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Heme oxygenase (HO) is the rate-limiting enzyme in the

degradation of heme, converting heme to biliverdin, during

which iron is released and carbon monoxide (CO) is emitted;

biliverdin is subsequently converted to bilirubin by biliverdin

reductase. At least two isozymes possess HO activity: HO-1

represents the isozyme induced by diverse stressors,

including ischemia, nephrotoxins, cytokines, endotoxin,

oxidants, and vasoactive substances; HO-2 is the constitutive,

glucocorticoid-inducible isozyme. HO-1 is upregulated in the

kidney in assorted conditions and diseases. Interest in HO is

driven by the capacity of this system to protect the kidney

against injury, a capacity likely reflecting, at least in part, the

cytoprotective properties of its products: in relatively low

concentrations, CO exerts vasorelaxant, antiapoptotic, and

anti-inflammatory effects while bile pigments are antioxidant

and anti-inflammatory metabolites. This article reviews the

HO system and the extent to which it influences the function

of the healthy kidney; it summarizes conditions and stimuli

that elicit HO-1 in the kidney; and it explores the significance

of renal expression of HO-1 as induced by ischemia,

nephrotoxins, nephritides, transplantation, angiotensin II,

and experimental diabetes. This review also points out the

tissue specificity of the HO system, and the capacity of HO-1

to induce renal injury in certain settings. Studies of HO in

other tissues are discussed insofar as they aid in elucidating

the physiologic and pathophysiologic significance of the HO

system in the kidney.
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Le Chatelier’s famous principle recognized that chemical
systems in equilibria, subjected to an external constraint,
adjust themselves to oppose the effect of the external
constraint. This capacity to resist the perturbing influence
of imposed stress is equally true for biologic systems, and
broadly underlies fundamental and diverse biologic phenom-
ena such as homeostasis as a requirement for health,
maintenance of the constancy of the internal environment,
adaptive alterations in nephrons surviving after renal injury,
and cytoprotective responses in injured tissues.

A widely and readily recruited response in injured tissue
centers on the induction of heme oxygenase-1 (HO-1),1–6

and evidence that the elicitation of HO-1 can reduce tissue
injury was first derived in 1992 by studies involving the
kidney.7 A substantial and rapidly growing literature
indicates that HO-1 provides the provenance for pathways
that can interrupt virtually all major mechanisms of tissue
injury, including those that impose vasoconstriction and
vascular injury, ischemia, inflammation, immune injury,
oxidative stress, cell cycle dysregulation, and sublethal and
lethal cell damage, and that such pathways of protection,
emanating from HO-1, may be proffered in virtually all
tissues.8–25 Ironically, these cytoprotective properties of HO
are derived, at least in part, from products, such as carbon
monoxide (CO) and bile pigments, which were once regarded
as invariantly injurious in nature. Notably, while the clinical
toxicity of CO is clearly recognized, much smaller quantities
of CO are remarkably cytoprotective, antiapoptotic, vaso-
relaxant, and anti-inflammatory.26–29 Bile pigments, long
regarded as contributors to renal disease and other adverse
consequences of hyperbilirubinemic states, are now recog-
nized as anti-inflammatory and antioxidant when present in
low concentrations.30–34 Interest in HO is also driven by the
similarity and interaction that exist between the HO/CO and
nitric oxide synthase/nitric oxide systems,35,36 and the
provision by HO of CO, a gaseous product which, like nitric
oxide, is involved in cell signaling.28,29 Finally, the clinical
relevance of the study of HO-1 is substantiated by the
occurrence of renal and other diseases in patients genetically
unable to express HO-1,37–39 and by the predisposition
towards assorted diseases,40 including dysfunction of hemo-
dialysis arteriovenous fistulae,41 in individuals expressing
polymorphisms in the HO-1 gene, which lead to lesser
amounts of HO activity.
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This review discusses the functional significance of the HO
system in the kidney in health and disease; comprehensively
covered elsewhere are areas such as regulation of expression
of HO-1,20,42 the significance of the HO/CO system in
systemic hypertension,22,43–45 and gene therapy based on
HO-1.22 Findings from other organ systems, where relevant
to the kidney, are discussed in the present review.

OVERVIEW OF HEME METABOLISM, HEME TOXICITY, AND
THE HO SYSTEM

As erythrocytes age, hemoglobin is progressively oxidized and
destabilized, and it was in the course of studies seeking to
determine the metabolic fate of the heme prosthetic group in
senescent erythrocytes that HO was discovered in 1968.46 In a
reaction that requires oxygen and nicotinamide adenine
dinucleotide phosphate (reduced form), HO facilitates the
opening of the heme ring and its conversion to biliverdin, the
release of iron from the heme ring, and the attendant
emission of CO; biliverdin is subsequently converted to
bilirubin by the enzyme biliverdin reductase (Figure 1).

By degrading heme, HO critically regulates the prevailing
cellular levels of heme, the latter arising from the synthesis of
heme or the release of heme from destabilized heme proteins

(Figure 1). Heme is employed as a prosthetic group in diverse
proteins which comprehensively affect cellular function
(Table 1). However, when cells are injured, heme proteins
may be denatured and destabilized, thereby incurring the
liberation of heme,47,48 the latter inflicting cell injury when
present in relatively large amounts.49–53 The nephrotoxic
potential of heme is supported by clinical observations: the
use of substantial amounts of heme (as hematin) to induce
remission in patients with acute intermittent porphyria can
precipitate acute tubular necrosis.54

The capacity to degrade heme is possessed by two and
possibly three members of the HO family. HO-1 is the
inducible isozyme that largely accounts for increased HO
activity in stressed organs and tissues, and is, arguably, the
most widely inducible protein ever described.4,6 HO-2, the
product of a different gene, is the constitutive isozyme that
has as its major stimulus, corticosteroids;55 HO-3 may be a
pseudogene.56

The possibility that induction of HO-1 was a cytoprotec-
tive response was raised by studies in 1989 which identified
HO as the 32 kDa protein commonly induced in injured
cells.57 To account for such induction of HO-1, it was
hypothesized that HO-1 exerted a protective antioxidant
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Figure 1 | Overview of cellular metabolism of heme depicting synthesis and utilization of heme, and destabilization of heme proteins.
HO catalyzes the conversion of heme to biliverdin, releasing iron (Fe) and CO; biliverdin reductase catalyzes the conversion of biliverdin to
bilirubin.

Table 1 | Some properties of heme

A Prosthetic group in diverse
proteins

Heme in relatively larger quantities can be
cytotoxic by impairing the following targets:49–53

Heme in relatively smaller quantities can exert
cytoprotection by inducing HO-1 (see text)

Hemoglobin Plasma membrane
Myoglobin Cytoskeleton
Mitochondrial cytochromes Mitochondria
Microsomal cytochromes Cytosolic enzymes
NADPH oxidase DNA
Nitric oxide synthase
Guanylate cyclase
Glutathione peroxidase
Cyclo-oxygenase
Catalase

HO, heme oxygenase; NADPH, nicotinamide adenine dinucleotide phosphate (reduced form).
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response which enabled cells not only to remove heme, a pro-
oxidant, but also to replace it by bilirubin, a potent
antioxidant.58 This hypothesis was tested in the glycerol
model of acute renal failure, the latter exhibiting myolysis,
hemolysis, and heme protein-induced renal injury.7 In this
model, HO-1 mRNA and HO activity were rapidly induced,
and the competitive inhibitor of HO, tin protoporphyrin,
significantly worsened the course of acute renal insufficiency;
conversely, the prior induction of HO-1 by small, non-toxic
doses of hemoglobin strikingly protected against acute renal
failure.7 Renal injury was reduced in this model, even when
HO-1 was induced by endotoxin59 and nephrotoxic serum,60

and by hyperbilirubinemic states incurred by bile duct
ligation.61 Finally, HO-1�/� mice, when challenged by heme
proteins, exhibit increased renal accumulation of heme,
worse renal injury, and increased mortality.62 Studies in this
model also demonstrated that the induction of HO-1 was
coupled to the synthesis of the iron-sequestering protein,
ferritin.7 Ferritin avidly binds iron and interrupts redox
cycling of iron, thereby preventing iron from serving as a
catalyst for oxidant stress.63 Subsequent studies demonstrated
that the induction of HO-1 is also coupled to the synthesis of
iron-exporting proteins64 and the critical role of HO-1 in
maintaining iron homeostasis in vivo.65 The linkage of HO-1
to mechanisms that safely sequester and/or export iron thus
mitigates the risk of cytotoxicity arising from iron released
from the heme ring.

Heme induces HO-1 by binding to and inactivating the
repressor protein, Bach 1, thereby unfettering HO-1 gene
transcription from inhibition imposed by Bach 1;20,42

additionally, in cells such as renal tubular epithelial cells,
heme facilitates the activation of HO-1 gene transcription by
Nrf2.20,42,66 The extent to which such mechanisms apply to
other inducers of HO-1 is currently unresolved, as is the
extent to which the release of heme from intracellular heme
proteins underlies the induction of HO-1 by various stimuli
and insults. Heme may also induce HO-1 via redox-sensitive,
signal transduction pathways such as nuclear factor-kappa B
(NF-kB); heme activates these pathways by its direct pro-
oxidant effects or by iron released from heme.67 While the
upregulation of HO-1 by its myriad stimuli commonly
involves oxidative stress and redox-sensitive pathways, the
underpininings of such induction are quite complex, and
depend on the applied stimulus, the tissue and cell type
involved, and the species from which cells were derived;
notably, the regulation of the HO-1 gene may differ
significantly in humans as compared to other species.20,42

EXPRESSION AND FUNCTION OF HO IN THE HEALTHY KIDNEY

HO activity in the healthy kidney largely reflects HO-2, which
is expressed in the pre-glomerular vasculature, the thick
ascending limb, distal convoluted and connecting tubules, and
the collecting duct; HO-1 is quite weakly expressed in
proximal and distal tubules, in the loop of Henle, and in
medullary collecting tubules.68–70 Heme and heavy metals
increase expression of HO-1 in arterioles as well as tubules.69

HO activity contributes to the regulation of renal
hemodynamics. For example, inhibitors of HO activity
infused in the renal medulla reduce medullary blood flow,71

and when infused systemically, these inhibitors reduce total
renal blood flow (RBF), the latter more effectively reduced
when nitric oxide synthase is concomitantly inhibited.72

Administration of inhibitors of HO activity directly into the
renal artery significantly reduces glomerular filtration rate
(GFR), RBF, and renal production of nitric oxide, and all of
these effects can be reversed by CO-releasing molecules.73

Additionally, CO derived from the renal vasculature can
mitigate the vasoconstricting effects of various agonists,74

and renal generation of CO is increased, presumably as a
compensatory mechanism, when renal production of nitric
oxide is inhibited.75 Thus, GFR and RBF of the healthy
kidney are maintained, at least in part, by basal HO activity
and the vasorelaxant effects of CO, the latter likely dependent
on renal generation of nitric oxide. Table 2 lists mechanisms
which contribute to the vasorelaxant effects of HO/
CO.22,43–45,76–78 In addition to its hemodynamic effects, HO
activity may promote sodium and fluid absorption in the
loop of Henle.79,80

EXPRESSION OF HO-1 IN THE DISEASED KIDNEY

Table 3 lists conditions and stimuli that upregulate HO-1 in
the kidney. In human nephropathies and kidney transplants,
and in animal models of renal disease, stimulated expression
of HO-1 is largely observed in the renal tubular epithelium.
In proteinuric human kidney disease, HO-1 protein is
induced in tubular epithelial cells, more prominently in
distal tubules rather than proximal tubules, but is not
expressed in resident glomerular cells; expression of HO-1
protein in proximal tubules, but not in distal tubules,
correlates with proteinuria, hematuria, and tubulointerstitial
disease.117,118 The propensity for upregulation of HO-1
protein to occur in renal tubules but not in glomerular cells
in kidney disease may relate to the differential sensitivity and
response to oxidant stress exhibited by these cells.119 For
example, upon exposure to heme, proximal tubular epithelial
cells as compared to mesangial cells more vigorously express

Table 2 | Mechanisms accounting for the vasorelaxant effects
of the HO/CO system

CO-dependent vasorelaxation
Stimulation of guanylate cyclase
Release of nitric oxide stored within cells
Increased activity of calcium-activated potassium channels (Kca)
Impaired generation of vasoconstricting cytokines (e.g., endothelin-1)
Decreased synthesis of cytochrome P450-dependent vasoconstrictors

(e.g., 20-HETE) since CO inhibits cytochrome P450 activity

Reduced supply of heme impairs cytochrome P450 activity and the
attendant generation of cytochrome P450-dependent
vasoconstrictors

Scavenging of superoxide anion by bile pigments

CO, carbon monoxide; HETE, hydroxyeicosatetraenoic acid; HO, heme oxygenase.
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HO-1, and HO-1 so induced, efficiently protects against
oxidant injury in tubular epithelial cells.119

The induction of HO-1 in the tubular epithelium in
proteinuric states cannot be simply ascribed to increased
trafficking of albumin per se across the proximal tubule;120

such expression more likely reflects concomitant injury to
tubular epithelial cells occurring pari passu with glomerular
disease, and/or the proinflammatory, pro-oxidant, or other
perturbing effect of specific proteins or other species
appearing in the urinary space.120

ACUTE RENAL INJURY

Tables 4 and 5 summarize the salient findings from studies
that examine the significance of induction of HO-1 in the
kidney following toxic and ischemic insults, respectively.

In acute ischemic injury, approaches based on inhibition
of HO activity or induction of HO-1 have yielded mixed
results (Table 5). The reasons for these divergent findings
may reside in the lack of specificity of agents employed, or
differences in the models of ischemia. The former considera-
tion is obviated in the HO-1�/� mouse.135 Following rela-
tively mild renal ischemia that exerts little effect in HO-1þ /þ

mice, HO-1�/� mice exhibit marked deterioration in renal
function and heightened renal upregulation of caspase-3.135

Renal ischemia caused increased mortality in HO-1�/� mice

but no mortality in HO-1þ /þ mice, and in surviving HO-
1�/� mice, marked renal histologic injury occurred. This
exacerbation in renal injury in HO-1�/� mice was accom-
panied by a heightened inflammatory response, as reflected
by increased activation of NF-kB and NF-kB-dependent
genes such as monocyte chemoattractant protein-1.135

Increased sensitivity to renal ischemia is also acutely observed
in studies of HO-1�/� mice subjected to the one-kidney, one-
clip model; in these studies, expression of endothelin-1 is
increased, and an ETA receptor antagonist prevents such
sensitivity to renal ischemia.136

Products of HO may protect against renal ischemic injury
as shown by studies utilizing CO-releasing compounds, the
latter attenuating the rise in serum creatinine and histologic
injury when administered before the ischemic insult.128 These

Table 4 | Summary of studies examining the functional
significance of induction of HO-1 in toxic nephropathy

Model Reference

Cisplatin
Inhibition of HO activity worsens renal injury 48

HO-1�/� mice exhibit worse renal injury and more
severe apoptosis

121

Upregulation of HO-1 protects against cell injury
in vitro

121

Inhibition of HO activity worsens cell injury in vitro 122

Gentamicin
No apparent effect on inhibiting HO activity 48

Cyclosporine
Induction of HO-1 reduces renal injury 123

Mercuric chloride
Prior induction of HO-1 does not protect against, nor

does inhibition of HO activity worsen, renal injury
induced by a higher dose

124

Prior induction of HO-1 protects against renal injury
induced by a lower dose

125

Maleate nephropathy
Inhibition of HO activity worsens proteinuria, histologic

injury, and apoptosis

120

Potassium dichromate
Induction of HO-1 protects against renal injury 126

HO, heme oxygenase.

Table 5 | Effect of modulating HO activity in renal
ischemia–reperfusion injury

Inhibition of HO activity by metalloporphyrins References
Worsening of renal injury 127

No apparent effect 48,128

Reduction of renal injury with high doses and
no apparent effect with low doses

129

Non-specific induction of HO activity
Protective effects provided by various inducers 92,130–134

Exacerbatory effect provided by hemin 129

HO, heme oxygenase.

Table 3 | Conditions and stimuli that may be accompanied by
increased expression of HO-1 in the kidney (inducers that are
not referenced are discussed elsewhere in the text)

Assorted human nephropathies Vasoactive substances
Kidney transplant81 Angiotensin II
Kidney disease models Nitric oxide96

Renal ischemia Dopamine97

Glomerulonephritides Atrial natriuretic peptide98

Diabetic nephropathy Carbon monoxide99

Heme protein-induced Therapeutic/dietary substances
Toxic nephropathy Gentamicin
Urinary tract obstruction82 Cyclosporine100

Acute rejection83 Parenteral iron preparations101

Liver disease Morphine102

Endotoxin-induced Curcumin103

Polycystic kidney disease84 Endogenous proteins or other stimuli
Aging85 Ngal
Radiation nephropathy86 CD40104

Cytokines/growth factors Stra13105

Interleukin–1b87 SSAT106

TGF-b188 15dPGJ2107

HGF89 Assorted stressors/toxins
BMP-790 Heavy metals108

VEGF91 Puromycin109

Oxidant stress Phenylhydrazine110

Hydrogen peroxide Bromobenzene111

Heme Osmotic stress112

Iron Increased temperature
Glutathione depletion92 Hemodynamic stress113

Oxidized LDL93 Sickle cell nephropathy114

Linoleyl hydroperoxide94 Models of systemic hypertension115

Hypochlorite-modified LDL95 Renal carcinoma116

BMP, bone morphogenetic protein; HO, heme oxygenase; CD, cluster of differentia-
tion; HGF, hepatocyte growth factor; LDL, low-density lipoprotein; Ngal, neutrophil
gelatinase-associated lipocalin; SSAT, spermidine/spermine N-1-acetyl-transferase;
TGF, transforming growth factor; VEGF, vascular endothelial growth factor.
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compounds also induce HO-1 in the ischemic kidney, but
such induction is not necessary for the protective effects of
CO-releasing molecules.128 Bilirubin may also mitigate renal
ischemic injury, as demonstrated in studies using the isolated
perfused kidney.137

Studies of renal transplantation in syngeneic rats provide
additional evidence for the protective effects of HO-1 in the
ischemic kidney. For example, the induction of HO-1 by
cobalt protoporphyrin,138 heat pre-conditioning,138 or ade-
noviral gene transfer139 improves graft function and reduces
structural injury. In such models, exposure to CO is also
protective: recipients of a kidney transplant from syngeneic
rats maintained in a CO-containing atmosphere (250 parts
per million) exhibit less renal dysfunction, histologic injury,
and mortality, as compared to similarly transplanted rats
maintained in room air.140 In this model, a combination of
CO and biliverdin confers beneficial effects greater than
either product alone.141

The protective effects of HO-1 and its products in acute
renal injury likely reflect the vasorelaxant, anti-inflammatory,
and antiapoptotic effects of the HO system. The antiapopto-
tic effects of HO-1 in the kidney were first described in
cisplatin nephropathy.121 While the basis for the antiapopto-
tic effects of HO-1 in the kidney is unresolved, it may involve
the induction of p21, an antiapoptotic cell cycle inhibitor that
is inducible by iron and CO.142–144 Studies in other tissues
demonstrate that the antiapoptotic effects of HO-1 are largely
mediated by CO, and can interrupt either the mitochondrial
or death receptor apoptotic pathways via mechanisms
that depend on the model system employed.145–151 For
example, in assorted models, the antiapoptotic effects of
HO-1/CO are ascribed to the following: guanylate cyclase;145

activation of p38 mitogen-activated protein kinase;146 p38b
mitogen-activated protein kinase-dependent, Hsp70-effected
mechanisms;149 signaling pathways involving PI3K/Akt, p38
mitogen-activated protein kinase, and STAT3;150 and inter-
ruption of GADD153-dependent mechanisms.151 Induction
of HO-1 may also prevent cell death by facilitating
extracellular transport of iron, thereby suppressing iron-
driven oxidant stress.152

RENAL INFLAMMATION

Nephrotoxic serum nephritis provides a model of anti-
glomerular basement membrane nephritis. In the accelerated
and heterologous subtypes of nephrotoxic serum nephritis,
HO-1 is induced in glomerular intracapillary mononuclear
cells;153 HO-1 is also upregulated in renal tubules in the
heterologous subtype of this model.60,153 Prior induction of
HO-1 by hemin reduces proteinuria and glomerular infiltra-
tion of leukocytes in either subtype, and in accelerated
nephrotoxic serum nephritis, hemin also reduces formation
of glomerular microthrombi.153 The protective effect of
hemin is accompanied by HO-mediated reduction in
glomerular expression of inducible nitric oxide synthase
(iNOS), the latter considered a mediator of glomerular injury
in nephrotoxic serum nephritis.154,155 Similar approaches

demonstrate a protective role for HO-1 in murine lupus
nephritis wherein hemin attenuated proteinuria and de-
creased, in glomeruli, expression of iNOS, presence of
immune reactants, and histologic injury; hemin also reduced
systemic levels of anti-DNA antibodies.156 CO may mediate
the suppressive effect of HO-1 on iNOS expression since, as
shown in studies in a model of obliterative bronchiolitis, CO
inhibits NF-kB-driven iNOS transcription.157 A protective
role for HO-1 is also incriminated in the anti-Thy 1 model of
glomerulonephritis.158

HO-1 also suppresses inflammation in models of
tubulointerstitial disease.159 For example, when repetitively
exposed to heme proteins, HO-1�/� mice, as compared with
HO-1þ /þ mice, exhibit an amplified inflammatory response,
intense upregulation of monocyte chemoattractant protein-1,
and increased activation of NF-kB.159 These findings raise the
possibility that HO-1, by controlling cellular redox, can
inhibit activation of NF-kB and NF-kB-driven cytokine
expression. Indeed, even in the basal, unstressed state,
HO-1�/� mice exhibit increased systemic levels of monocyte
chemoattractant protein-1 and expression of monocyte
chemoattractant protein-1 mRNA in circulating leuko-
cytes.135

Other studies utilizing HO-1�/� mice underscore the
proclivity towards a proinflammatory state fostered by the
inability to express HO-1. For example, HO-1�/� mice
exhibit striking mortality following the administration of
lipopolysaccharide,160 whereas splenocytes from HO-1�/�

mice, when exposed to lipopolysaccharide, exhibit increased
production of proinflammatory cytokines with a preponder-
ating Th1 profile.161

Products of HO-1, such as CO, exert anti-inflammatory
effects. In lipopolysaccharide-stimulated macrophages, CO,
at low concentrations, attenuates generation of proinflam-
matory cytokines, while stimulating production of anti-
inflammatory cytokines such as IL-10;26 these anti-inflam-
matory effects involve activation of p38 mitogen-activated
protein kinase.26 The upregulation of IL-10 is of particular
interest since IL-10 is a recognized protectant against renal
injury;162 additionally, IL-10 exerts anti-inflammatory effects
via HO-dependent mechanisms,163 thereby providing a
positive feedback loop between HO/CO and IL-10. CO also
suppresses expression of proinflammatory cytokines such as
endothelin-1 and PDGF.76

HO/CO can inhibit T cells.164,165 In this regard, the
suppressive effects of regulatory T cells (Treg) on cellular
proliferation and cytokine production involve the induction
of HO-1 and increased HO activity in Treg.164 Such effects
may be mediated by CO since CO inhibits T-cell proliferation
by impairing the synthesis of IL-2166 and by suppressing
caspase activity,167 the latter contributing to T-cell prolifera-
tion. Induction of HO-1 can also suppress the maturation of
dendritic cells and their capacity to promote inflammation
and T-cell proliferation.168

Bile pigments possess anti-inflammatory properties, and
can recapitulate the inhibitory effects of HO-1 on the
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following proinflammatory changes: endothelial adhesion of
leukocytes on oxidant-exposed mesenteric vessels;33 tumor
necrosis factor a-induced endothelial activation;169 and
upregulation of selectins in endotoxin-treated kidneys.170

These effects of bile pigments may involve oxidant-scaven-
ging properties,78 their capacity to inhibit extracellular
signal-regulated protein kinase 1/2 phosphorylation,171 and
their inhibition of nicotinamide adenine dinucleotide
phosphate (reduced form) oxidase activity.172

KIDNEY TRANSPLANTATION

Studies in the late 1990s demonstrated that HO-1 reduced
vascular rejection in murine cardiac allografts,173 and
prolonged the survival of cardiac xenografts.174 Upregulation
of HO-1 also protects renal allografts. For example, in acute
kidney rejection in the rat, immune-modulatory peptides
that induce HO-1 in vivo, when administered with low doses
of cyclosporine A, reduced allograft injury and improved
graft function.175 In chronic renal allograft rejection in the
rat, the upregulation of HO-1 in the donor kidney by cobalt
protoporphyrin, administered prior to transplantation,
reduced proteinuria, decreased allograft histologic injury,
and improved allograft survival.176 Upregulation of HO-1 by
cobalt protoporphyrin in brain-dead donors similarly
promotes survival of the kidney graft.177

Overexpression of HO-1 in the recipient can also reduce
chronic kidney allograft injury.178 Relevant to this finding are
the observations that preservation of cardiac allografts and
the prevention of aortic allograft rejection may be more
effectively determined by systemic as compared with regional
overexpression of HO-1.179,180 In this regard, evidence has
appeared indicating that HO-1 can engender activation-
induced cell death of alloreactive T cells (AICD), an effect of
HO-1 which would facilitate graft tolerance.181 Thus,
upregulation of HO-1 may confer complementary beneficial
effects to the transplanted kidney: induction of HO-1 in the
renal allograft may render the kidney resistant to ischemic
injury and the adverse effects of the rejection process, while
systemic upregulation of HO-1 may mitigate the immune
processes that drive rejection.181,182

The clinical importance of HO-1 in maintaining kidney
graft survival is underscored by several observations:
polymorphisms in the HO-1 gene associated with increased
HO activity predict improved graft function and survival,
when such polymorphisms are expressed by the donor;183,184

improved early function of renal transplants occurs in
recipients treated with bioflavonoids, agents which induce
HO-1;185 and rapamycin, an effective immune suppressive
agent, relies on HO-1 for some of its biologic effects.186

ANGIOTENSIN II-INDUCED RENAL INJURY

Chronic administration of angiotensin II induces systemic
hypertension, proteinuria, oxidative stress, and HO-1.187,188

In the kidney such upregulation is mainly in the renal tubular
epithelium, whereas in the vasculature it occurs largely in
endothelial and adventitial cells.187–189 This upregulation of

HO-1 is functionally significant: inhibition of HO activity
worsens proteinuria and GFR, whereas the administration of
hemin attenuates hypertension, proteinuria, the reduction in
GFR, and apoptosis induced by angiotensin II;188,190

additionally, overexpression of HO-1 by a retroviral approach
reduces the pressor response to angiotensin II.191

The vasorelaxant effects of HO are likely mediated
through CO and bilirubin. In the isolated perfused kidney,
angiotensin II exerts pressor effects and generates CO via
HO-1; inhibiting HO blocks the generation of CO and
exaggerates the pressor effect of angiotensin II.192 Bilirubin
also attenuates the pressor effects of angiotensin II, as
demonstrated in studies utilizing the hyperbilirubinemic
Gunn rat.78 This model exhibits resistance to the pressor
effect of angiotensin II, less impairment in endothelium-
dependent vascular relaxation, and greater preservation of
vascular content of tetrahydrobiopterin, the latter represent-
ing an essential co-factor for endothelial nitric oxide synthase
activity.78 By scavenging oxidants, bilirubin preserves the
vascular content of tetrahydrobiopterin, thereby optimizing
endothelial nitric oxide synthase activity and, in turn,
vascular relaxation.78

HO-1 also attenuates the cytotoxic effects of angiotensin
II, as shown in studies utilizing tubular epithelial cells derived
from the proximal tubule193 or the thick ascending limb.194

EXPERIMENTAL DIABETES

In streptozotocin-induced diabetes, HO-1 is upregulated in
mesangial and glomerular epithelial cells.195,196 While such
expression may be attenuated by insulin or antioxidants, its
functional significance with regard to diabetic glomerular
injury is currently unaddressed.195,196 Streptozotocin-induced
diabetes, imposed in states characterized by decreased HO
activity as occurs in HO-2�/� mice, stimulates superoxide
anion production and provokes prominent tubulointerstitial
injury; remarkably, these adverse effects of streptozotocin-
induced diabetes in HO-2�/� mice are attenuated when HO-1
is induced in these mice.197 Upregulation of HO-1 also
protects against oxidative stress, endothelial cell loss, and
vascular dysfunction that occur in streptozotocin-induced
diabetes,198–201 and endothelial overexpression of HO-1
reduces glucose-induced apoptosis of endothelial cells.202

In aggregate, these findings indicate that, in the diabetic
milieu, upregulation of HO-1 can confer salutary effects in
the kidney and vasculature.

SPECIFICITY AND DUALITY OF EFFECTS OF THE HO SYSTEM

The effects of induced HO-1 are often tissue-specific and
target-dependent. For example, while inhibiting the growth
of renal tubular epithelial cells,142 HO-1 promotes the growth
of endothelial cells.203 This duality of effects of HO-1 is
reflected by the actions of its products: in endotoxin-treated
rats, CO inhibits iNOS expression in the injured lung but
promotes iNOS expression in the injured liver;204 CO inhibits
oxidant generation by inhibiting nicotinamide adenine
dinucleotide phosphate (reduced form) oxidase, but may
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promote mitochondrial generation of oxidants by inhibiting
mitochondrial cytochromes.205 While CO is clearly vaso-
relaxant, evidence has emerged that, under certain condi-
tions, CO may inhibit vasorelaxant responses by inhibiting
endothelial nitric oxide synthase.77,206 Thus, the actions of
HO and its products often depend on the specific tissue, cell
type, and cellular target that are involved, and the
pathophysiologic setting in which HO-1 is induced.

With these caveats in mind, Figure 2 schematizes some of
the distal effects of products of HO activity.

ADVERSE EFFECTS OF INDUCED HO-1

Induction of HO-1 may lead to renal injury in certain
settings.207,208 Renal injury is reduced, for instance, when HO
activity is inhibited by metalloporphyrins in proximal tubules
harvested from rats subjected to heme protein-induced renal
injury,209 and in oxidant-exposed, tubular epithelial cells.210

Such toxicity may reflect the fact that in sufficient amounts,
the products of HO can all be harmful. Indeed, as pointed
out by Paracelsus some 500 years ago, ‘Poison is in
everything, and no thing is without poison. The dosage
makes it a poison or a remedy’.211 While non-specific effects
are a consideration in studies utilizing metalloporphyrin
inhibitors,212,213 inhibition of HO activity may confer
protection in the following manner. HO activity releases
iron from heme and, if the induction of HO activity is
inadequately coupled to processes that sequester or export
iron, the attendant elevation in cellular iron may drive iron-
dependent oxidative stress. In this regard, in fibroblasts with
varying levels of genetically induced HO-1 overexpression,
relatively lower levels of overexpression protect against
oxidant injury while higher levels of HO-1 expression
exacerbate such injury, the latter associated with increased
cellular levels of iron.214,215 Excessive amounts of CO and bile
pigments can also prove damaging. For example, the
vasorelaxant effects of HO-1, induced in the vasculature,
presumably acting through CO, may adversely affect systemic
and renal hemodynamics following endotoxemia,216 and

promote systemic vasodilatation in cirrhosis.217 Finally, it is
possible that the protective effects observed in some studies
utilizing metalloporphyrin inhibitors may reflect not the
inhibition of HO activity but the beneficial effects of HO-1
protein, the latter reciprocally induced when HO activity is
inhibited.129,218 Through protein–protein interactions or
other effects, HO-1 protein, independent of HO activity,
may confer cytoprotective properties.

CONCLUSION

The protective effects conferred by HO-1 and its products in
models of renal injury offer exciting therapeutic prospects for
human kidney disease. The challenges, however, are many
and include the following: the delivery of requisite and
optimal amounts of product such that protection is achieved
and toxicity is avoided; the determination of which specific
HO product, or combination of products, is required for
renal protection in a given setting; and methods that
effectively deliver such products specifically to the kidney.
Moreover, strategies that rely on the upregulation of HO-1
are faced with issues such as the cell and target specificity of
the effects of HO-1, and the possibility that sustained
induction of HO-1 may be damaging.

Additional therapeutic approaches may be based on
biliverdin reductase: this biliverdin-inducible enzyme not
only converts biliverdin to bilirubin but also is now
recognized as a serine/threonine kinase219 and as a protec-
tant, independent of HO-1, in the kidney.220 Another avenue
may seek to discover non-toxic endogenous substances that
induce HO-1, and utilize such substances in protecting
against tissue injury. In this regard, induction of HO-1 turns
out to be the mechanism underlying the protection against
renal ischemic injury conferred by neutrophil gelatinase-
associated lipocalin, a protein which can induce renal tubules
to develop from mesenchyme,221 and is strongly expressed
after renal ischemia.134 Remarkably, the induction of HO-1
and attendant renal protection by neutrophil gelatinase-
associated lipocalin involve the intracellular delivery of iron
by neutrophil gelatinase-associated lipocalin.134,221 These
seminal findings not only point the way for a novel
therapeutic approach but also may alter existing paradigms
regarding the toxicity of cellular iron: by eliciting HO-1 and
other iron-responsive genes, increments in cellular levels of
iron may recruit protective pathways, which, in aggregate and
ultimately, more than override the intrinsic cytotoxicity of
iron.134

In addition to its therapeutic implications, the facile
recruitment of HO-1 in injured tissue affords insights into
the nature of cellular resistance to stress. As defined and
discussed by Barabasi in his masterful analysis of networks,
the robustness of biologic systems – their capacity to survive
stress – is dependent on the interconnectivity of nodes that
comprise their underlying networks, particularly so on those
uncommon nodes in the network that are highly connected
and are termed hubs; the importance of hubs is underscored
by the fact that the integrity and existence of a network are

Assorted stimuli (See Text)

NF-�  B, AP-1, Nrf2, other activators

Iron

•   ↑ Iron-binding proteins
•   ↑ Iron-exporting proteins
•   ↑ Iron-responsive genes
•   ↑ p21

Heme oxygenase-1

Carbon monoxide

•   ↑  cGMP
•   ↑ p38 MAPK
•   ↑ Kca activity
•   ↑ p21
•   ↑↓ iNOS Bile Pigments

•   ↓ Oxidant stress
•   ↓ NADPH oxidase activity
•   ↓ Endothelial activation
•   ↓ ERK 1/2 phosphorylation

Figure 2 | Cellular effects of products of the HO-1 system.
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imperiled when hubs are incapacitated.222,223 In this regard,
HO-1 is an outstanding example of a hub in a network,
receiving as it does afferent signals from manifold stimuli,
and engendering, in turn, nuanced efferent responses via CO,
bile pigments, and iron, and its linkage to biliverdin
reductase (Figure 2). The significance of HO-1 as a cyto-
protective strategy thus draws upon two essential properties:
the vigilance of HO-1 in sensing cellular stress and its ready
recourse to diverse intracellular networks, thereby enabling a
swift and often salutary response to such stress.
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