Convergence of a class of discrete-time semiflows with applications to difference systems✩

Taishan Yi, Lihong Huang∗, Sihu Hu

College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, PR China

Received 26 April 2004; accepted 20 August 2004

Abstract

In this paper, by employing comparison technique and invariance properties of a positively limited set, we investigate the convergence of precompact orbits of a class of discrete-time semiflows. In particular, we consider the convergence of precompact orbits of discrete-time semiflows generated by some monotone mapping. We then apply these abstract results to a class of difference systems to obtain the large-time behavior of solutions. Our results improve and extend some existing ones.

MSC: 34C12; 39A11

Keywords: Convergence; Difference system; Discrete-time semiflow; Positively limited set; Precompact orbit

1. Introduction

Recently, much progress has been made in applying the theory of monotone dynamical systems to investigate the problem of globally asymptotic behavior of continuous- and discrete-time semiflows. It is commonly hoped that most of the precompact orbits of a strongly monotone semiflow are convergent to a set of equilibria. For strongly monotone continuous-time semiflows, Hirsch [1,2] achieved this goal by

✩ Research supported by the Natural Science Foundation of China (10371034), by the Key Project of Chinese Ministry of Education (No. [2002]78), the Doctor Program Foundation of Chinese Ministry of Education (20010532002), and Foundation for University Excellent Teacher by Chinese Ministry of Education.

∗ Corresponding author. Tel.: +86 731 8822570; fax: +86 731 8823056.

E-mail address: lhhuang@hnu.cn (L. Huang).
employing the dichotomy of a positively limited set. For strongly monotone discrete-time semiflows, the limit set dichotomy theorem fails. We refer the reader to [3] for counter-examples about this. However, by making use of some additional hypotheses, convergence to an equilibrium for every precompact orbit of strongly monotone discrete-time semiflows is proved in the papers of [3–7]. Therefore, under certain hypotheses the dynamics of strongly monotone discrete-time semiflows are simple. It is natural to ask whether a similar conclusion holds for not strongly monotone or even non-monotone mappings. In this note we provide a positive answer to this question.

It should be mentioned that Wu [8] gave sufficient conditions for the convergence of the precompact orbits of a class of non-monotone discrete-time semiflows. But unfortunately, there are too many restrictions on the mapping which generates discrete-time semiflows. In fact, most of the restrictive conditions in [8] can be weakened or dropped (see Section 2 below for details). Huang and Yu [9] also investigated the problem of convergence of bounded orbits of a class of difference systems. For related results, we refer to [10–12]. However, it is not difficult to see that the abstract results of the paper [8] cannot be applied to the difference systems considered in [9].

Motivated by the results mentioned above, we study the asymptotic behavior of discrete-time semiflows generated by a class of non-monotone mappings in this paper. By comparing the positively limited set with some quasi-equilibrium (see Section 2 for more details on this definition) and applying invariance properties of a positively limited set, we obtain some results which improve and generalize the corresponding ones due to [8]. Our results show that some of the restrictive conditions in [8] can be weakened or dropped. Moreover, we also study the asymptotic behavior of precompact orbit of a class of monotone discrete-time semiflows. The obtained results improve the corresponding ones in [4].

In addition, we consider the applications of our abstract results to the following difference equation

\[x_n - x_{n-1} = -F(x_n) + G(x_{n-k}, x_{n-k+1}, \ldots, x_{n-1}), \quad n \geq 1, \]

(1.1)

where \(k \) is a positive integer, \(F : R^1 \rightarrow R^1 \) (throughout this paper, \(R^1 \) denotes the set of all real numbers) is continuous and nondecreasing, and \(G : R^k \rightarrow R^1 \) is continuous. By transforming (1.1) equivalently into a class of discrete-time semiflows, we successfully give sufficient conditions for bounded orbits of (1.1) to converge to a constant. We also give the properties of unbounded orbits of (1.1). Obviously, (1.1) contains the following difference equation

\[x_n - x_{n-1} = -f(x_n) + g(x_{n-k}). \]

(1.2)

as a special case, where \(k \) is a positive integer, \(f, g : R^1 \rightarrow R^1 \) are continuous, and \(f \) is nondecreasing on \(R^1 \). Asymptotic behavior of solutions of (1.2) with \(f \) strictly increasing on \(R^1 \) has been studied in [9].

In the present paper, as an application of our results, we obtain the same results for (1.2), but we take a rather different point of view in dealing with this problem and the obtained results also improve the corresponding ones in [9].

The paper is organized as follows. In Section 2, we develop some convergence results for a class of abstract discrete-time semiflows. In Section 3, we present some applications of these results obtained in Section 2.

2. Some general convergence results

Let \(X \) be a metrizable topological space endowed with a closed partial order relation \(R \subseteq X \times X \) such that \(\text{Int} R \neq \emptyset \). For any \(x, y, q \in X \) and any subset \(A \subseteq X \), the following notations will be used:

\(x \leq y \) iff \((x, y) \in R\), \(x < y \) if \((x, y) \in R\) and \(x \neq y\), \(x \ll y \) iff \((x, y) \in \text{Int} R\), \(A \leq q \) (\(A < q \)) iff
a ≤ q (a < q) for all a ∈ A, q ≤ A (q < A) iff q ≤ a (q < a) for all a ∈ A, A ≪ q iff a ≪ q for all
a ∈ A, q ≪ A iff q ≪ a for all a ∈ A. We denote \(\overline{Y} \) closure of set \(Y \subseteq X \).

Consider a continuous mapping \(S : X → X \). We define \(E_S = \{ e ∈ X : S(e) = e \} \). If \(x ∈ X \), we
define \(O_S(x) = \{ S^n(x) : n ≥ 0 \} \). If \(\overline{O_S(x)} \) is compact, we define
\[
\omega_S(x) = \bigcap_{j ≥ 1} O_S(S^j(x)).
\]

One can observe that \(\omega_S(x) \) is nonempty, compact, and invariant. In particular, the invariance of \(\omega_S(x) \)
will play a crucial role in the proofs of the main results of this paper. We will always assume that
\(I : R^1 → X \) is continuous, and \(τ_1 < τ_2 \) implies \(I(τ_1) ≪ I(τ_2) \). Throughout this section \(E \)
denotes a closed subset of \(X \) together with \(E_S ≤ E \) and \(I(R^1) ≤ E \). For any given \(e ∈ E \), we define
\(S^e = \{ x ∈ X : x ≥ e \} \) and \(S_e = \{ x ∈ X : x ≤ e \} \).

For convenience, we introduce the following assumptions.

(C1) For any \(e ∈ E \), there exists an integer \(N ≥ 1 \) such that \(e ≪ S^n(x) \) or \(e = S^n(x) \) for any \(x ∈ S^e \)
and \(n > N \).

(C2) For any \(x ∈ X \), there exist \(α, β ∈ R^1 \) such that \(I(α) ≤ x ≤ I(β) \).

If \(E \) satisfies assumption (C1), we call \(E \) the set of quasi-equilibria and call the point in \(E \) a quasi-
equilibrium.

We are now in a position to state one of the main results of this section.

Theorem 2.1. Let the mapping \(S : X → X \) be continuous, \(S \) satisfy (C1), and assumption (C2) be
satisfied. If \(x ∈ X \) is given such that \(\overline{O_S(x)} \) is compact, then \(\omega_S(x) = \{ I(α^*) \} \) for some \(α^* ∈ R^1 \).

Proof. Since \(\overline{O_S(x)} \) is compact, \(\omega_S(x) \) is nonempty, compact, and invariant. Hence, by (C2), there exist
\(α^*, β ∈ R^1 \) such that \(I(α^*) ≤ \omega_S(x) ≤ I(β) \). Let \(α^* = \sup \{ r ∈ R^1 : I(r) ≤ \omega_S(x) \} \). Then \(α^* ∈ R^1 \).
We want to show that \(I(α^*) ∈ \omega_S(x) \). Suppose not, i.e., \(I(α^*) < \omega_S(x) \). Then by assumption (C1) and
the invariance of \(\omega_S(x) \), we obtain \(I(α^*) ≪ \omega_S(x) \). But this contradicts the definition of \(α^* \). Therefore,
\(I(α^*) ∈ \omega_S(x) \).

Next we will show that \(\omega_S(x)^2 = 1 \), where \(\omega_S(x)^2 \) denotes the cardinal numbers of \(\omega_S(x) \). Otherwise,
\(\omega_S(x)^2 > 1 \). Then by assumption (C1) and the invariance of \(\omega_S(x) \), there exist \(q ∈ \omega_S(x) \) such that
\(q ≷ I(α^*) \). By the definition of \(\omega_S(x) \), there exists \(n_1 > 1 \) such that \(S^{n_1}(x) ≷ I(α^*) \). Because of
the continuity of \(I \), we can find a real number \(β^* > α^* \) such that \(S^{n_1}(x) ≷ I(β^*) ≷ I(α^*) \). By assumption (C1) and the fact that \(I(β^*) ∈ E \), there exists \(n_2 > n_1 \) such that \(S^n(x) ≥ I(β^*) ≷ I(α^*) \)
for all \(n ≥ n_2 \). This implies that \(ω(x) ≥ I(β^*) ≷ I(α^*) \), a contradiction to \(I(α^*) ∈ \omega_S(x) \). Therefore,
\(\omega_S(x) = \{ I(α^*) \} \). This completes the proof. \(\square \)

Remark 2.1. It is clear that Theorem 2.1 extends and improves Theorem 2.1 in [8] in many aspects such as:
(a) We do not require that \(I(R^1) ≤ E_S \) holds; (b) assumption (ii) of Theorem 2.1 in [8] has been
weakened by assumption (C1) drastically in our paper; (c) assumption (i) of Theorem 2.1 in [8] has been
dropped in our Theorem 2.1.

Remark 2.2. It should be noted that the mapping \(I \) in assumption (C2) is not necessarily defined in \(R^1 \)
itself. In fact, it may be defined in an arbitrary interval of \(R^1 \) such as \([0, 1] \) and \((0, 1) \).

In many applications, it is necessary to consider the symmetric form of Theorem 2.1. To do this, we
introduce the following assumption.
For any $e \in E$, there exists an integer $N \geq 1$ such that $e \gg S^n(x)$ or $e = S^n(x)$ for any $x \in S_e$ and $n > N$.

Theorem 2.2. Let the mapping $S : X \rightarrow X$ be continuous, assumption (C2) be satisfied and S satisfy (C3). Then the conclusion of Theorem 2.1 holds.

Proof. Let $\tilde{R} = \{(x, y) \in X \times X : (y, x) \in R\}$. For any $\alpha \in R^1$, let $\tilde{I}(\alpha) = I(-\alpha)$. Then replacing R and I in Theorem 2.1 by \tilde{R} and \tilde{I}, respectively, we can conclude that S satisfies the conditions of Theorem 2.1, and so it follows from Theorem 2.1 that the conclusion of Theorem 2.2 holds. The proof is now complete. □

In [4], the convergence of discrete-time semiflows generated by strongly monotone mappings has been discussed (see Theorem 1.3 in [4] for more details). Before proceeding, we need the following assumption.

(C4) Let the mapping $T : X \rightarrow X$ be continuous. There exists an integer $N \geq 1$ such that for any $x, y \in X$ with $x \geq y$, $T^n(x) \gg T^n(y)$ or $T^n(x) = T^n(y)$ for $n \geq N$.

We say that T is semi-strongly monotone if T satisfies assumption (C4).

As a direct consequence of Theorems 2.1 and 2.2, we obtain the following convergence of discrete-time semiflows generated by semi-strongly monotone mappings, which improves Theorem 1.3 in [4].

Corollary 2.1. Let the mapping $T : X \rightarrow X$ be continuous and semi-strongly monotone, also let assumption (C2) be satisfied and $I(R^1) \subseteq E_T$. If $x \in X$ is given such that $\overline{O_T}(x)$ is compact, then $\omega_T(x) = \{I(\alpha)\}$ for some $\alpha \in R^1$.

Proof. Let $E = E_T$. It is not difficult to check that T satisfies the conditions of Theorem 2.1 or 2.2. Therefore, we can apply Theorem 2.1 or 2.2 to obtain the conclusion of Corollary 2.1. This completes the proof. □

3. Applications to some difference equations

In this section, we apply the abstract results in Section 2 to consider the large-time behavior of solutions for the difference equations (1.1) and (1.2).

To simplify the following argument, we introduce the following auxiliary mappings and establish several important lemmas that will play a major role in our analysis.

Let F and G be defined as in (1.1). We define the mappings

$$\varphi : R^1 \rightarrow R^1 \quad \text{by} \quad \varphi(x) = x + F(x)$$

and

$$H : R^k \rightarrow R^k \quad \text{by} \quad H(z_1, z_2, \ldots, z_k) = (z_2, \ldots, z_k, \varphi^{-1}(z_k + G(z_1, z_2, \ldots, z_k))).$$

(3.1)

It follows that $\varphi(x)$ and $\varphi^{-1}(x)$ are continuous and strictly increasing on R^1, and hence $H(z)$ is continuous on R^k.

Lemma 3.1. Let the mapping φ be defined as above, α be a given constant and define the mapping $\gamma : R^1 \rightarrow R^1$ by $\gamma(x) = \varphi^{-1}(x + F(\alpha))$. Then for any given $M > 0$, there exists $N > M$ such that $\gamma^i(N) > M$ for all $i \in \{1, 2, \ldots, k\}$.
We next distinguish two cases to finish the proof of (3.3).

Therefore, the conclusion (i) is a consequence of Theorem 2.1.

Proof. Let \(p(x) \equiv \min_{1 \leq i \leq k} \gamma_i(x) \), where \(x \in \mathbb{R}^1 \). Since \(\lim_{x \to +\infty} \gamma(x) = +\infty \), it follows that \(\lim_{x \to +\infty} p(x) = +\infty \). Therefore, the conclusion of the lemma is true. \(\square \)

In what follows, we will use \(\mathbb{R}^k_+ \) to denote the set of all nonnegative vectors in \(\mathbb{R}^k \). It then follows that \(\mathbb{R}^k_+ \) is an order cone in \(\mathbb{R}^k \). For any \(u, v \in \mathbb{R}^k \), the following notations will be used: \(u \leq v \) iff \(v - u \in \mathbb{R}^k_+ \), \(u < v \) iff \(u \leq v \) and \(u \neq v \), \(u \ll v \) iff \(v - u \in \text{Int} \mathbb{R}^k_+ \).

Lemma 3.2. Let the mappings \(F, G \) and \(H \) be as above. If \(G(z) \geq F(\alpha) \) for all \(\alpha \in \mathbb{R}^1 \) and \(z \in \mathbb{R}^k \) such that \(z \geq (\alpha, \alpha, \ldots, \alpha) \in \mathbb{R}^k \), then we have

(i) if \(z \in \mathbb{R}^k \) is given such that \(O_H(z) \) is compact, then there exists \(c \in \mathbb{R}^1 \) such that

\[
\lim_{n \to \infty} H^n(z) = (c, c, \ldots, c) \in \mathbb{R}^k,
\]

where \(H^n(z) = (H^n(z)_1, (H^n(z)_2)_1, \ldots, (H^n(z)_k)_1) = H(H^{n-1}(z)) \) for \(n = 1, 2, \ldots \), and \(H^0 \equiv \text{Id}_{\mathbb{R}^k} \), in which \(\text{Id}_{\mathbb{R}^k} \) denotes the identical mapping from \(\mathbb{R}^k \) to \(\mathbb{R}^k \);

(ii) if \(z \in \mathbb{R}^k \) is given such that \(O_H(z) \) is unbounded, then

\[
\lim_{n \to \infty} (H^n(z))_i = +\infty \quad \text{for all } i \in \{1, \ldots, k\}.
\]

Proof. Let \(E = \{(\alpha, \alpha, \ldots, \alpha) \in \mathbb{R}^k : \alpha \in \mathbb{R}^1\} \) and define the mapping \(I : \mathbb{R}^1 \to \mathbb{R}^k \) by \(I(\alpha) = (\alpha, \alpha, \ldots, \alpha) \in \mathbb{R}^k \). By the definition of \(E \) and \(I \), assumption (C2) holds. Assume that \(e = (\alpha, \alpha, \ldots, \alpha) \in E \), \(z \in \mathbb{R}^k \) and \(z \geq e \). We want to show that

\[
z_k > \alpha \quad \text{implies} \quad (H(z))_k > \alpha. \tag{3.2}
\]

Indeed, by the definition of \(H \), we get

\[
(H(z))_k = \varphi^{-1}(z_k + G(z))
\geq \varphi^{-1}(z_k + F(\alpha))
> \varphi^{-1}(\alpha + F(\alpha))
= \alpha.
\]

Hence, by (3.2) and the continuity of \(H \), we have \(H(z) \geq e \). We will prove that

\[
H^n(z) = e \quad \text{or} \quad H^n(z) \gg e, \quad \text{for all } n \geq 2k + 2. \tag{3.3}
\]

We next distinguish two cases to finish the proof of (3.3).

Case 1. \(H^{k+1}(z) = e \).

Let \(n_0 = \inf\{n \geq k + 1 : H^n(z) > e\} \). If \(n_0 = +\infty \), then \(H^n(z) = e \) for all \(n \geq k + 1 \), and hence, the proof is complete. If \(n_0 < +\infty \), then we can conclude \(n_0 = k + 2 \). Otherwise, \(H^{k+2}(z) = e \) and \(n_0 > k + 2 \). Thus, \(H^{k+2}(z) = H(H^{k+1}(z)) = H(e) = e \), and so \(H^{n_0}(e) = e \), a contradiction. By the definition of \(n_0 \), we have \(H^{k+2}(z) = H(H^{k+1}(z)) = H(e) > e \), and hence, \((H^{k+2}(z))_k > \alpha \). Therefore, from (3.2), we get \(H^n(z) \gg e \), for all \(n \geq 2k + 2 \).

Case 2. \(H^{k+1}(z) > e \).

It follows that there exists \(i \in \{1, 2, \ldots, k\} \) such that \((H^{k+1}(z))_i > \alpha \). By the definition of \(H \), we obtain \((H^{i+1}(z))_i > \alpha \). Hence, from (3.2), we get \(H^n(z) \gg e \) for all \(n \geq k + i \).

From the above discussion, we can conclude that (3.3) holds and hence, \(H \) satisfies assumption (C1). Therefore, the conclusion (i) is a consequence of Theorem 2.1.
We next show that the conclusion (ii) holds. Indeed, let \(z \in R^k \) be given such that \(O_H(z) \) is unbounded. Then choose \(\beta \in R^1 \) such that \(z \geq (\beta, \beta, \ldots, \beta) \in R^k \), from which it follows that \(H^\alpha(z) \geq (\beta, \beta, \ldots, \beta) \in R^k \). By Lemma 3.1 and the fact that \(O_H(z) \) is unbounded, for any \(M > 0 \), there exists \(n_1 > 1 \) such that
\[
H^n(z) \geq (M, M, \ldots, M) \in R^k.
\]
Hence,
\[
H^n(z) \geq (M, M, \ldots, M) \in R^k \quad \text{for all } n \geq n_1.
\]
Therefore, \(\lim_{n \to \infty} H^n(z)_i = +\infty \) for all \(i \in \{1, \ldots, k\} \). This proves the lemma. \(\square \)

Remark 3.1. It should be noted that Theorem 2.1 in \([8]\) cannot be applied to the mapping \(H \) in Lemma 3.2.

Theorem 3.1. Let \(\{x_n\}_{n=-k}^\infty \) be a solution of (1.1). If \(G(z) \geq F(\alpha) \) for all \(z \in R^k \) and \(\alpha \in R^1 \) such that \(z \geq (\alpha, \alpha, \ldots, \alpha) \in R^k \), then either \(\lim_{n \to \infty} x_n = +\infty \) or \(\lim_{n \to \infty} x_n = c \) for some \(c \in R^1 \).

Proof. Note that system (1.1) is equivalent to the system
\[
z^{(n)} = H^n(z),
\]
where \(H \) is defined as (3.1). The desired conclusion follows immediately from Lemma 3.2 and thus, the proof is complete. \(\square \)

We are now ready to state a symmetric form of Theorem 3.1, the proof of which is similar to that of Theorem 3.1 and therefore, it is omitted.

Theorem 3.2. Let \(\{x_n\}_{n=-k}^\infty \) be a solution of (1.1). If \(G(z) \leq F(\alpha) \) for all \(z \in R^k \) and \(\alpha \in R^1 \) such that \(z \leq (\alpha, \alpha, \ldots, \alpha) \in R^k \), then either \(\lim_{n \to \infty} x_n = -\infty \) or \(\lim_{n \to \infty} x_n = c \) for some \(c \in R^1 \).

As an application of Theorems 3.1 and 3.2, for the special case of (1.1), we can get the following results.

Corollary 3.1. Let \(f \) and \(g \) be defined as in (1.2) and let \(\{x_n\}_{n=-k}^\infty \) be a solution of (1.2). If \(g(x) \geq f(x) \) for all \(x \in R^1 \), then either \(\lim_{n \to \infty} x_n = +\infty \) or \(\lim_{n \to \infty} x_n = c \) for some \(c \in R^1 \).

Proof. Let \(F(x) = f(x) \) for any \(x \in R^1 \) and \(G(z_1, z_2, \ldots, z_k) = g(z_1) \) for any \((z_1, z_2, \ldots, z_k) \in R^k \). Then, by exploiting Theorem 3.1, the conclusion of Corollary 3.1 is immediate. \(\square \)

Corollary 3.2. Let \(\{x_n\}_{n=-k}^\infty \) be a solution of (1.2). If \(f(x) \geq g(x) \) for all \(x \in R^1 \), then either \(\lim_{n \to \infty} x_n = -\infty \) or \(\lim_{n \to \infty} x_n = c \) for some \(c \in R^1 \).

Proof. The proof is similar to that of Corollary 3.1, and so it is omitted. \(\square \)

Corollary 3.3. Let \(\{x_n\}_{n=-k}^\infty \) be a solution of (1.2). If \(f \equiv g \), then \(\lim_{n \to \infty} x_n = c \) for some \(c \in R^1 \).

Proof. Applying Corollaries 3.1 and 3.2, we can conclude that Corollary 3.3 holds. \(\square \)

Remark 3.2. Corollary 2.1 can also be applied to conclude that Corollary 3.3 holds. Indeed, define the following auxiliary mapping \(\psi : R^1 \to R^1 \) by \(\psi(x) = x + f(x) \). It follows that \(\psi \) and \(\psi^{-1} \) are continuous and strictly increasing on \(R^1 \). Also, define the mapping \(h : R^k \to R^k \) by \(h(z_1, z_2, \ldots, z_k) = (z_2, z_3, \ldots, z_k, \psi^{-1}(z_k + f(z_1))) \).
We claim that h satisfies assumption (C4). Indeed, assume that $z, z' \in R^k$ satisfy $z \geq z'$. Since ψ is strictly increasing and f is nondecreasing, it follows from the definition of h that $h(z) \geq h(z')$. We next distinguish two cases to finish the proof of the above claim.

Case 1. $h^{k+1}(z) = h^{k+1}(z')$.
It follows that $h^n(z) = h^n(z')$ for all $n \geq k + 1$, and hence the above claim is established.

Case 2. $h^{k+1}(z) > h^{k+1}(z')$.
It follows that there exists $i \in \{1, 2, \ldots, k\}$ such that $(h^{i+1}(z))_i > (h^{i+1}(z'))_i$. Hence, by the definition of h, we have $(h^{i+1}(z))_k > (h^{i+1}(z'))_k$. Again by the definition of h, we get

\[
(h^{i+2}(z))_k = \psi^{-1}((h^{i+1}(z))_k + f((h^{i+1}(z))_1)) \\
> \psi^{-1}((h^{i+1}(z'))_k + f((h^{i+1}(z'))_1)) \\
= (h^{i+2}(z'))_k.
\]
Thus, by induction, we have $h^n(z) > h^n(z')$ for all $n \geq k + i$.

Therefore, from the above discussion, we can conclude that h satisfies assumption (C4). It then follows from Corollary 2.1 that Corollary 3.3 is established.

Remark 3.3. Corollaries 3.1–3.3 improve the results obtained in [9] since f is required to be strictly increasing in [9]. In particular, our proofs are quite different from those of [9]. We refer to [9] for a detailed description of the applications of Corollaries 3.1–3.3.

References

