jE(X))[ı](x) belongs to GX

Z .

Proof. Put g = jE(X). By the definition of a support, there exists z ∈ F(Z) such that x =
fZ,X(z). Therefore, by using Lemma 2.4,

g[ı](x) = g[ı] ◦ fZ,X(z) = g[ı] ◦ I(eZ,X)(z) = (g ◦ eZ,X)[ı](z).

However, im(g ◦ eZ,X) = E(Z) ⊆ GX
Z and GX

Z is closed under ı, hence, by Lemma 2.5, the
image of (g ◦ eZ,X)[ı] is contained in GX

Z . In particular, using Lemma 2.4, we obtain that
g[ı](x) = (g ◦ eZ,X)[ı](z) belongs to GX

Z . �
6. Proof of the main theorem

Let P(X,L,μ) denote the following statement:

X is a set, L is a lattice, and μ : DimL � F(X)+ is a surjective V-homomorphism.

We say that μ is zero-separating, if μ−1{0} = {0}.
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Lemma 6.1. If P(X,L,μ) holds, then P(X,L′,μ′) holds for some modular lattice L′ and
some zero-separating μ′.

Proof. It follows from Lemma 1.1 that I = {x ∈ DimL | μ(x) = 0} is an o-ideal of DimL

and the map μ : (DimL)/I � F(X)+, [x]I �→ μ(x) is a V-homomorphism. However, it
follows from Propositions 2.1 and 2.4 in [16] that (DimL)/I ∼= Dim(L/θ), where θ is the
congruence of L defined by x ≡θ y iff Δ(x,y) ∈ I , for all x, y ∈ L. Hence, replacing L by
L′ = L/θ , it suffices to prove that if μ separates zero, then L is modular. If {o, a, b, c, i}
is a (possibly degenerate) pentagon of L, that is, o � c � a � i, a ∧ b = o, and b ∨ c = i,
then

μΔ(o, c) = μΔ(b, i) = μΔ(o,a) = μΔ(o, c) + μΔ(c, a),

thus, since F(X)+ is cancellative, μΔ(c, a) = 0. Therefore, since μ separates zero,
Δ(c, a) = 0, and hence a = c. This proves the modularity of L. �

Our main theorem is a consequence of the following more precise result.

Theorem 6.2. Let X be a set, let L a lattice, and let μ : DimL � F(X)+ be a V-homomor-
phism with image containing e. Then |X| � ℵ1.

Proof. Suppose, to the contrary, that |X| � ℵ2. It follows from Lemma 6.1 that we may
assume that L is modular and μ is zero-separating.

As μ is a monoid homomorphism and e ∈ imμ, there are a natural number n and el-
ements ui < vi in L, for i < n, such that e = ∑

(μΔ(ui, vi) | i < n). For all ξ ∈ X, we
obtain, by applying refinement in F(X)+ to the equation

aξ + bξ =
∑(

μΔ(ui, vi) | i < n
)
,

decompositions of the form

aξ =
∑

(aξ,i | i < n), bξ =
∑

(bξ,i | i < n) (6.1)

in F(X)+ such that

aξ,i + bξ,i = μΔ(ui, vi), for all i < n. (6.2)

Since L is modular and μ is a V-homomorphism, we are entitled to apply Lemma 1.3 to
the latter equation, and hence we obtain a positive integer �ξ,i and a finite chain in L of the
form

ui = x0
ξ,i � x1

ξ,i � · · · � x
2�ξ,i

ξ,i = vi

such that
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aξ,i =
∑(

μΔ
(
x

2j
ξ,i , x

2j+1
ξ,i

) | j < �ξ,i

)
, (6.3)

bξ,i =
∑(

μΔ
(
x

2j+1
ξ,i , x

2j+2
ξ,i

) | j < �ξ,i

)
. (6.4)

Now we define

Φ(ξ) =
⋃(

suppμΔ
(
x

j
ξ,i , x

j+1
ξ,i

) | i < n, j < 2�ξ,i

)
, for all ξ ∈ X.

By applying Lázár’s theorem (see Lemma 1.5), we obtain a subset X1 of X of cardinality
ℵ2 such that

η /∈ Φ(ξ), for all distinct ξ, η ∈ X1. (6.5)

By Lemma 5.2, there exists a smoothening interpolator ı of level 2 on F(X1). Now we put

π = (jE(X1))[ı] ◦ sX,X1, μ′ = π ◦ μ, (6.6)

a′
ξ,i = π(aξ,i ), b′

ξ,i = π(bξ,i ), for all ξ ∈ X1 and all i < n. (6.7)

For all ξ ∈ X, i < n, and j < 2�ξ,i , it follows from Lemma 4.4 that Φ(ξ) ∩ X1 is a sup-

port of the element sX,X1μΔ(x
j
ξ,i , x

j+1
ξ,i ), hence, if ξ ∈ X1 and by using (6.5), we obtain

that {ξ} is a support of sX,X1μΔ(x
j
ξ,i , x

j+1
ξ,i ). Therefore, by applying (jE(X1))[ı] and using

Lemma 5.3, we obtain

μ′Δ
(
x

j
ξ,i , x

j+1
ξ,i

) ∈ G
X1{ξ}, for all ξ ∈ X1, i < n, and j < 2�ξ,i . (6.8)

By applying π to Eqs. (6.1)–(6.4) and observing that all elements of E(X1) are fixed un-
der π , we obtain the equations

aξ =
∑(

a′
ξ,i | i < n

)
and bξ =

∑(
b′

ξ,i | i < n
)
, for all ξ ∈ X1, (6.9)

a′
ξ,i =

∑(
μ′Δ

(
x

2j
ξ,i , x

2j+1
ξ,i

) | j < �ξ,i

)
, for all ξ ∈ X1 and all i < n, (6.10)

b′
ξ,i =

∑(
μ′Δ

(
x

2j+1
ξ,i , x

2j+2
ξ,i

) | j < �ξ,i

)
, for all ξ ∈ X1 and all i < n. (6.11)

Fix ξ ∈ X1 and i < n. It follows from (6.8), (6.10), and (6.11) that both a′
ξ,i and b′

ξ,i

belong to G
X1{ξ}. However, it follows from (6.9) that 0 � a′

ξ,i � aξ . Since the isomorphism

ϕ−1
ξ :GX1{ξ} → Z

2 (see (4.1)) carries aξ to (1,0), it follows that

a′
ξ,i ∈ {0,aξ }. (6.12)

It follows from (6.12), (6.8), and (6.10) that there exists j < �ξ,i such that

μ′Δ
(
x

2j ′
, x

2j ′+1) = 0, for all j ′ < �ξ,i with j ′ �= j. (6.13)
ξ,i ξ,i
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Similarly, b′
ξ,i ∈ {0,bξ } and there exists k < �ξ,i such that

μ′Δ
(
x2k′+1
ξ,i , x2k′+2

ξ,i

) = 0, for all k′ < �ξ,i with k′ �= k. (6.14)

We define an element zξ,i ∈ L as follows:

zξ,i =
{

x
2j+1
ξ,i , if j � k,

x2k+2
ξ,i , if j > k.

It follows easily from (6.10), (6.11), (6.13), and (6.14) that the following statements hold:

a′
ξ,i = μ′Δ(ui, zξ,i ) and b′

ξ,i = μ′Δ(zξ,i , vi), if j � k,

b′
ξ,i = μ′Δ(ui, zξ,i) and a′

ξ,i = μ′Δ(zξ,i , vi), if j > k.

Let A(ξ, i) hold, if a′
ξ,i = μ′Δ(ui, zξ,i ) and b′

ξ,i = μ′Δ(zξ,i , vi), and let B(ξ, i) hold, if
b′

ξ,i = μ′Δ(ui, zξ,i) and a′
ξ,i = μ′Δ(zξ,i , vi). What will matter for us is that the following

property is satisfied:

Either A(ξ, i) or B(ξ, i) holds, for all ξ ∈ X1 and all i < n. (6.15)

Now we denote by U the powerset of n = {0,1, . . . , n − 1}, and we put

Yu = {
ξ ∈ X1 | (∀i ∈ u)A(ξ, i) and (∀i ∈ n \ u)B(ξ, i)

}
, for all u ∈ U.

Claim 1. X1 = ⋃
(Yu | u ∈ U).

Proof. Let ξ ∈ X1, and put u = {i < n | A(ξ, i)}. It follows from (6.15) that B(ξ, i) holds,
for all i ∈ n \ u. Therefore, ξ ∈ Yu. �

Now we put dξ,η = ∑
(μ′Δ(zξ,i , zη,i) | i < n), for all ξ , η ∈ X1.

Claim 2. The following inequalities hold:

(i) dξ,ζ � dξ,η + dη,ζ , for all ξ , η, ζ ∈ X1;
(ii) dξ,η � aξ + aη,bξ + bη, for all u ∈ U and all ξ , η ∈ Yu;

(iii) e � aη + bξ + dξ,η,aξ + bη + dξ,η , for all u ∈ U and all ξ , η ∈ Yu.

Proof. Item (i) follows immediately from Lemma 1.2(iii).
Now let u ∈ U and let ξ, η ∈ Yu. Let i < n. If i ∈ u, then, by using again Lemma 1.2,

μ′Δ(zξ,i , zη,i) � μ′Δ(zξ,i , ui) + μ′Δ(ui, zη,i ) = a′
ξ,i + a′

η,i ,

μ′Δ(ui, vi) � μ′Δ(ui, zη,i ) + μ′Δ(zη,i , zξ,i ) + μ′Δ(zξ,i , vi)

= a′ + b′ + μ′Δ(zξ,i , zη,i),
η,i ξ,i
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while if i ∈ n \ u,

μ′Δ(zξ,i , zη,i) � μ′Δ(zξ,i , vi) + μ′Δ(vi, zη,i) = a′
ξ,i + a′

η,i ,

μ′Δ(ui, vi) � μ′Δ(ui, zξ,i ) + μ′Δ(zξ,i , zη,i) + μ′Δ(zη,i , vi)

= b′
ξ,i + a′

η,i + μ′Δ(zξ,i , zη,i),

so that in any case,

μ′Δ(zξ,i , zη,i ) � a′
ξ,i + a′

η,i , (6.16)

μ′Δ(ui, vi) � a′
η,i + b′

ξ,i + μ′Δ(zξ,i , zη,i). (6.17)

Symmetrically, we can obtain

μ′Δ(zξ,i , zη,i) � b′
ξ,i + b′

η,i , (6.18)

μ′Δ(ui, vi) � a′
ξ,i + b′

η,i + μ′Δ(zξ,i , zη,i), (6.19)

Adding together all inequalities (6.16)–(6.19), for i < n, establishes both (ii) and (iii). �
By Claim 1, there exists u ∈ U such that |Yu| = ℵ2. For the rest of the proof we fix such

a subset u. We define Ψ ({ξ, η}) = suppdξ,η , for all distinct ξ, η ∈ Yu. Applying Kura-
towski’s theorem (see Lemma 1.6) to the map Ψ , we obtain distinct elements α,β, γ ∈ Yu

such that α /∈ Ψ ({β,γ }), β /∈ Ψ ({α,γ }), and γ /∈ Ψ ({α,β}).
Put X2 = {α,β, γ }. It follows from Lemma 5.2 that there exists a smoothening interpo-

lator j of level 2 on F(X2). Put π ′ = (jE(X2))[j ] ◦ sX1,X2 , a positive homomorphism from
F(X1) to F(X2). For all distinct ξ, η ∈ Yu, it follows from Lemma 4.4 that Ψ ({ξ, η}) ∩ X2
is a support of the element sX1,X2(dξ,η). Hence, we obtain that the pair {ξ, η} is a support
of sX1,X2(dξ,η), for all distinct ξ, η ∈ X2. Therefore, putting d ′

ξ,η = π ′(dξ,η), applying
(jE(X1))[j ], and using Lemma 5.3, we obtain that

d ′
ξ,η ∈ G

X2{ξ,η}, for all distinct ξ, η ∈ X2. (6.20)

Applying the positive homomorphism π ′ to the inequalities in Claim 2, we obtain the
following new inequalities, for all distinct ξ, η, ζ ∈ X2:

(i) d ′
ξ,ζ � d ′

ξ,η + d ′
η,ζ ;

(ii) d ′
ξ,η � aξ + aη,bξ + bη;

(iii) e � aη + bξ + d ′
ξ,η,aξ + bη + d ′

ξ,η .

By applying the isomorphism ψ−1
ξ,η (see (4.2)) to the inequalities (ii) and (iii) above, we

obtain the inequalities
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ψ−1
ξ,η

(
d ′

ξ,η

)
� (1,1,0,0) + (1,0,1,0),

ψ−1
ξ,η

(
d ′

ξ,η

)
� (0,0,1,1) + (0,1,0,1),

(1,1,1,1) � ψ−1
ξ,η

(
d ′

ξ,η

) + (1,0,1,0) + (0,0,1,1),

(1,1,1,1) � ψ−1
ξ,η

(
d ′

ξ,η

) + (1,1,0,0) + (0,1,0,1),

which leaves the only possibility

ψ−1
ξ,η

(
d ′

ξ,η

) = (0,1,1,0),

that is,

d ′
ξ,η = aξ + aη − 2cξ,η.

Therefore, applying the inequality (i) above with (ξ, η, ζ ) = (α,β, γ ), we obtain

cα,β + cβ,γ � aβ + cα,γ (6.21)

in F(X2). However, we shall now prove that (6.21) does not hold. Indeed, the structure
(Z2, (2,1)) is a dimension group with order-unit of index 2, thus it expands to some mem-
ber (Z2, (2,1), ι) of D (where ι is an interpolator on Z

2) such that

ι
(
(0,0), (0,−1), (1,0), (1,0)

) = (0,0) and ι
(
(0,0), (0,0), (1,0), (1,1)

) = (1,0).

Now there exists a unique normalized positive homomorphism h : (E(X2), e) → (Z2, (2,1))

such that

h(aα) = h(aγ ) = (1,0), and h(aβ) = (1,1).

By definition, h(e) = (2,1), so we can compute

h[ι](cα,γ ) = ι
(
(0,0), h(aα + aγ − e), h(aα), h(aγ )

)
= ι

(
(0,0), (0,−1), (1,0), (1,0)

)
= (0,0),

h[ι](cα,β) = ι
(
(0,0), h(aα + aβ − e), h(aα), h(aβ)

)
= ι

(
(0,0), (0,0), (1,0), (1,1)

)
= (1,0),

h[ι](cβ,γ ) = ι
(
(0,0), h(aβ + aγ − e), h(aβ), h(aγ )

)
= ι

(
(0,0), (0,0), (1,1), (1,0)

)
= (1,0).
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Therefore, applying h[ι] to the inequality (6.21) yields the inequality (2,0) � (1,1)

(in Z
2!), a contradiction. �

Corollary 6.3. For any set X, the following conditions are equivalent.

(i) There exists a lattice L such that DimL ∼= F(X)+.
(ii) There exists a complemented modular lattice L such that DimL ∼= F(X)+.

(iii) There exists a von Neumann regular ring R such that V (R) ∼= F(X)+.
(iv) There exists a locally matricial ring R such that K0(R) ∼= F(X).
(v) |X| � ℵ1.

Proof. (i) ⇒ (v) follows immediately from Theorem 6.2.
Now suppose that |X| � ℵ1. Then F(X) is a dimension group of cardinality at most ℵ1;

moreover, it has an order-unit (namely, e). By [6, Theorem 1.5], for any field F, there exists
a locally matricial algebra R over F such that K0(R) ∼= F(X). Hence (v) implies (iv).

(iv) ⇒ (iii) is trivial, as V (R) ∼= K0(R)+ for any locally matricial ring (and, more
generally, for any unit-regular ring) R.

Now assume (iii). Since R is von Neumann regular, it follows from Lemma 1.4 that
V (R) ∼= DimL, where L is the (complemented modular) lattice of all principal right ideals
of M2(R). Hence DimL ∼= F(X)+, and so (ii) holds.

Finally, (ii) ⇒ (i) is a tautology. �
We conclude the paper with a problem.

Problem. Is every conical refinement monoid of cardinality at most ℵ1 isomorphic to
DimL, for some modular lattice L?

Even for countable monoids the question above is open. It is formally similar to the
fundamental open problem raised by K.R. Goodearl in his survey paper [5], that asks
which refinement monoids are isomorphic to V (R) for some von Neumann regular ring R.
A positive answer to Goodearl’s question would yield a positive answer to the problem
above, with L sectionally complemented modular.
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