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 The Universal Covers of the Sporadic Semibiplanes

 B ARBARA  B AUMEISTER   AND  D MITRII  V .  P ASECHNIK

 We determine the universal covers of the few flag-transitive sporadic semibiplanes .  They
 were already known by computer-aided coset enumeration .  The method we are using seems to
 be new and of interest on its own .

 ÷   1996 Academic Press Limited

 1 .  I NTRODUCTION

 This paper is a continuation of [2 ,  3] .  In [2 ,  3] all known examples of flag-transitive
 c  ?  c *-geometries ,  also called  semibiplanes ,  were listed and all such geometries
 satisfying certain extra assumption were classified .  The universal covers of certain
 c  ?  c *-geometries were found using computer-aided coset enumeration .  One aim of this
 paper is to determine the universal covers of these geometries without using a
 computer .  Another aim is to exhibit some of the technique used ,  which seems to be
 new and of interest on its own .  Roughly speaking ,  if
 (a)  there is a good theoretic bound on the number of elements of the (flag-transitive)
 geometry ,  and
 (b)  for any flag-transitive cover  & ̃    of the geometry  & ,  there exists a perfect
 flag-transitive group of automorphisms  G ̃    of  & ̃  ,
 then there is a good chance that the automorphism group of the universal cover
 contains a flag-transitive subgroup  G ̃  ,  which is a perfect central extension of  G .  It
 turns out that ,  for the  c  ?  c *-geometries considered here ,   G ̃    is such an extension
 and ,  moreover ,   G ̃  / Z ( G ̃  ) is a simple group .  Since the Schur multipliers of the finite
 simple groups are known ,  we are able to determine  G ̃    and thereby the universal
 cover .

 In the Appendix we give the distribution diagrams of the point – circle incidence
 graphs of the sporadic  c  ?  c *-geometries ,  although only a small part of the information
 they carry is actually used here .

 Our terminology is fairly standard ;  see the next section .  The elementsof  &   are called
 points , lines  and  circles .  Let  G  act flag-transitively on  & .  For a flag  h  p ,  l ,  c j   and
 x  P  h  p ,  l ,  c j ,  we denote by  G x   the stabilizer of  x  in  G .  Then  &   is isomorphic to its group
 geometry  & ( G ,  ( G p  ,  G l  ,  G c )) .  That is why  &   can be reconstructed from  G ,  so we denote
 &  5  & ( G ) .  Also ,  let  n  be the number of points incident to a given circle ,   N  being the
 total number of points in  & .

 According to [3] (see also Lemma 2 . 3 of this paper) ,  the stabilizer  G p   of a point  p  is a
 doubly transitive permutation group .  For every doubly transitive permutation group  H
 of degree  n  there exists a  c  ?  c *-geometry with  H  .  G p   and  G  .  E 2 n 2 1 :  H ;  namely ,  the
 two-coloured hypercube  H ( n )—see ,  for instance ,  [3] or [4] .  We are aware of existence
 of three other infinite families with  G p   an af fine doubly transitive permutation group ;
 see [2] .  Moreover ,  there are ten sporadic examples with almost simple point-stabilizer ,
 as follows (here  G  5  Aut( & )) :
 (i)  &  5  & ( L 2 (11)) , n  5  5 , N  5  11 , G  .  L 2 (11) and  G p  .  A 5  .
 (ii)  &  5  & ( S 6 ) or  & (3 S 6 ) , n  5  6 , N  5  6 or 18 ,   G  .  S 6  or 3 S 6  ,  respectively ,  and  G p  .  S 5  .
 Also ,   H  <  G , H  .  A 6  or 3 A 6  acts flag-transitively on  & ( S 6 ) or  & (3 S 6 ) ,  respectively .
 (iii)  &  5  & ( L 3 (4)) or  & (2 L 3 (4)) , n  5  10 , N  5  56 or 112 and  G  .  L 3 (4)2 2  or 2 L 3 (4)2 2 ,
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 respectively ,  and  G p  .  P G L 2 (9) .  Also ,   H  <  G , H  .  L 3 (4) or 2 L 3 (4) acts flag-transitvely
 on  & ( L 3 (4)) or  & (2 L 3 (4)) ,  respectively .
 (iv)  &  5  & (Aut( M 1 2 )) , n  5  12 , N  5  144 , G  .  Aut( M 1 2 ) and  G p  .  PGL 2 (11) .  Also ,
 H  <  G , H  .  M 1 2  acts flag-transitively .
 (v)  &  5  & ( M 1 2 ) , n  5  11 , N  5  144 , G  .  M 1 2  and  G p  .  L 2 (11) .
 (vi)  &  5  & ( U 3 (3)) , n  5  7 , N  5  36 , G  .  U 3 (3) and  G p  .  L 3 (2) .
 (vii)  &  5  & ( M 2 2 ) or  & (2 M 2 2 ) , n  5  15 , N  5  176 or 352 , G  .  M 2 2  or 2 M 2 2  ,  respectively ,
 and  G p  .  A 7  .

 We suspect that these and the two-coloured hypercube are the only examples having
 an almost simple non-abelian stabilizer of a point .  In [2] ,  under some weak
 assumptions ,  this suspicion was confirmed .  Here we determine the universal covers of
 the ten sporadic  c ? c *-geometries .

 T HEOREM  A .  ( i )  Both geometries  & ( L 3 (4))  and  & ( M 2 2 )  possess a double co y  er .
 (ii)  The geometries  & ( L 2 (11)) ,  & (3 S 6 ) ,  & (Aut( M 1 2 )) ,  & ( M 1 2 )  and  & ( U 3 (3))  and the

 double co y  ers  & (2 L 3 (4))  and  & (2 M 2 2 )  are simply connected .

 In fact ,  Theorem A can be used to eliminate the use of a computer in the proof of
 the results in [2 ,  3] .

 In Section 2 we give definitions and some basic facts about  c  ?  c *-geometries .  Section
 3 consists of a proof of Theorem A .  For each of the examples  &  5  & (G) in Theorem A ,
 we proceed as follows .  If  &   is known to possess a non-trivial cover as a result of a
 computer-aided coset enumeration ,  we construct it independently .  Namely ,  we obtain a
 cover by embedding the amalgam for  &   in a covering group of  G .  Then we show the
 simple connectedness of (the covers of)  & .  In some cases this follows immediately from
 the bound on the number of points .  By [14] ,  a  c  ?  c *-geometry with maximal parabolic
 subgroups  G p  , G l   and  G c   is simply connected if f its automorphism group is the
 completion of the amalgam of these maximal parabolic subgroups .  Hence for the
 remaining geometries we determine the completion  G ̃    of the corresponding amalgam .

 2 .  P RELIMINARIES

 A geometry  &   consisting of points ,  lines and circles is a  c  ?  c *-geometry’ or belongs
 to the diagram

 $ —— $ —— $ ’  ’
 1  n  1

 if f :
 (1)  for every point  p ,  the residue  & p   of  p  is isomorphic to the geometry of vertices and
 edges of a complete graph  K n 1 2  on  n  1  2 vertices ,  where the circles and the lines in  & p

 are the vertices and the edges respectively ;
 (2)  for every line  l ,  the residue  & l   of  l  is a generalized 2-gon consisting of two points
 and two circles ;
 (3)  for every circle  c ,  the residue  & c   of  c  is a complete graph  K n 1 2 ,  where the points
 and the lines in  & c   are the vertices and the edges respectively .

 The following is a condition equivalent to the Intersection Property in [6] :

 (IP)  For any two elements  x  and  y ,  the set of points incident with  x  and  y
 coincides ,  if not empty ,  with the set of points incident with some
 element  z ,  which is incident with both  x  and  y .

 If (IP) holds then the truncation of  &   to points and circles (blocks) is a semibiplane—
 that is ,  a connected incidence structure satisfying :
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 (i)  any two points are incident with 0 or 2 common blocks ;
 (ii)  any two blocks are incident with 0 or 2 common points .  (See ,  for example ,  [20]) .

 On the other hand ,  each semibiplane yields a  c  ?  c *-geometry ,  the lines of which are
 the quadruples ( P 1  ,  P 2  ,  B 1  ,  B 2 ) of two dif ferent points  P 1  , P 2  ,  being incident with the
 two dif ferent blocks (circles)  B 1  ,  B 2  .

 A  co y  er  of a geometry  &   is a tuple ( & ̃  ,  f  ) consisting of a geometry  & ̃    and an
 epimorphism  f  :  & ̃  5  & ,  such that  f   maps res(  p ) isomorphically onto res(  p f  ) for any
 element  p  of  & .

 A cover ( & ̃  ,  f  ) is called  uni y  ersal ,  if for each cover ( & #  ,  c  ) ,  there is a covering ( & ̃  ,  θ  )
 of  & #  ,  such that  θ c  5  f .  A geometry  &   is called  simply connected  if the cover ( & ,  id ) is
 universal .

 Let ( & ̃  ,  f  ) be a finite cover of  & .  Since  f   induces an equivalence relation on  & ̃  ,  the
 number of objects of a given type in  &   divides the number of objects of this type in  & ̃  .

 If the fundamental group of  & ̃    is characteristic in the fundamental group of  & ,  then
 the automorphism group of  &   can be lifted to a group of automorphism of  & ̃  ,  i . e .  there
 is a subgroup  G ̃    of Aut( & ̃  ) and a normal subgroup  N  of  G ̃  ,  such that  G ̃  / N  .  Aut( & ) .  In
 particular ,  since the fundamental group of the universal cover is trivial ,  Aut( & ) can be
 lifted to a group of automorphism of the universal cover .  These definitions and the last
 fact can be found in [19] and [18] .

 An  amalgam  is a collection  !   of groups such that any two groups  U ,  V  P  !   intersect
 in some specified element of  !  .  Suppose that there is a group  G  which is generated by
 the groups in  !  .  If  G  is maximal in this respect ,  then we call  G  the  completion of the
 amalgam  ! .  See [15] for a comprehensive introduction to the amalgam approach in
 diagram geometry .

 L EMMA  2 . 1 .  Let  &   be a geometry of rank  3 , with G  <  Aut( & )  flag - transiti y  e on  & . Let
 & ̃   be the uni y  ersal co y  er of  &   and G ̃  5  N  ?  G be the lifting of G into  Aut( & ̃  ) .   Assume
 that G is simple and that , for two dif ferent types i ,  j , the stabilizers in G of the elements
 of type i and j are perfect groups . Then G ̃   is perfect and C G ̃  ( N ) N  / N  5  1  or G .

 P ROOF .  By residual connectness ,   G ̃  5  k G ̃  i  ,  G ̃  j l .  As  G ̃  i   and  G ̃  j   are perfect groups ,
 G ̃  9  >  k G ̃  i 9 ,  G ̃  j 9 l  5  G ̃  ,  so  G ̃    is perfect .  Since  G  5  G ̃  / N  is a simple group ,  the last claim
 holds as well .  h

 Let  D   be the distribution diagram of the point – circle incidence graph  G   of a
 flag-transitive  c  ?  c *-geometry  &   with respect to some point  p .  For the definition of the
 distribution diagram ,  see [5] .  As usual ,  let  G i (  p ) be the vertices of  D   having distance  i
 to  p  and let  h  p j  5  G 0 (  p ) and  G (  p )  5  G 1 (  p ) .  If each vertex in  G i (  p ) has the same number
 of neighbours in  G i 2 1 (  p ) ,  then we denote this number by  c i  .  By definition ,   u G (  p ) u  5  n .

 The following lemma was shown by Wild [Wi] for semibiplanes .  In fact ,  it holds in
 each  c  ?  c *-geometry ,  i . e .  also if (IP) fails .  The lemma can be proved using a result of
 Pasechnik [13] ,  which provides a bound on the number of points of a locally finite
 C 2  ?  L -geometry .  Here we give a direct proof .

 L EMMA  2 . 2 .  Let u  P  G m (  p )  and c  P  G m 1 1 (  p )  be neighbours in  G , m  >  1 . Then
 u G m (  p )  >  G ( y  ) u  >  u G m 2 1 (  p )  >  G ( u ) u  1  1 . In particular ,  &   has at most  2 n 2 1   points .

 P ROOF .  Without loss of generality ,  we can assume  u  to be a point and  y    to be a
 circle .  Let  y  1  ,  .  .  .  ,  y  r   be the neighbours of  u  in  G m 2 1 (  p ) .  Since the residue of  u  is
 isomorphic to a complete graph ,  there exists exactly one line  l i ,  which is incident to  y
 and  y  i  ,  1  <  i  <  r .  As the residue of  y    is isomorphic to a complete graph as well ,  in  G y  
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 there exists exactly one further point  u i   distinct from  u  incident to  l i  ,  1  <  i  <  r .  This
 yields the assertion ,  since  u ,  u 1  ,  .  .  .  ,  u r  P  G m (  p ) .

 Thus ,  as  c 1  5  1 ,  we have  u G m 2 1 (  p )  >  G ( u ) u  >  m  and  u G m (  p ) u  <  (  n
 m ) .  Hence the number

 of points is at most  o [ n /2]
 i 5 0  (  n

 2 i )  5  2 n 2 1 .  h

 The following result provides a set of conditions on a group  G  to be a flag-transitive
 automorphism group of a  c  ?  c *-geometry .

 L EMMA  2 . 3 [3] .  A group G acts flag - transiti y  ely on a c  ?  c *- geometry  & , if f there are
 pairwise distinct subgroups G 1  ,  G 2  ,  G 3  <  G , satisfying the following conditions :
 (1)  G i  is a doubly transiti y  e permutation group on  h ( G 1  >  G 3 ) g ,  g  P  G i j , i  P  h 1 ,  3 j ;
 (2)  B  < l  G 2  , G 2 / B  .  E 4  ,  ( G 2  >  G i ) / B  .  Z 2   and G i  5  k a i  ,  G 1  >  G 3 l , a i  P  ( G 2  >  G i ) \ B ,
 i  P  h 1 ,  3 j  and B  5  G 1  >  G 2  >  G 3 ;
 (3)  ( G 1  >  G 3 )  >  ( G 1  >  G 3 )

 a i  5  B ;
 (4)  G  5  k G 1  ,  G 3 l .

 3 .  P ROOF   OF THE  T HEOREM

 3 . 1 .  The geometry with circle size n  5  15

 Let  &  5  & ( M 2 2 ) .  Then  &   can be described as follows (see [3]) .  Let  6  5  S (5 ,  8 ,  24) be
 a Steiner system on the set  Ω  5  h a  1  ,  .  .  .  ,  a  2 4 j   with set of octads  2 .  The points of  &
 are the octads ,  which contain  a  1  ,  but not  a  2 4 ;  whereas the circles are the octads ,
 which contain  a  2 4  ,  but not  a  1  .  The lines of  &   are two-coloured sextets
 h L 1  ,  L 2  ,  L 3 jh L 4  ,  L 5  ,  L 6 j ,  where  h L 1  ,  .  .  .  ,  L 6 j   is a sextet with  a  1  P  L 1  and  a  2 4  P  L 6  .  Let a
 point  p  be incident to a circle  c  if f  p  >  c  5  [ .  A point  p  (a circle  c ) is incident to a line
 l  5  h L 1  ,  L 2  ,  L 3 jh L 4  ,  L 5  ,  L 6 j   if f  p  5  L 1  <  L 2  or  p  5  L 1  <  L 3  (respectively ,   c  5  L 4  <  L 6  or
 c  5  L 5  <  L 6 ) .  Finally ,   G  5  Aut( & )  .  M 2 2  acts flag-transitively on  & .

 L EMMA  3 . 1 .  There exists a double co y  er  & #   of  & ( M 2 2 )  with automorphism group
 H  .  2 M 2 2 .

 P ROOF .  We identify  &   with the group geometry  & ( G ,  ( G p  ,  G l  ,  G c )) .
 Let  H  .  2 M 2 2  be the double cover of  G  and  c   the natural endomorphism from  H

 onto  G .  We construct an amalgam ( H p  ,  H l  ,  H c ) in  H ,  such that  c   induces a cover of the
 group geometry  & ( H ,  ( H p  ,  H l  ,  H c )) onto  & ( G ,  ( G p  ,  G l  , G c )) .  Thus we have to find
 subgroups  H p  ,  H l   and  H c   of  H ,  such that for pairwise distinct  x ,  y ,  z  P  h  p ,  l ,  c j   the
 morphism  c   induces an isomorphism of  H x  ,  H x  >  H y   and  H x  >  H y  >  H z   onto  G x  ,  G x  >
 G y   and  G x  >  G y  >  G z  ,  respectively .

 We have  G p  .  A 7  .  G c  , G l  .  S 4  3  Z 2  , G p  >  G c  .  L 3 (2) , G p  >  G l  .  S 4  .  G c  >  G l   and
 B  .  A 4   (cf .  [3]) .

 We claim that for  x  a point or a circle  G c 2 1

 x  .  Z 2  3  A 7  .  Suppose that  G  c 2 1

 x    is a
 non-split extension 2  ?  A 7  .  Then the involutions in  G x   are lifted to elements of order 4
 in  G c 2 1

 x  .  As  G  .  M 2 2  has only one class of involutions ,  we obtain  Ω 1 ( S )  .  Z 2  for
 S  P  Syl 2 ( H ) .  Hence  S  is isomorphic to a quaternion or to a cyclic group ,  a contradiction
 with the fact that  S  / Z ( H )  .  E 1 6 :  D 8 .  Thus  G  c 2 1

 x  .  Z 2  3  A 7  .
 Let  H x  <  G c 2 1

 x    be such that  H x  .  A 7  .  Then  c   induces an isomorphism of  H x   onto  G x .
 It remains to produce the parabolic subgroup  H l .  By Lemma 2 . 3 ,  there exist

 a 1  P  G p  >  G l  \ B  and  a 3  P  G c  >  G l  \ B ,  so that  G p  >  G l  5  k B ,  a 1 l , G c  >  G l  5  k B ,  a 3 l   and
 ( a 1 a 3 )

 2  P  B .  Furthermore ,   a 1  and  a 3  may be chosen such that  a 1 a 3  is an element of
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 order 6 (see [3]) .  Let  a ̃  1  and  a ̃  3  be the preimages of  a 1  and  a 3  in  H p   and  H c  ,
 respectively .  Define  H l  5  k B c 2 1

 >  H p  ,  a ̃  1  ,  a ̃  3 l .  As involutions of  G  are lifted to involu-
 tions of  H ,  the order of  a ̃  1 a ̃  3  is 6 and ( a ̃  1 a ̃  3 )

 2  is an element in  H p  >  B c 2 1
 .  Thus  H l  .  G l

 and  H c
 l  5  G l .  As  B  c 2 1

 >  H p  <  H p  >  G c  2 1

 c  5  H p  >  H c  ,  we have that  c   also induces an
 isomorphism of  H p  >  H l  , H l  >  H c  , H p  >  H l  >  H c   onto  G p  >  G l  , G l  >  G c  , G p  >  G l  >  G c  ,
 respectively .  So  H p  , H l   and  H c   give us the required amalgam .  h

 Let  G ̃    be the completion of the amalgam of  G p  , G l   and  G c .  Hence there exist
 subgroups  G ̃  p  , G ̃  l   and  G ̃  c   of  G ̃    forming an amalgam ,  which is isomorphic to the
 amalgam of  G p  ,  G l   and  G c .  The group geometry  & ̃  5  & ( G ̃  ,  ( G ̃  p  ,  G ̃  l  ,  G ̃  c )) is the universal
 cover of  & .  Next we show that  & #  ,  which is constructed in Lemma 3 . 1 ,  is the universal
 cover .

 L EMMA  3 . 2 .  The co y  er  & #   is simply connected .

 P ROOF .  By Lemma 3 . 1 and [18] ,   G ̃  / N  .  2 M 2 2  for some normal subgroup  N  of  G ̃  .
 Let  N  <  M  <  G ̃  , such that  G  / M  .  M 2 2 .  As each circle is incident to 15 points ,  the
 geometry  & ̃    has less than 2 1 4  points (cf .  Lemma 2 . 2) .  Hence  u G ̃  :  G p u  ,  2 1 4 ,  which yields
 u N u  ,  2 1 4 / 352 .  As 352  .  1024 / 3  5  2 1 0 / 3 we obtain  u N u  ,  2 4  ?  3  5  48 .

 The completion  G ̃    is a perfect group ,  since it is generated by  G p   and  G c  ,  which are
 isomorphic to  A 7 ;  see Lemma 2 . 1 .

 We claim that  G ̃    is a perfect central extension of  G .  Since  u N u  <  48 ,  the group  N  is
 solvable .  As [ M :  N ]  5  2 ,  the group  M  is solvable as well .  Let  p  be a prime dividing the
 order of  M ,  such that  O p ( M ) is non-trivial .  Set  Q  5  O p ( M ) / f  ( O p ( M )) .  Then  C G ̃  ( Q ) is
 a normal subgroup of  G ̃    and  G ̃  / C G ̃  ( Q ) isomorphic to a subgroup of Aut( Q ) .  As
 u M u  <  96   and  G ̃  / M  .  M 2 2  ,  we obtain  G ̃  5  C G ̃  ( Q ) M  and ,  as  G ̃    is a perfect group and  M
 is solvable ,   G ̃  5  C G ̃  ( Q ) .  By the same argumentation we also conclude that  G ̃  5
 C G ̃  ( f  ( O p ( M ))) .  As  G ̃    is generated by elements the order of which is not divisible by  p ,
 a theorem of Burnside ,  [1 ,  24 . 1] yields [ G ̃  ,  O p ( M )]  5  1 .  Since this argument holds for
 each prime  p  with  O p ( M )  ?  1 ,  we obtain that  G ̃    acts trivially on the Fitting subgroup
 F  ( M )   of  M .  This gives  M  <  C M ( F  ( M )) and ,  as  M  is solvable ,   M  <  C M ( F  ( M ))  <  F  ( M ) .
 Thus  M  5  Z ( G ) and  G ̃    is a perfect central extension of  G .

 According to [16] the Schur multiplier is isomorphic to a cyclic group of order 12 .
 Hence  Z ( G ̃  ) is a cyclic group ,  the order of which divides 12 and  u N u  <  6 .

 Assume that 3  3  u Z ( G ̃  ) u .  For  N  5  k n l ,  we then have  O 3 ( N )  5  k n 2 l  .  Z 3  .  As  O 3 ( N ) G ̃  p

 splits over  O 3 ( N ) and as 3 does not divide  u G ̃  :  O 3 ( N ) G ̃  p u  5  u O 2 ( N ) u  ?  176 ,  it follows from
 Gaschu ̈  tz’s theorem [1 ,  10 . 4] ,  that  G ̃    splits over  O 3 ( N ) .  As  G ̃    is a perfect group ,
 O 3 ( N )  5  1 ,  in contradiction to our assumption .  So  Z ( G ̃  )  .  Z 2  or  Z 4 .

 Assume that  Z ( G ̃  )  .  Z 4  .  Hence  G p   lifts to  G ̃  p  3  Z ( G ̃  )  .  Z 4  3  A 7  in  G ̃  .  The group
 G  .  M 2 2   acts not only on the Steiner system  6  5  S (5 ,  8 ,  24) ,  (see the construction of
 & ( M 2 2 )   above) but also on the Steiner system  7  5  T  (3 ,  6 ,  22) on the set  Ω 9  5
 h a  2  ,  .  .  .  ,  a  2 3 j ,  where the hexads are the octads of  6   containing both  a  1  and  a  2 4  .
 Without loss of generality we can sssume that  p  5  h a  1  ,  .  .  .  ,  a  8 j   and  Z  5
 h a  1  ,  a  2  ,  a  3  ,  a  4  ,  a  2 1  ,  a  2 2  ,  a  2 3  ,  a  2 4 j   are octads .  Then  p  is a point of our geometry  &   and
 Z  an hexad in  7  .  Moreover ,   T  5  stab G p

 ( Z )  .  ( A 4  3  Z 3 )2 and the stabilizer of  Z  in  G  is
 a split extension  S Z :  A Z  , S Z  .  E 1 6  , A Z  .  A 6  .  Moreover ,   T  5  ( S Z  >  T  ) :  ( A Z  >  T  ) ,
 S Z  >  T  .  E 4   and  A Z  >  T  .  E 9 Z 2  .

 In order to derive a contradiction to our assumption ,  we determine the preimage of
 S 2  >  T  in  G ̃  .  In [16] a construction of the preimage of  S Z A Z   in 4 M 2 2  is given .  From this
 construction we derive that  S Z   lifts in  G  to ( S 1  p  S 2 )  p  Z ( G ̃  ) ,  where  S 1  .  S 2  .  Q 8  .
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 Furthermore the groups  S 1 Z ( G ̃  ) / Z ( G ̃  ) and  S 2 Z ( G ̃  ) / Z ( G ̃  ) are fixed by some Sylow-3-
 subgroup ,  say  X ,  of  A Z .  As Syl 3 ( T  )  ‘  Syl 3 ( S Z :  A Z ) we may choose the point  p  such that
 X  <  T .  Hence  X  normalizes  S Z  >  T  and the preimage  X ̃    of  X  in  G ̃    normalizes the
 preimage of  S Z  >  T  in  G ̃  .  As each Sylow-3-subgroup of  A Z   fixes exactly two subgroups
 of order 4 in  S Z  ,  only the two groups  S 1 Z ( G ̃  ) / Z ( G ̃  ) and  S 2 Z ( G ̃  ) / Z ( G ̃  ) are fixed by  X .
 Thus  S Z  >  T  lifts to  Z ( G ̃  )  p  S i   for  i  5  1 or 2 .  This gives us a contradiction ,  since by our
 assumption the preimage of  S Z  >  T  is isomorphic to  Z 4  3  E 4  .

 Hence  & #  5  & (2 M 2 2 ) is simply connected .  h

 Lemmas 3 . 1 and 3 . 2 prove Theorem A for  &  5  & ( M 2 2 ) .

 3 . 2 .  The geometries with circle sizes n  5  11  or  12

 Let  &  5  & ( M 1 2 ) or  & (Aut( M 1 2 )) .  The geometry  & ( M 1 2 ) was constructed by Bueken-
 hout [7] .  Here the stabilizer of a point and the stabilizer of a circle are conjugated
 maximal subgroups in  M 1 2 .

 The geometry  & (Aut( M 1 2 )) was found by Leonard [12] and a construction is given in
 [5 ,  p .  371] .  Take the Steiner system  6  5  S (5 ,  8 ,  24) and two complementary dodecads
 D 1   and  D 2  .  Then ,  stab M 2 4

 ( D 1 )  .  M 1 2 .  Define a graph  D   with vertex set  D 1  3  D 2  ,  where
 two pairs ( d 1  ,  d 2 ) ,  ( e 1  ,  e 2 ) are non-adjacent either if  d 1  5  e 1  or  d 2  5  e 2  or if there is an
 octad  B  in  6   with  B  >  D 1  5  h d 1  ,  e 1 j   and  h d 2  ,  e 2 j  ’  B  >  D 2 .  Then  D   has exactly 144
 12-cliques .  The points are the vertices of  D   and the circles the 12-cliques .  Thus the
 stabilizer of a point is contained in a maximal subgroup of  G  which is isomorphic to
 M 1 1  ,  and the stabilizer of a circle is a maximal subgroup in  M 1 2  .

 In both cases  G  <  Aut( & ) , G  .  M 1 2  ,  acts flag-transitively on  &   with  G p  .  G c  .
 L 1 (11) .  Let  & ̃    be the universal cover of  & .  Then there is a subgroup  G ̃    in Aut( & ̃  ) ,  such
 that  G ̃  / N  .  G  for some normal subgroup  N  of  G ̃  .  By Lemma 2 . 2 ,  [ G ̃  :  G ̃  p ] is at most 2 1 0

 for  & ( M 1 2 ) and at most 2 1 1  for  & (Aut( M 1 2 )) .  Thus  u M u  <  7 or 14 ,  respectively .  Hence ,  as
 in Section 3 . 1 ,  we obtain that  G ̃    is a perfect central extension of  G .  This gives  u N u  <  2
 (see [18]) .  The Mathieu group  M 1 2  has three classes of subgroups isomorphic to  L 2 (11) .
 Two of them consist of non-maximal subgroups and they fuse in Aut( M 1 2 ) .  The third
 class consists of maximal subgroups .  Suppose that  u N u  5  2 .  By [10] ,  the maximal
 subgroups isomorphic to  L 2 (11) in  M 1 2  are lifted to  SL 2 (11) ,  which is a contradiction
 with the fact that  G ̃  p  .  G ̃  c  .  L 2 (11) .

 3 . 3 .  The geometry with circle size n  5  10

 Let  &  5  & ( L 3 (4)) and  G  <  Aut( & ) , G  .  L 3 (4) .  The geometry  &   can be described as
 follows ;  see [2] .  Let  6  5  S (3 ,  6 ,  22) be a Steiner system on the set  Ω  5  h a  1  ,  .  .  .  ,  a  2 2 j .
 Then the points and the circles of  &   are the hexads ,  which do not contain  a  2 2  .  A point
 p  is incident to a circle  c  if f their intersection is empty .  Let  h  p ,  c j   be an incident
 point – circle pair .  Then the stabilizer of  p  in  G  and the stabilizer of  c  in  G  are
 subgroups isomorphic to  A 6  and their intersection is isomorphic to  E 9 :  Z 4  .  Moreover ,
 we have  G l  .  Z 4  p  D 8  and  B  .  Z 4  .

 Let  H  .  2 L 3 (4) be the double cover of  G  and  c   the natural endomorphism from  H
 onto  G .

 L EMMA  3 . 3 .  The group H is isomorphic to a subgroup of the double co y  er of M 2 2 .

 P ROOF .  Assume the contrary .  Then there is a subgroup  U  in 2 M 2 2  with  U  .
 Z 2  3  L 3 (4) .  Let  S  P  Syl 2 ( U ) .  Then  S  5  ( Z  3  S 1 ) S 2  , Z  5  Z ( U ) , S 1  .  E 1 6  and  S 2  .  E 4  .
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 Since  L 3 (4) has only one class of involutions ,  by the same argument as for  M 2 2

 involutions of  L 3 (4) lift to involutions in 2 L 3 (4) .  Hence  S 1  lifts to a group isomorphic to
 E 3 2  in 2 L 3 (4) .  Let  K  .  4 M 2 2  .  Then the preimage of  U  in  K  is isomorphic either to
 Z 4  3  L 3 (4)   or to  Z 4  p  2 L 3 (4) .  Thus  S 1  lifts in  K  to a group isomorphic to  Z 4  3  E 1 6  or
 Z 4  p  E 3 2  ,  respectively ,  which is in both cases an abelian group .  This gives us a
 contradiction since in  K  the group  S 1  lifts to  Z 4  p  Q 8  p  Q 8 —see the proof of Lemma 3 . 2 ,
 which is not an abelian group .  Thus  H  is isomorphic to a subgroup of 2 M 2 2 .  h

 L EMMA  3 . 4 .  There exists a double co y  er  ( & #  ,  c  )  of  & ( L 3 (4))  which admits as group of
 automorphisms H  .  2 L 3 (4) .

 P ROOF .  In the same manner as in Lemma 3 . 1 we identify  &   with the group
 geometry  & ( G ,  ( G p  ,  G l  ,  G c )) and we construct an amalgam ( H p  ,  H l  ,  H c ) in  H ,  such that
 c   induces a cover of the group geometry  & ( H ,  ( H p  ,  H l  ,  H c )) onto  & ( G ,  ( G p  ,  G l  ,  G c )) .

 According to Lemma 3 . 3 we may assume that  H  <  2 M 2 2 .
 As in 2 M 2 2  the subgroups isomorphic to  A 6  are lifted to subgroups isomorphic to

 Z 2  3  A 6   (see the proof of Lemma 3 . 1) ,  we have  G c 2 1

 x  .  Z 2  3  A 6  for  x  P  h  p ,  c j .  Let  H x   be
 the subgroup of  G c 2 1

 x    isomorphic to  A 6  .  Set  H l  5  k N H p
 ( B c 2 1

 >  H p ) , N H c
 ( B c 2 1

 >  H c ) l .  We
 claim that ( H p  ,  H l  ,  H c ) gives us the desired amalgam .  Hence it remains to show
 H p  >  H c  .  E 9 :  Z 4  ,  H t  .  G l  .  Z 4  p  D 8  , H p  >  H l  .  H l  >  H c  .  D 8  and  H p  >  H l  >  H c  .  Z 4  .

 First we show that  H p  >  H c  .  E 9 :  Z 4  .  Set  T  5  O 3 ( H p  >  H c ) .  As the stabilizers  G p   and
 G c   are conjugated in  G ,  the groups  H p   and  H c   are also conjugated in  H .  Since
 Syl 3 ( H p  >  H c )  ‘  Syl 3 ( H c )   we have  H g

 p  5  H c   for some  g  P  N H ( T  ) .
 Let us calculate  N H ( T  ) .  We  have  N G ( T  c  )  5  N M 2 2

 ( T  c  )  5  N M ( T  c  )  .  E 9 :  Q 8  ,  where
 M  <  M 2 2  , M  .  M 1 0 .  Furthermore ,   N H ( T  )  5  N G ( T  c  ) c 2 1

 5  N M ( T  c  ) c 2 1
 .  As ( M 9 ) c 2 1  .  Z 2  3

 A 6   and for any  x  P  M  c 2 1
 \ ( M 9 ) c 2 1

  one has 1  ?  x  2  P  ( M 9 ) c  2 1
 ,  we obtain  M  c 2 1  .  Z 2  3  M 1 0 .

 Thus  N M ( T  c ) c 2 1
  splits over  Z ( H ) .  Hence  N H ( T  )  .  Z 2  3  E 9 :  Q 8  .

 For  x  5  p  or  c ,  we have  B c 2 1
 >  H x  .  Z 4  and  N H x

 ( T  )  5  T  ( B  c 2 1
 >  H x ) .  Without loss of

 generality ,  we may assume that  o ( g )  5  4 .  Then ,  as  N H ( T  )  .  Z 2  3  E 9 :  Q 8  ,  we obtain
 [ B c 2 1

 >  H p  ,  g ]  <  B c  2 1
 >  H p  ,  which gives  N H p

 ( T  )  5  N H c
 ( T  ) and  H p  >  H c  5  N H p

 ( T  )  .
 E 9 :  Z 4  .

 Let  k n l  5  B  c 2 1
 >  H p .  Then  H l  <  N H ( k n l ) .  We have  N H p

 ( k n l )  .  D 8 .  Let  N H p
 ( k n l )  5

 k a 1  ,  n l   and  N H c
 ( k a 3  ,  n l )  5  k a 3  ,  n l .  Due to Lemma 2 . 3 ,  we have ( a 1 a 3 )

 2  P  B c 2 1
 .  As

 G l  .  Z 4  p  D 8  ,  we obtain ( a 1 a 3 )
 3  P  h n 2 ,  zn 2 j ,  where  k z l  5  Z ( H ) .  Assume that ( a 1 a 3 )

 2  5
 n 2 z .  Then ( a 1 a 3 n ) 2  5  z ,  which contradicts the fact that involutions of  G  are lifted to
 involutions in  H .  Hence  H l  >  H x  5  N H x

 ( k n l )  .  D 8  for  x  P  h  p ,  c j , H l  .  Z 4  p  D 8  and
 H p  >  H l  >  H c  .  Z 4  ,  which shows the assertion .  h

 L EMMA  3 . 5 .  The geometry  & #   constructed in Lemma  3 . 4  is simply connected and
 Aut( & #  )  .  2 L 3 (4)2 2 .

 P ROOF .  Let ( & ̃  ,  f  ) be the universal cover of  &   and set  G  5  Aut( & ) and  G ̃  5  Aut( & ̃  ) .
 By [2] ,  the stabilizer  G ̃  p   of a point  p  in  G ̃    is not isomorphic to  A 1 0  or  S 1 0  .  So ,  as  G p   is a
 doubly transitive permutation group of degree 10 (cf .  Lemma 2 . 3)  G ̃  p  .  G p f  .  Aut( A 6 )
 and  G ̃    acts o the fibres of  f  ,  i . e .   G ̃  / K  .  G ,  where  K  is the kernel of  f .

 Let  D   and  D ̃   be the distribution diagrams of  &   and  & ̃    with respect to the points  p  and
 p f  ,  respectively .  As in  G  the stabilizer of a point and the stabilizer of a circle are
 conjugated subgroups ,   G p   fixes a circle  c .  As (IP) holds in  &   and there are 56 points
 and 56 circles ,  we have  u G (  p ) u  5  10 ,  u G 2 (  p ) u  5  45  5  u G 3 (  p ) u ,  u G 4 (  p ) u  5  10 and  u G 5 (  p ) u  5  1 ,
 and  c 2  5  2 , c 3  5  8 , c 4  5  9 and  c 5  5  10 .
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 Since  f   is a covering ,   f   maps bijectively the circles and the lines in  & p   onto the
 circles and the lines in res(  p f  ) ,  respectively .  Moreover ,  by definition of the
 point – circle incidence graph ,   G (  p ) represents the circles which are in  & p   and ,  as each
 line is incident with exactly two points ,   G 2 (  p ) represents the lines in  & p .  Hence ,  as  f   is
 a covering ,   f   maps  G (  p )  <  G 2 (  p ) bijectively onto  G (  p f  )  <  G 2 (  p f  ) .

 Let  u  P  G 3 (  p ) and  y  P  G 2 (  p )  >  G ( u ) .  Then ,  as the restriction of  f   on res( y  ) is an
 isomorphism between res( y  ) and res( y  f  ) ,  we obtain  u f  P  G 3 (  p f  ) .  Let  w  P  G 3 (  p f  ) .
 Then there is some  x  P  G 2 (  p ) ,  such that  x  f  P  G 2 (  p f  )  >  G ( w ) .  Hence ,  as  f   maps
 G (  p )  <  G 2 (  p )   bijectively onto  G (  p f  )  <  G 2 (  p f ) ,  we obtain  w  5  y f   for some  y  P  G 3 (  p )  >
 G ( x ) .  Thus  f   maps  G 3 (  p ) onto  G 3 (  p f  ) .

 Let  y  P  G 2 (  p ) ,  then  G ̃  p , y  .  Z 8 :  E 4  and  G ̃  p , y   has two orbits on  G ( y  ) of lengths 2 and 8 ,
 respectivley .  Hence  G ̃  p   acts transitively on  G 3 (  p ) ,  which yields that each vertex in  G 3 (  p )
 has the same number of neighbours in  G 2 (  p ) ,  say  c 3 ( D ̃  ) .

 We claim that  c 3 ( D ̃  ) divides  c 3  .  The covering  f   induces an equivalence relation on
 G 3 (  p ) .  As  G ̃    acts on the fibres of  f  ,  the stabilizer  G ̃  p   acts transitively on the classes of
 the equivalence relation and so each class has the same number of points .  This gives
 that  u G 3 (  p f  ) u   divides  u G 3 (  p ) u .  Hence ,  as a vertex in  G 3 (  p ) ( G 3 (  p f )) has  c 3 ( D ̃  )  5  8
 neighbours in  G 2 (  p ) ( G 2 (  p f  )) ,  we have that

 c 3 ( D ̃  )  5
 8  u G 2 (  p ) u
 u G 3 (  p ) u

 5
 8  u G 2 (  p f  ) u

 u G 3 (  p ) u
 divides

 8  u G 2 (  p f ) u
 u G 3 (  p f  ) u

 5  c 3  .

 By Lemma 2 . 2 ,   c 3 ( D ̃  ) is at least 3 ,  so  c 3 ( D ̃  )  5  4 or 8 .
 Assume that  c 3 ( D ̃  )  5  8 .  By Lemma 2 . 2 ,  a straightforward counting argument shows

 that  D ̃  5  D ,  in contradiction to Lemma 3 . 4 .  Hence  c 3 ( D ̃  )  5  4 and ,  again by Lemma 2 . 2 ,
 the number of points of  & ̃    is less of equal to 1  1  45  1  108  1  51  1  4  5  209 .  Since  & ̃
 already has 112 points and the number of points of  & ̃    divides the number of points of
 & ̃  ,  we obtain  & ̃  5  & ̃    as claimed .  Moreover ,  as  G ̃  p  .  Aut( A 6 ) ,  the second part of the
 statement follows .  h

 3 . 4 .  The geometry with circle size n  5  7

 Let  &  5  & ( U 3 (3)) .  The geometry can be seen as follows .  The group  G  .  U 3 (3) has a
 rank 4 representation on 36 points on the coset of its subgroup  H  .  L 3 (2) with orbitals
 of lengths 1 ,  21 ,  7 and 7 .  Define a graph  D ,  the vertices of which are the conjugates of
 H  in  G ,  two vertices being adjacent if f the corresponding subgroups intersect in a
 subgroup isomorphic to  D 8 .  Then  G  has two orbits of 7-cliques ,  each of length 36 .  The
 group Aut( G ) ,  also acting on  D ,  interchanges these two orbits .  The points of  G   are the
 vertices and the circles are the 7-cliques in one of these two orbits .  This example is due
 to [17] (see also [9]) .  Due to Lemma 2 . 2 ,  and as the number of points in  &   divides the
 number of points in the universal cover ,   &   is simply connected .

 3 . 5 .  The geometries with circle sizes n  5  6  or  5

 Let  &  5  & (3 S 6 ) or  & ( L 2 (11)) .  In [11] the first geometry is explicitly given .  The second
 is a biplane on 11 points ,  i . e .  any two points are incident with exactly two circles and
 any two circles with exactly two points .

 Again by Lemma 2 . 2 ,  the universal cover has at most 2 5  or 2 4  points ,  respectively .
 Hence in both cases  &   is simply connected .
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 F IGURE  A4 .  M 1 2  of degree 11 .
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