Histone deacetylase 3 (hdac3) is specifically required for liver development in zebrafish

Muhammad Farooq, K.N. Sulochana, Xiufang Pan, Jiawei To, Donglai Sheng, Zhiyuan Gong, Ruowen Ge

Department of Biological Sciences, National University of Singapore, 117543, Singapore

Received for publication 30 August 2007; revised 14 February 2008; accepted 15 February 2008

Available online 29 February 2008

Abstract

Histone deacetylases (HDACs) are key transcription regulators that function by deacetylating histones/transcription factors and modifying chromatin structure. In this work, we showed that chemical inhibition of HDACs by valproic acid (VPA) led to impaired liver development in zebrafish mainly by inhibiting specification, budding, and differentiation. Formation of exocrine pancreas but not endocrine pancreas was also inhibited. The liver defects induced by VPA correlate with suppressed total HDAC enzymatic activity, but are independent of angiogenesis inhibition. Gene knockdown by morpholino demonstrated that hdac3 is specifically required for liver formation while hdac1 is more globally required for multiple development processes in zebrafish including liver/exocrine pancreas formation. Furthermore, overexpression of hdac3 but not hdac1 partially rescued VPA induced small liver. One mechanism by which hdac3 regulates zebrafish liver growth is through inhibiting growth differentiation factor 11 (gdf11), a unique target of hdac3 and a member of the transforming growth factor β family. Simultaneous overexpression or morpholino knockdown showed that hdac3 and gdf11 function antagonistically in zebrafish liver development. These results revealed a novel and specific role of hdac3 in liver development and the distinct functions between hdac1 and hdac3 in zebrafish embryonic development.

© 2008 Elsevier Inc. All rights reserved.

Keywords: Histone deacetylase; Liver; Pancreas; Organogenesis; Zebrafish; VPA

Introduction

Acetylation and deacetylation of histones generate structural changes in chromatin which play an important role in the control of gene transcription. Histone acetylation promotes the formation of a transcriptional competent environment by ‘opening’ chromatin. Conversely, histone deacetylation promotes a ‘closed’ chromatin state and transcriptional repression (Cheung et al., 2000).

Histone deacetylases (HDACs) deacetylate histones and certain transcription factors. Eighteen mammalian HDACs have been identified to date and they are classified into three classes based on sequence homology to different yeast HDACs. Class I HDACs (HDAC1, 2, 3 and 8) are most closely related to the yeast HDAC RPD3. Class II HDACs (HDAC4, 5, 6, 7, 9 and 10) are highly homologous to yeast HDA1. Class III HDACs are most similar to yeast Sir2 HDAC. While class I HDACs are expressed in most cell types, the expression pattern of class II HDACs is more restricted, and has been shown to be involved in cell differentiation and developmental processes such as myogenesis (de Ruijter et al., 2003).

Because of the relatively ubiquitous expression pattern of class I HDACs and the fundamental roles HDACs play in regulating chromatin structure, it was perceived that class I HDACs would play a general role in embryonic development. However, recent findings indicate otherwise. Global gene expression profiling in C. elegans identified tissue-specific and extracellular matrix (ECM)-related genes as major HDAC1 targets (Whetstine et al., 2005). In mouse, HDAC1 and 2 are expressed in the prospective epithelium of the developing intestine, regulating intestine epithelial differentiation (Tou et al., 2004). Recently, HDAC3 expression was reported to be
restricted to the proliferative compartment of mouse small intestine and colon (Wilson et al., 2006). In zebrafish, hdac1 has been shown to play specific roles in neurogenesis, craniofacial cartilage and pectoral fin development (Cunliffe, 2004; Phiel et al., 2001; Yamaguchi et al., 2005). However, the functions of other class I HDACs in zebrafish embryonic development are not known.

Recently, significant advances have been made in our understanding of the molecular mechanisms that control vertebrate liver development. During early development of the zebrafish digestive system, a number of buds emerge from the gut primordium, giving rise to different organs including liver and pancreas (Field et al., 2003). Initial patterning events define the liver precursors within the foregut endoderm. This hepatic primordium later forms a morphologically distinct bud at around 28–30 hpf that grows out from the foregut. The growth phase follows the completion of budding and is characterized by change in liver size and shape. However, a lot still remains unknown of liver organogenesis. In mouse, early liver budding requires mesodermal inductive signals such as fibroblast growth factors (FGFs) from the adjacent cardiogenic mesoderm and bone morphogenetic proteins (BMPs) from nearby septum transversum mesenchyme. In addition, interaction with endothelial cells is also crucial although the signaling molecules from endothelial cells are not known at the moment (Zaret, 2002). In contrast, endothelial cells are not necessary for liver budding in zebrafish because in the mutant cloche which lacks most endothelial cells, liver buds normally (Field et al., 2003).

HDAC inhibitors have been reported to induce Hepatoma cell growth arrest, apoptosis and hepatocyte differentiation in vitro, but their role in hepatocyte differentiation in vivo has not been investigated (Herold et al., 2002; Yamashita et al., 2002). HDAC enzymes with HDAC inhibitors valproic acid (VPA) and Trichostatin A (TSA) have also been shown to inhibit angiogenesis, and also interfered with liver and exocrine pancreas formation, while the endocrine pancreas was not affected. Hepatoblast markers (prox1, hhex, foxa3) were absent or severely reduced in the liver region in treated embryos, while marker genes for hepatocyte differentiation ceruloplasmin (Cp) and liver fatty acid binding protein (fihp) were not expressed in liver until 4–5 dpf. We demonstrated that the liver defects are not related to the vascular defect. Gene knockdown with morpholino antisense oligonucleotide (MO) indicated that although both hdac3 and hdac1 are required for liver formation in zebrafish, hdac3 plays a more specific role. We further demonstrated that one mechanism of hdac3 function is by suppressing growth differentiation factor 11 (gdf11) gene, a negative regulator of cell proliferation and a specific transcriptional target of hdac3 (Zhang et al., 2004). Our results provide the first evidence that HDACs are required for liver/exocrine pancreas formation and revealed a novel role of hdac3 in liver organogenesis.

Materials and methods

Zebrafish and embryos

Local outbred wild type (WT) as well as transgenic lines of zebrafish embryos was maintained, collected and staged as described (Westeifeld, 1995). Transgenic lines used were Tg(fihp:RFP, elaA:EGFP) containing liver-specific liver fatty acid binding protein (fihp) promoter controlled RFP and exocrine pancreas-specific elastase A (elaA) promoter controlled EGF (Her et al., 2003; Wan et al., 2006), Tg(fihp:1-EGFP) in which GFP is expressed in endothelial cells (Lawson and Weinstein, 2002).

Treatment of embryos with inhibitors of HDACs and angiogenesis

VPA (Sodium 2-propylpentanoate) and TSA were purchased from Sigma Aldrich, and Valpromide (VPM, Diproplacatamide) was a kind gift from Katwik Chemie BV, Netherlands. Angiogenesis inhibitors SU5614, SU1498, 2-methoxyestradiol and Genistein were purchased from Calbiochem. Embryos were raised up to the shield stage and HDAC or angiogenesis inhibitors were then added to embryo water (RO water supplemented with 40 mg/ml ocean salt) after dissolving either in water (VPA) or DMSO (TSA, SU5614, SU1498, 2-methoxyestradiol and Genistein). The embryo water was replaced every day with fresh chemicals. Images were acquired using Zeiss Axiovert 200 fluorescent microscope equipped with Axiocam digital camera. Confocal Z-stack images were acquired using Olympus Fluoview FV1000.

Whole mount in situ hybridization (WISH)

WISH was performed with digoxigenin labeled antisense RNA probes for the following genes: cp (Korzh et al., 2001), foxa3 (Field et al., 2003), hhex (Wallace et al., 2001), hdac3 (gene accession number NM_200990.1), gdf11 (gene accession number NM_212975), prox1 (Liu et al., 2003), insulin, elastase B (Mudumana et al., 2004) according to the zebrafish book. The embryos were grown in 1-phenyl-2-thiourea (PTU) solution to block pigmentation.

HDAC enzymatic activity measurement

In order to measure the HDAC enzymatic activity in zebrafish embryos, protein extracts were isolated from wild type and VPA-treated embryos from a pool of about 100 embryos at required developmental stage using protein extraction reagent (Pierce, Rockford, IL) supplemented with protease inhibitor (Roche, Indianapolis, IN) and homogenized for 15 s (sigma ultra disintegrator). Samples were then centrifuged for 15 min at 10,000 rpm 4 °C. Clear supernatants were collected. HDAC fluorescent activity assay was performed according to the manufacturer’s instructions using a unique substrate (Biomol, Plymouth Meeting, PA), which contains an acetylated lysine side chain. Fluor de lys substrate was incubated with 20 μg of protein extract for 30 min at 37 °C, and the product produced was measured using SPECTRAMAX GEMINI XS microplate spectrofluorometer with the SOFTMAX PRO V.3.1.2 system (Molecular Devices) with excitation at 355 nm and emission at 460 nm with a cut off filter of 455 nm. Assay was repeated thrice and the average arbitrary fluorescence units (AFU) were represented as total HDAC activity. HDAC activity in the hdac1 or hdac3 morphants was similarly determined from embryos obtained from wild type fish and Tg(fihp:RFP, elaA:EGFP). Same amount of 5 bp mismatch morpholino injected embryos were used as control. In case of transgenic line, embryos were screened for liver defects based on the RFP expression, and protein extracts were collected from the pools of around 50 embryos at 3 dpf. To get rid of the background fluorescence activity from the transgenic embryos, fluorescence in the mismatch morpholino injected embryos was used to normalize the background fluorescence.

Real-time RT-PCR

Total RNA was extracted using RNAwiz™ (Ambion, USA). Real-time RT-PCR was performed using QuantiTect SYBR Green RT-PCR kit (Qiagen, USA) using Opticon 2 real-time PCR machine (MJ Research, USA) and analyzed using Opticon 2 software. Ct values were normalized against β-actin and fold
change in gene expression was calculated as described (Livak and Schmittgen, 2001). The primers used were: gdf11: Forward 5′ CGT CAT CAC AAT GGC TTC AGA, Reverse 5′ TTG AAG AAA CAA CAG CTC GGT TT.

Molecular cloning

Full length cDNAs for hdac1 (NM_173236.1), hdac3 (NM_200990.1) and gdf11 (NM_212975) were obtained by high fidelity PCR using Advantage High Fidelity 2 (HF2) PCR kit (Clontech, USA) and a full length zebrafish embryonic cDNA library as template. The following sets of primers were used: hdac1 Forward 5′-CGG GCA GGC GCA GGC TGT AAT T-3′, Reverse 5′-CAT GCA TCC AGG AGG ACT GGC-3′; hdac3 Forward 5′-CCG CAA CAT GAC CAA TCG AAC TGG TGC-3′, Reverse 5′-CCG TTT TAC CCA CAC ATC ACA GTC AAG-3′; gdf11 Forward 5′-CGA TGA AAA GGT ATA ACT TTT A-3, Reverse 5′-CGA TGGTTTTCTAGCACGA T-3, antisense: GTATCAAATAAACAACCAAGTTCAT, 4 bp mismatch control: GTAaCAAtTAAACA ACCAtGTTgAT. For single knockdown, antisense: CATAGAAGATTC AGA TTA C and TTT CAT GTT GTT AAATAT C, 5 bp Mismatch: ATA gCT TTT gAT cTT cTT

Gene knockdown by MO microinjection

MOs were purchased from Gene Tools (Philomatch, USA), and were diluted in sterile water at the concentration of 1 mM. They were designed to overlap the translational start site of the following genes: hdac3 antisense 1: CATAGAAGATTC AGA TTA C, antisense 2: CGGATATTCTCTACGCA-GAAAC, 5 bp mismatch control: CATAcAacTACcAGTTCatACGT; hdac1 antisense: TTG TTC CTT CAT GAG AAC TCA TCG CCA CAT T, 5 bp mismatch control: TcG TcT CTT CAG AAg TCA cCG CgS T; gdf11 antisense: ATA CCT TTT CAT GTT GTT AAT TAT C, 5 bp Mismatch: ATA gCT TTT gAT C and vegf antisense: GTATCAAAATGAAACACAGGTCTC, 4 bp mismatch control: TGAaAAaAAACACAGGTCTGTT. Single knockdown, hdac1 MO used is 3 or 6 ng/embryo and hdac3 MO used is 12 ng/embryo. For double knockdown with hdac1 and hdac3, both morpholinos were combined (hdac1, 3 ng/embryo; hdac3, 12 ng/embryo) and injected into 1–2 cell stage embryos. To rescue hdac3 morphants (12 ng/embryo), zebrafish gdf11 gene was co-knockdown by co-injecting gdf11 MO (4 ng/embryo).

mRNA rescue and overexpression

To rescue the VPA-treated embryos, hdac1 and hdac3 5′-capped mRNA was synthesized using m messenger m machine kit (Ambion, USA) and injected singularly or together into Tg(fla:RFP, elaA:EGFP) embryos at 1–2 cell stages. The injected embryos were raised to stage 12 and divided into two groups, one group of embryos were then treated with VPA (10 μM) and the other group remained untreated control embryos. The embryos were raised to 5 dpf with fresh VPA in embryo water changed daily. To rescue VPA-treated embryos, hdac1 mRNA (0.3 ng/embryo) and hdac3 mRNA (0.3 ng/ml) were injected singularly or together. To rescue gdf11 mRNA overexpression embryos (0.5 ng/embryo), hdac3 mRNA (0.3 ng/embryo) was co-injected.

Results

HDACs are required for liver and exocrine pancreas formation in zebrafish

To investigate the role of HDACs in the organogenesis of liver/pancreas, we used valproic acid (VPA), a potent HDAC inhibitor which preferably inhibits class I HDACs, to treat zebrafish embryos at non-teratogenic concentrations (Pillai et al., 2004). Embryos from transgenic line Tg(fla:RFP, elaA: EGFP) which express RFP in liver (from 59–60 hpf onward) and GFP in exocrine pancreas (from 4 dpf onward) were treated with VPA (20 μM and 10 μM) from shield stage and the effects on liver formation were observed from 60 hpf onward. As shown in Fig. 1, in VPA-treated embryos, RFP could not be detected up to 4 dpf (~100% embryos, n=320–350) (Fig. 1a, panels A–F), suggesting the absence of liver in these embryos. RFP positive liver was only observed at 5 dpf, and the liver size is much smaller compared to control embryos at the same stage. Furthermore, liver remained the same size from 5 dpf to 8 dpf (data not shown). VPA interfered with liver formation in a dose-dependent manner. Under lower VPA concentrations (5 μM and 1 μM), RFP expression in liver could be observed at normal developmental stages (3 dpf), but the size of liver was much smaller (n=250–300) (data not shown). VPA also inhibited angiogenesis in zebrafish embryos, consistent with its antiangiogenic activity reported earlier (Michaelis et al., 2004). The intersegmental vessels (ISVs) in the developing zebrafish embryos which are generated through angiogenesis either did not form or never connected to dorsal longitudinal anastamotic vessels (DLAVs) (Fig. 1a, compare panels G and H).

The effect of HDAC inhibition on liver formation was also confirmed by expression of ceruloplasmin (Cp), an early liver differentiation marker, by WISH. In VPA-treated embryos, Cp expression in liver was severely delayed, with no expression up to 72 hpf comparing to the normal expression which starts from 32 hpf (100% of embryos, n=200 embryos) (Fig. 1b, panels A–F). In contrast, Cp expression in YSL was not affected (Fig. 1b, panels D and F). At 4 dpf, a tiny Cp positive area was observed in about 30% (n=200) of VPA-treated embryos (Fig. 1b, panel H) whereas the majority (70%) of embryos still did not express Cp. At 5 dpf, Cp expression appeared in all VPA-treated embryos, but the liver was much smaller compared to untreated embryos at the same stage (Fig. 1b, panel J) (100% of embryos, n=200).

The formation of exocrine pancreas was also affected by VPA, with a delayed GFP expression in exocrine pancreas only observable at 5 dpf (100% embryos, n=100). The exocrine pancreas was also of much smaller size at this stage compared to control embryos (Fig. 1c, compare panels A vs. B and C vs. D). In contrast, development of endocrine pancreas marked by in-sulin (ins) expression from 2 dpf to 5 dpf was not affected by VPA (Fig. 1c, panels E–J) (100% embryos, n=100).

As earlier reports of the teratogenic effects of VPA on zebrafish embryos were observed at very high doses often in mM concentrations, we want to confirm the effectiveness of the low level VPA (20 μM) used in our experiments in inhibiting HDACs. Wild type embryos were treated with VPA and total HDAC enzymatic activity was measured from 15 somites to 5 dpf using a florescent based HDAC enzymatic activity assay (Fig. 2a). Total HDAC enzymatic activity in untreated embryos was found to gradually increase from 15-somite stage (about 16.5 hpf) and reached the highest level at 2 dpf and gradually decreasing from 3 dpf to 5 dpf. VPA at 20 μM effectively suppressed HDAC enzymatic activity at all the stages observed, with suppression of more than 75% at 2 dpf and 3 dpf (Fig. 2a). At 20 μM or lower, VPA is non-terotogenic in the first 3 days of embryonic development with no gross developmental deformities or retardation observed. However, from 3 dpf onward, small head and mild pericardia edema were observed, with morphological deformation more severe at later stages (Fig. S1).
To confirm that inhibition of HDACs is responsible for liver defects observed in VPA-treated embryos, embryos were treated with a structurally unrelated HDAC inhibitor TSA which inhibits both Class I and II HDACs (Pillai et al., 2004), as well as Valpromide (VPM), a structural analogue of VPA which does not inhibit HDAC. Liver formation and growth were not affected in embryos treated with VPM at all the stages observed (Fig. 2b, panels C, E and H), whereas liver formation and growth were inhibited in embryos treated with TSA (Fig. 2b, panels B, D and G). Similar to VPA, TSA treatment leads to delay of RFP appearance in liver until 5 dpf and a much smaller liver was observed compared to control. We therefore concluded that liver defects in VPA-treated embryos were due to inhibition of HDACs. HDAC(s) are required for organogenesis of liver and exocrine pancreas but not endocrine pancreas in zebrafish.
The liver defects in VP A-treated embryos were not due to inhibition of angiogenesis

Since angiogenesis inhibition in vitro by VPA is preceded by histone hyperacetylation (Michaelis et al., 2004), it is possible that the delay in liver formation is an indirect result of the blood vessel defect. In addition, VPA suppresses the expression of vascular endothelial growth factor (VEGF) in cultured cancer cells, a key angiogenic growth factor regulating embryonic vascular development in zebrafish (Liang et al., 2001; Nasevicius et al., 2000; Zgouras et al., 2004). Indeed, VPA also inhibited VEGF production at both mRNA and protein levels in zebrafish embryos (data not shown). While vascularization is essential for liver formation in mouse (Zaret, 2002), it is not clear if a similar requirement also occurs in zebrafish.

Earlier report of normal liver budding in the zebrafish mutant cloche which lacks most of the endothelial and hematopoietic lineages suggests that vascularization may not be required in zebrafish liver formation (Field et al., 2003; Liao et al., 1997; Stainier et al., 1995).

To clarify this, specific angiogenesis inhibitors SU5614 and SU1498 were used to inhibit angiogenesis and their effects on liver formation were analyzed; both SU5614 and SU1498 are known to inhibit VEGFR1/Flk-1 tyrosine kinase signaling (Mendel et al., 2000). In order to observe the angiogenesis defects and liver formation in the same embryo, Tg(fli-1:EGFP) (Lawson and Weinstein, 2002), which expresses GFP in blood vessels, was crossed with Tg(lfabp:RFP; elaA:EGFP), and embryos were screened for homozygous expression of all three transgenes and stable line was generated and herein will be

Fig. 2. The liver defects in VPA-treated embryos correlated with inhibition in HDAC enzymatic activity. (a) HDAC enzymatic activity in zebrafish embryos were measured by fluorescent based assay. Embryos were treated (from 15-somite stage) with VPA (20 μM) and harvested at different stages. Total HDAC enzymatic activity was inhibited from 1 dpf onward and maximum reduction (around 75%) was observed at 2–3 dpf in VPA-treated embryos. (b) Embryos from Tg(lfabp:RFP; elaA:EGFP) were treated with TSA (B, D, G), a structurally unrelated HDAC inhibitor, and Valpromide (VPM) (C, E, H), a structural analogue of VPA which does not inhibit HDAC. Liver formation was observed at 3 dpf (A–C), 4 dpf (D–E) and 5 dpf (F–H). No liver was observed in TSA-treated embryos up to 4 dpf (B, D) while a small liver appeared at 5dpf (G, white arrow). Liver formation was unaffected in VPM-treated embryos (C–H, white arrows). All the images are lateral view, anterior to the left. Scale bar is 50 μm.
called triple transgenic line and used in the following experiment.

In zebrafish, the subintestinal vein (SIV) branches to hepatic portal vein around 72 hpf, penetrates and vascularizes liver at this stage (Isogai et al., 2001) (Figs. 3A–D). At 5 dpf, a highly vascularized liver can be seen in control embryos (Fig. 3D). In VPA-treated embryos, SIV was never formed during the observation period (up to 8 dpf). At 5 dpf, blood vessels were substantially reduced or absent in liver (Fig. 3H) and the size of liver was significantly reduced. Blood circulation in treated embryos was normal up to 3 dpf, but circulation becomes slower at 4 dpf and was completely undetectable from 5 dpf onward with obvious cardiac edema (Fig. 3 and data not shown).

Both SU5614 and SU1498 (5 μM) inhibited angiogenesis with ISVs either did not form or formed abnormally (Figs. 3I and M). At 3 dpf, SIV was either absent or defective in treated embryos. However, not only was normal liver observed in these embryos at 3 dpf, but it also grew bigger from 3 dpf to 5 dpf despite the abnormal shape of the embryo (Figs. 3I–P). Similar phenotypes were also observed in two other angiogenesis inhibitors (2-methoxyestradiol and Genestein) treated embryos (data not shown). In addition, zebrafish vegf gene was knocked down by MO microinjection and liver formation is also generally normal in vegf morphants (data not shown; Liang et al., 2001; Nasevicius et al., 2000). The levels of angiogenesis inhibition judged by ISV abnormality by these chemical inhibitors were similar to that of VPA. It is noted that blood circulation was normal up to 3 dpf in chemical-treated embryos (data not shown). Altogether, these results demonstrate that the liver defects induced by HDAC inhibitors are most likely results of reduced HDAC activity rather than defective vascularization. Liver development and growth in zebrafish do not seem to depend on liver vascularization.

HDACs are required for early liver formation

In zebrafish, liver and posterior pancreas bud emerges from the anterior gut endoderm around 24–28 hpf and liver development involves multiple stages including specification, budding, differentiation and growth. To determine which stage(s) HDAC function is critically important, embryos were treated with VPA for short and defined intervals at different developmental stages crucial for liver formation and compared with embryos under VPA continuously. In addition to observe liver phenotype in Tg(lfabp:RFP; elaA:EGFP), expression of hepatoblast markers hhex and prox1, endoderm marker foxa3 and liver differentiation marker Cp were also investigated.

We noted that the delay in liver appearance in VPA-treated Tg(lfabp:RFP; elaA:EGFP) embryos depended on the developmental stages the treatment was initiated (Table 1A). Delays in liver formation in this transgenic line were observed only when VPA treatment was initiated between shield to 15-somites stage (6 hpf to 16 hpf) (Table 1A and data not shown). A short

Fig. 3. Liver formation in zebrafish does not require vascularization. Zebrafish embryos from triple transgenic line were treated with VPA (20 μM). Severe defects in intersomatic blood vessels (ISV) (thin white arrows) and subintestinal blood vessels (SIV) (wide white arrow) were observed up to 5 dpf (E–H). Liver only appeared on 5 dpf and no or minimum liver vascularization was observed (H). Similar angiogenesis defects were observed in embryos treated with angiogenesis inhibitors SU5614 (5 μM, I–L) and SU1498 (5 μM, M–P). However, liver (thick white arrows) formed normally on 3 dpf and grew extensively from 3 dpf to 5 dpf in these embryos (I–P). All images are lateral view, anterior toward left. The images D, H, L and P are confocal images of merged z-stacks. The scale bar is 100 μm in panel A, and 30 μm in panel D.

Table 1A

<table>
<thead>
<tr>
<th>Treatment start time</th>
<th>Treatment end time</th>
<th>No. of embryos</th>
<th>Liver in Tg(lfabp:RFP; elaA:EGFP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>–</td>
<td>>500, n=5</td>
<td>Liver appears at 3 dpf, grows larger to 5 dpf, delayed appearance, no liver up to 4 dpf, small liver at 5 dpf</td>
</tr>
<tr>
<td>6 hpf</td>
<td>5 dpf</td>
<td>350, n=5</td>
<td>Delayed appearance, no liver up to 4 dpf, small liver at 5 dpf</td>
</tr>
<tr>
<td>6 hpf</td>
<td>18 hpf</td>
<td>200, n=2</td>
<td>Delayed appearance, no liver at 3 dpf, small liver at 4 dpf, remain small to 5 dpf</td>
</tr>
<tr>
<td>24 hpf</td>
<td>5 dpf</td>
<td>200, n=2</td>
<td>Small liver at 3 dpf, remained small to 5 dpf</td>
</tr>
<tr>
<td>24 hpf</td>
<td>48 hpf</td>
<td>200, n=2</td>
<td>Small liver at 3 dpf, remained small to 5 dpf</td>
</tr>
<tr>
<td>48 hpf</td>
<td>5 dpf</td>
<td>200, n=2</td>
<td>Small liver at 3 dpf, remained small to 5 dpf</td>
</tr>
<tr>
<td>48 hpf</td>
<td>3 dpf</td>
<td>200, n=2</td>
<td>Small liver at 3 dpf, remained small to 5 dpf</td>
</tr>
<tr>
<td>3 dpf</td>
<td>5 dpf</td>
<td>100, n=2</td>
<td>Liver appears at 3 dpf, grows larger to 5 dpf, small liver at 4 dpf, remain small to 5 dpf, similar to untreated embryos</td>
</tr>
<tr>
<td>3 dpf</td>
<td>4 dpf</td>
<td>100, n=2</td>
<td>Liver appears at 3 dpf, grows larger to 5 dpf, similar to untreated embryos</td>
</tr>
</tbody>
</table>

RFP positive liver can readily be observed at 3 dpf from this line. “n” indicates number of experimental repeats. For short period treatment, VPA (20 μM) was removed after 12 or 24 h of treatment and embryos were grown in normal embryo water up to 5 dpf. “–”: not applicable.

and transient VPA treatment from 6 hpf to 18 hpf also leads to a delay in liver appearance with a small liver first appearing at 4 dpf and remained small up to 5 dpf. If VPA treatment started from 24 hpf or later and continued to 5 dpf, a small RFP+ liver appeared at the normal developmental tempo at 3 dpf. Transient VPA treatment from 24 to 48 hpf or from 48 hpf to 3 dpf also both lead to appearance of small RFP+ liver (lfabp expression) at 3 dpf. Interestingly, even though VPA is removed after treatment, liver remained small up to 5 dpf (Table 1A). When VPA is present from 3 dpf to 4 dpf, liver developed normally and grew larger between 3 dpf and 5 dpf (Table 1A). These results indicate that VPA inhibits early liver formation when present during 6–18 hpf, and causing a delay in liver development. HDACs are most likely required in the specification of liver primordium before liver buds from endoderm. When present from 3 dpf onward, VPA does not inhibit liver growth and expansion.

When VPA is present continuously from shield stage (6 hpf), hhex expression at 24 hpf was absent in liver (thick white arrow) and pancreas (thick black arrow) regions (Fig. 4A vs. C; Table 1B) whereas its expressions in intermediate cell mass (ICM) (Fig. 4A vs. C, thin black arrow) and notochord (A–D, white arrowhead) were not affected (100% embryos, n=150). Under VPA, hhex expression was observed in the anterior endoderm at this stage (C and D, black arrowhead). Similarly, at 28–30 hpf, proxl expression was absent in liver region (Fig. 4E vs. G and F vs. H, thick white arrow) in VPA-treated embryos whereas its expressions in lens (E and F) and neurotube (F and H, thin white arrow) were not affected (100% of embryos, n=100). foxa3 expression at 28–30 hpf showed that endoderm thickening in liver region failed to occur in VPA-treated embryos, suggesting a delay of liver budding (Fig. 4I vs. J, thick white arrow; Table 1B). Meanwhile, foxa3’s expression in anterior intestine was unaffected (Fig. 4J). At 48 hpf, expressions of hhex and prox1 both showed a significantly reduced liver and pancreas (Fig. 4K vs. L, M vs. N, and Table 1B, 100% of embryos, n=100). However, foxa3 expression clearly showed that liver and pancreas have budded by 48 hpf (Figs. 4O and P), indicating that liver budding, although delayed, can still occur under VPA. Interestingly, at 48 hpf, the liver size reduction in VPA-treated embryos revealed by foxa3 expression was smaller than that revealed by hhex or prox1 expression (Fig. 4O vs. P, compare to K vs. L and M vs. N; n=100). Therefore, not all foxa3 positive liver cells have become hepatoblasts that express hhex and prox1 in VPA-treated embryos at this stage. In addition, hepatic duct (the furrow between liver bud and the adjacent esophagus, thin green arrow) was not obvious and swim bladder was not visible under VPA (Fig. 4O vs. P). Furthermore, hepatoblasts differentiation into hepatocytes has yet to occur as the liver differentiation marker Cp was not expressed in liver until 4 dpf under continuous VPA (Fig. 1B and Table 1B). These results show that endoderm cells remain competent to become hepatoblasts and bud to form liver after 28 hpf and hepatoblasts remain competent to differentiate into hepatocytes after 4 dpf, consistent with earlier reports (Shin et al., 2007).

When VPA was transiently present from 6 to 24 hpf, 50% of embryos have no hhex expression at 32 hpf and 0% embryos have Cp expression (Table 1B). HDACs are therefore crucial for liver specification from endoderm. Transient VPA treatment from 6 to 18 hpf which led to delay in lfabp expression (liver only appeared at 4 dpf) in transgenic line also supported a role of HDACs in inhibiting hepatoblast specification from endoderm cells (Table 1A). It seems that hepatoblast determination occurs much earlier than the initial appearance of liver primordium from 24 hpf. This is consistent with the finding that Bmp and Fgf signaling is required for liver specification from 18 to 24 hpf (Shin et al., 2007).

When VPA was present from 24 to 36 hpf transiently (hepatoblast already specified), Cp expression was absent in 70% of embryos at 48 hpf, indicating suppression of hepatoblast differentiation to hepatocyte. In addition, in the 30% embryos that do expression Cp, Cp+ liver is much smaller (Table 1B). In contrast, liver size is nearly normal judged by prox1 and hhex expression. These results clearly show that VPA inhibits hepatoblast differentiation to hepatocyte after 24 hpf.

When VPA is present transiently from 48 hpf to 60 hpf, Cp+ liver is also small at 3 dpf (Table 1B). It seems that when hepatocyte already differentiated to certain extent at 48 hpf and is Cp+, subsequent presence of VPA suppressed either additional hepatoblast differentiation to hepatocyte or proliferation of Cp+ hepatocyte or both, leading to a small Cp+ liver phenotype at 3 dpf.

All together, the above results clearly show that VPA inhibited primarily early liver formation including specification, budding and differentiation, but most likely not hepatocyte proliferation. However, the possibility that VPA also inhibited
hepatocyte proliferation during the initial liver expansion phase at 2–3 dpf cannot be completely ruled out at this moment. These results demonstrate the importance of HDACs in early liver development and show that short period VPA treatment generated a long lasting inhibitory effect on subsequent liver development.

hdac1 has a general role in zebrafish development including liver and pancreas formation

In mammals, HDACs are a large gene family with 4 members in class I subfamily identified so far (Marks et al., 2003). As VPA inhibits multiple HDACs, it is important to determine which HDAC plays a dominant role in zebrafish liver formation. Two zebrafish class I HDAC cDNA sequences (hdac1 and hdac3) were available from Genbank at the time of our study. In VPA-treated embryos, both hdac1 and hdac3 mRNAs were down-regulated as determined by qRT-PCR (data not shown). We therefore set out to investigate the role of these two hdacs in zebrafish liver formation. Knockdown of each of the two hdacs by antisense MO injection (6 ng/embryo hdac1 MO and 12 ng/embryo hdac3 MO) effectively inhibited total HDAC activity in embryos, with hdac1 knockdown more effective (up to 75% HDAC activity inhibited), indicating the

Fig. 4. HDACs are required for early liver development. Expressions of early liver markers were analyzed by WISH in WT and VPA-treated embryos including hhex (A–D, K, L), prox1 (E–H, M, N) and foxa3 (I, J, O, P). All panels are whole mount pictures except panels B, D, F and H which are tissue sections indicated by red lines. In all panels, liver is indicated by a thick white arrow while pancreas is indicated by a thick black arrow. Expression of hhex was completely abolished in liver and pancreatic islet (C vs. A) at 24 hpf in VPA-treated embryos while its expression in intermediate cell mass (ICM) (A vs. C, thin black arrow) remains unaffected. Note that panels A and C were focused on different focal planes with panel A focusing on the liver region while panel C focusing on the more posterior ICM. White arrowhead indicates hhex expression in notochord (A–D) and black arrowhead in panels C and D refers to hhex expression in anterior endoderm. At 48 hpf, hhex expression in liver and pancreatic islet was significantly reduced (K vs. L). prox1 expression in liver region was absent in treated embryos at 28–30 hpf (E vs. G, F vs. H) while its expression was greatly reduced at 48 hpf (M vs. N). The green arrowhead in panel E indicates interrenal gland which also expresses prox1 at this stage. Initial endoderm thickening at liver region was absent in treated embryos at 28–30 hpf as judged by foxa3 expression (I vs. J, white arrow). At 48 hpf, a slightly small and compressed liver was observed in VPA-treated embryos while the hepatic duct was still not well formed (O vs. P, thin green arrow). All images are dorsal view, anterior to the left. Scale bar represents 100 μm in panels A, C, E, G, I and J; 20 μm in panels B, D, F and H; 50 μm in panels K–P. Lv: liver; Pn: pancreas; in: intestine; Sb: swim bladder.
The main contribution of *hdac1* toward the total HDAC activity in zebrafish embryos (Fig. 5).

Zebrafish *hdac1* mutant has been isolated and is embryonic lethal. *hdac1* is required for neuronal specification during zebrafish CNS development (Cunliffe, 2004; Cunliffe and Casaccia-Bonnefil, 2006), craniofacial cartilage development (Pillai et al., 2004), and retinal neurogenesis (Yamaguchi et al., 2005). However, the role of *hdac3* in zebrafish development has not been investigated.

Each gene was individually knocked down in *Tg(lfabp:RFP; elaA:EGFP)* by antisense MO. As shown in Fig. 6a, *hdac1* morphants showed similar phenotype as *hdac1* mutants reported earlier with curved body, smaller head, craniofacial and eye defect as well as severe cardiac edema (Fig. 6a, panels B and D). The 5 bp mismatch mutant MO (control) at the same concentration did not produce any of these defects (Fig. 6a, panels A and C). At 3 dpf, RFP+ liver was observed in *hdac1* morphants (70% of injected embryos, *n* = 150), with certain embryos showing a somewhat smaller liver (Fig. 6a, panel B and Fig. 9C). However, liver failed to grow to the same size from 3 dpf to 5 dpf compared to control embryos (Fig. 6a, panels B, F and H). At the MO dose of 6 ng/embryo, most of the embryos could develop and survive until 4–5 dpf. Morphants developed at normal pace up to 48 hpf, but subsequent development was delayed for up to 24 h compared to control. ISV was only minimally affected in these morphants as observed in *Tg(fli-1:EGFP)*, but SIV was not formed (Fig. 6a, panel D; 40% of injected embryos, *n* = 100). Morphants have no blood circulation and severe edema formed from 3 dpf onward, making live fluorescent imaging in the transgenic line very difficult. We therefore analyzed exocrine pancreas development by *elaB* expression using WISH. As shown in Fig. 6b, exocrine pancreas was also severely suppressed in *hdac1* morphants while the endocrine pancreas shown by insulin expression was not affected at all the stages observed (Fig. 6b, panels D, F and H). These morphants could not survive beyond 5 dpf. Higher amount of *hdac1* MO killed the embryos at earlier stages.

Therefore, it seems that *hdac1* is a crucial gene that plays a global and general role in zebrafish embryonic development and knockdown of *hdac1* generated severe embryonic defects and high amount of MO leads to death of the embryos at early developmental stages. In addition to liver and exocrine pancreas formation, *hdac1* is also critical for neurogenesis, eye

Table 1B Summary of the effect of VPA treatment time on liver marker expression

<table>
<thead>
<tr>
<th>Treatment start time</th>
<th>Treatment end time</th>
<th>Embryo stage for WISH</th>
<th>Liver marker expression [% embryos] (liver size)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>prox1+</td>
</tr>
<tr>
<td>6 hpf</td>
<td>24 hpf</td>
<td>24 hpf</td>
<td>0%</td>
</tr>
<tr>
<td>6 hpf</td>
<td>28–30 hpf</td>
<td>28 hpf</td>
<td>0%</td>
</tr>
<tr>
<td>6 hpf</td>
<td>32 hpf</td>
<td>32 hpf</td>
<td>ND</td>
</tr>
<tr>
<td>6 hpf</td>
<td>48 hpf</td>
<td>48 hpf</td>
<td>100% (small)</td>
</tr>
<tr>
<td>6 hpf</td>
<td>3 dpf</td>
<td>3 dpf</td>
<td>ND</td>
</tr>
<tr>
<td>6 hpf</td>
<td>4 dpf</td>
<td>4 dpf</td>
<td>ND</td>
</tr>
<tr>
<td>6 hpf, 24 hpf</td>
<td>32 hpf</td>
<td>32 hpf</td>
<td>100% (small)</td>
</tr>
<tr>
<td>24 hpf</td>
<td>36 hpf</td>
<td>48 hpf</td>
<td>100%</td>
</tr>
<tr>
<td>48 hpf</td>
<td>60 hpf</td>
<td>3 dpf</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ND: not determined. “–”: not applicable. Number of embryos in each treatment is 30–150. VPA used is 20 μM.
formation, head and pharyngeal arch development, as well as angiogenesis.

hdac3 is specifically required for liver development in zebrafish

In contrast to **hdac1** morphants, **hdac3** morphants presented normal head and body shape with no cardiac edema at 3 dpf (even with up to 4 times more MO injected compared to **hdac1** morphants). A smaller liver appeared at 3 dpf (Fig. 7a, panel B), and it grew somewhat subsequently up to 5 dpf but remained smaller compared to control, resembling low concentration VPA treatment (5 μM) (Fig. 7a, panel B, F and H). Similar to VPA treatment, liver size was reduced about 50% in **hdac3** morphants at 5 dpf as determined by the total number of liver cells (Fig. S2). Angiogenesis defects were obvious, and dose-dependent on the amount of **hdac3** MO injected (Fig. 7a, panel D). A second **hdac3** MO targeting the 5′-UTR also showed similar dose-dependent defects on liver development, confirming the role of **hdac3** in liver growth (data not shown). Blood circulation was normal up to 3 dpf but became slower by 5 dpf. A mild cardiac edema appeared on 4 dpf (Fig. 7a). Heart presented a thin tube shape without looping at 5 dpf (data not shown).

The liver defects in **hdac3** morphants observed in Tg(lfabp:RFP, elaA:EGFP) were verified by **Cp** expression. As shown in Fig. 7b, **Cp** expression in **hdac3** morphants was absent in the liver region at 32 hpf and 48 hpf (white arrow) whereas its expression in YSL was not affected (white arrowhead). **Cp** expression in liver starts from 3 dpf in morphants, but its expression was reduced compared to control embryos from 3 dpf to 5 dpf (Fig. 7b, panels F and H). Surprisingly, both exocrine and endocrine pancreas formation and growth were not affected in **hdac3** morphants as shown by **elastase B** (A, B) and **insulin** (C–H) expression through WISH in **hdac1** morphants with 5 bp mismatch MO injected embryos as control (Con.). Exocrine pancreas (white arrow) was significantly reduced at 5 dpf (A, B) but endocrine pancreas formation (black arrow) was not affected (C–H). All images are dorsal views, anterior to the left. Scale bar is 100 μm.

To analyze the role of **hdac3** in early liver formation, expression of early liver markers **hhex**, **prox1** and **foxa3** was analyzed in **hdac3** morphants. Expression of **hhex** in our local wild type embryos was first detected at about 24 hpf. Reduced **hhex** expression was observed in liver region of **hdac3** morphants at 28–30 hpf and 48 hpf (40–50% of morphants, n = 150) (Fig. 8A vs. B, C vs. D) (white arrow), whereas **hhex**...
expression in pancreatic islet was less affected (Fig. 8C vs. D, black arrow). prox1 expression also showed a reduced liver in hdac3 morphants, although the liver defect is milder than that of VPA-treated embryos (Fig. 8E vs. F, G vs. H, 50% of morphants, n=100). Anterior endoderm thickening in liver region (white arrow) which represents the initial stage of liver budding was absent at 28–30 hpf as indicated by foxa3 expression (Fig. 8I vs. J, 40% of morphants, n=200) while the anterior intestinal expression was not affected. These results indicate that at 28–30 hpf, fewer hepatoblasts formed from endoderm in hdac3 morphants. In addition, although liver primordium exists (hhx+prox1+) and anterior endoderm looping occurred, liver budding was delayed in these morphants. At 48 hpf, foxa3 expression indicated that liver has budded from endoderm, although it is slightly smaller (Fig. 8K vs. L, 40% of morphants, n=200). Swim bladder was absent at this
Fig. 8. hdac3 is required for early liver formation. WISH with three hepatoblast markers *hhex* (A–D), *prox1* (E–H) and *foxa3* (I–L) was analyzed in hdac3 morphants. At 28–30 hpf, *hhex* expression in liver (white arrow) was greatly reduced in hdac3 morphants (A vs. B). It remained reduced at 48 hpf (C vs. D) whereas its expression in pancreatic islet (black arrow) was less affected. *prox1* expression was reduced in liver region at 28–30 hpf (white arrow, E vs. F) and at 48 hpf (G vs. H), while its expression in mesoderm (E and F, green arrow) and pancreas (G and H, black arrow) is less affected. At 28–30 hpf, liver budding (shown as anterior endoderm thickening) was absent in hdac3 MO (I vs. J, white arrow) as judged by *foxa3* expression and a reduced liver region was observed at 48 hpf (K, L). *foxa3* expression in pancreas region (I, J, black arrow and Pn in K, L) was less affected in both stages. Swim bladder was absent at 48 hpf in hdac3 MO (K vs. L). Lv: liver; Pn: pancreas; in: intestine; Sb: swim bladder. Scale bar represents 100 μm in panels A–F; 50 μm in panels G–L.

Stage in hdac3 morphants, but *foxa3* expression in exocrine pancreas was less affected (Fig. 8K vs. L). *prox1* expression remained reduced in liver up to 5 dpf, indicating a small liver (data not shown). These phenotypes are similar to that of low concentration VPA-treated embryos. They confirmed *hdac3*’s role in early liver formation including hepatoblast specification and liver budding.

Since *hdac3* affects liver formation, we analyzed its expression pattern. As shown in Fig. S3, *hdac3* is widely expressed during the first day of embryonic development with high level expression in the brain. This expression pattern is similar to that of *hdac1* in the same period (Cunliffe, 2004). This wide-spread expression gradually becomes restricted in the anterior brain with very high expression in the eye. A low level expression was observed in the anterior endoderm at 2 dpf. By 3 dpf, high level expression in the intestinal bulb and low level expression in liver were observed while the expression in brain remains. By 5 dpf, it is expressed at high level in the intestine, but the liver expression disappears. VPA did not affect *hdac3* expression in the brain; however, it abolished *hdac3* expression in liver at 3 dpf and reduced its expression in the intestine from 3 dpf to 5 dpf (Figs. S3F, H and J).

The above results indicate that *hdac3* plays an important role in liver development. It is expressed transiently in the liver region and knockdown of its expression resulted in delay in liver development. Comparing to *hdac1*, zebrafish embryos can tolerate high amount of *hdac3* MO (3–4 times more than *hdac1* MO) without causing severe gross developmental defects or embryonic death while inhibiting liver formation and angiogenesis more profoundly and specifically.

Double knockdown of hdac1 and hdac3 leads to severe interruption of early embryonic development in zebrafish

To investigate the combined impact of double *hdac1* and *hdac3* knockdown, we injected both morpholinos together (3 ng/ml *hdac1* MO and 12 ng/embryo *hdac3* MO).

As shown in Fig. 9, double knockdown resulted in severe abnormalities in almost all embryos including no circulation, curved body, small head and severe cardiac hypertrophy, similar to *hdac1* single knockdown morphants (Fig. 9G). Severe angiogenesis defects in trunk blood vessels are observed in 90% of injected embryos (*n*=200), much more severe than single knockdown of either gene (Fig. 9D). No RFP+ liver could be detected at 3 dpf (Fig. 9G). These morphants could not survive more than 3 dpf. In contrast, control embryos (injected with same amount of 5 bp mismatch MOs) developed normally (Figs. 9A and B). It is noted that the amount of *hdac1* and *hdac3* MO injected into embryos is 4 times more than that of *hdac1* MO injected into control embryos. All images were side view, with anterior to the left. Scale bar is 100 μm.

Fig. 9. Double knockdown of *hdac1* and *hdac3* leads to severe defects in embryonic development including liver and blood vessel. Double knockdown of *hdac1* and *hdac3* was performed by simultaneous injection of both MOs (*hdac1* MO at 3 ng/embryo; *hdac3* MO at 12 ng/embryo) into Tg(lfabp:RFP; elaA:EGFP) and Tg(fli-1:EGFP) embryos and was compared with the same quantity of 5 bp mismatch morpholinos (control, A–B). Liver (thick white arrow) was absent at 3 dpf and blood vessels (thin white arrow) were severely disrupted. Embryos were severely deformed in the double knockdown morphants (G, H) and they cannot survive beyond 3 dpf. All images were side view, with anterior to the left. Scale bar is 100 μm.
morpholino had to be reduced in the double knockdown experiments (3 ng/embryo) due to severe growth arrest and embryo death in early stages while *hdac1* single knockdown could tolerate MO dose of 6 ng/embryo. However, *hdac1* single knockdown using 3 ng/embryo MO generated morphological defects of similar severity as 6 ng/embryo MO (Figs. 6a and 9). These results indicate that both these *hdac* genes play critical roles in early zebrafish embryonic development including liver and vascular development.

Overexpression of *hdac3* but not *hdac1* partially rescued VPA induced liver defects in zebrafish embryos

To further confirm if VPA induced liver/exocrine pancreas defects mainly through suppressing *hdac3*, *hdac3* was overexpressed by mRNA microinjection (0.3 ng/embryo) into VPA-treated embryos. Under low concentration of VPA (10 μM), 60% (*n* = 200) of the injected embryos were rescued to some extent in liver development (Fig. 10, compare B and F; Table 2). In contrast, injection of same amount of *hdac1* mRNA could only rescue about 4% (*n* = 250) of embryos (Fig. 10, compare B and D; Table 2). Simultaneous injection of both *hdac1* and *hdac3* mRNA (0.3 ng/embryo of each mRNA) rescued the VPA liver phenotype to similar extent of *hdac3* mRNA alone (*n* = 200) (Fig. 10, compare B and H; Table 2). Higher amount of

Table 2

<table>
<thead>
<tr>
<th>Without VPA</th>
<th>With VPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of embryos</td>
<td>Liver size at 5 dpf</td>
</tr>
<tr>
<td>Control</td>
<td>300</td>
</tr>
<tr>
<td>hdac1 mRNA (0.3 ng)</td>
<td>250</td>
</tr>
<tr>
<td>hdac3 mRNA (0.3 ng)</td>
<td>250</td>
</tr>
<tr>
<td>hdac1 + hdac3 mRNA (0.3+0.3 ng)</td>
<td>200</td>
</tr>
</tbody>
</table>

VPA used is 10 μM.

hdac1 or *hdac3* mRNA either singularly or together leads to severe abnormalities and embryonic death from early stages, making assessment of its effect on liver formation impossible. *hdac3* overexpression in control embryos generated a marginal but consistent increase in liver size while *hdac1* mRNA is less effective (Fig. 10, compare A vs. C, and A vs. E). Double injection of both mRNAs together into control embryos leads to marginal increase in liver size to similar extent as *hdac3* mRNA alone (Fig. 10G). These results confirmed that *hdac3* is more specifically required for liver development in zebrafish embryos. It is noted that, at higher VPA concentration (20 μM), *hdac3* overexpression could no longer rescue VPA induced liver defects (data not shown).

hdac3 promotes liver growth/expansion by suppressing growth differentiation factor 11 (gdf11) gene

It has been previously reported that HDAC3, but not other class I HDACs, specifically represses *gdf11* expression in cultured fibroblasts by deacetylating histone H3 on *gdf11* promoter (Zhang et al., 2004). HDAC inhibitor TSA has been shown to suppress HDAC3 expression which leads to up-regulation of *gdf11* gene in cell culture. The secreted Gdf11 is a member of the transforming growth factor β family that inhibits cell proliferation. It is involved in multiple developmental processes in mouse and chicken, including neurogenesis, chondrogenesis, myogenesis and pancreas development (Gamer et al., 2001; Harmon et al., 2004; Wu et al., 2003). However, its role in liver formation has not been studied in any species.

Using qRT-PCR, we observed that VPA up-regulated *gdf11* mRNA by at least 2-folds at 24 hpf, and up to 4-folds by 2 dpf. The up-regulation lowered to 2-folds at 3 dpf before returning back to control levels by 4 dpf (Fig. 11A).

Since *GDF11* is a direct and unique target of HDAC3 in cultured mammalian cells, it is possible that *hdac3* influences liver organogenesis in zebrafish embryos by targeting this gene. If so, knockdown of *gdf11* in *hdac3* morphants would be

![Fig. 10. *hdac3* mRNA partially rescued the liver defects in VPA-treated embryos while *hdac1* mRNA could not. 5′-capped mRNAs of *hdac1* and *hdac3* were synthesized in vitro and used to rescue the liver defects in VPA-treated embryos in Tg (lfabp:RFP, elaA:EGFP) by microinjection. Overexpression of *hdac1* mRNA (0.3 ng/embryo) did not generate any obvious impact on liver development (C vs. A) and *hdac1* mRNA failed to rescue the liver defects in VPA-treated embryos (D vs. B). In contrast, *hdac3* mRNA (0.3 ng/embryo) led to a slight increase in liver size compared to control (E vs. A). It also readily rescued the small liver defects in VPA-treated embryos although not to the same size of the control at the doses analyzed (F vs. B). Injection of both *hdac1* and *hdac3* mRNA together (0.3 ng/embryo each) rescued the liver defect under VPA to similar extent as *hdac3* mRNA alone (H vs. B). All images are lateral view of 5 dpf embryos, anterior toward the left. Scale bar is 100 μm.
expected to rescue/reverse the small liver phenotype. Indeed as shown in Fig. 11b, liver size was wholly or partially restored in about 40% (n=50) of embryos when hdac3 and gdf11 were knocked down simultaneously (compare panels B vs. D). Knockdown of gdf11 alone showed no obvious impact on liver (Fig. 11b, panel C). On the other hand, overexpression of gdf11 by mRNA microinjection generated a small liver phenotype at 5 dpf in a dose-dependent manner (Fig. 11b, panel G). About 10% of embryos were also much smaller in overall body size compared to control embryos when gdf11 is overexpressed (data not shown). Interestingly, liver formed and developed normally in most of the gdf11 overexpressed embryos up to 3 dpf (data not shown). Therefore, gdf11 seems to be specifically involved in suppressing the growth/expansion phase of liver development in zebrafish, consistent with its role as a cell proliferation inhibitor. In contrast, hdac3 overexpression leads to a slight increase in liver size (Fig. 11b, panel F vs. E). As expected, the small liver defects in gdf11 overexpressed embryos were neutralized by simultaneous hdac3 overexpression (Fig. 11b, panel H vs. G), consistent with the reported role of hdac3 as a repressor of gdf11 gene expression.

To confirm the role of gdf11 in liver development, we analyzed its expression pattern. Overall, gdf11 gene is expressed at very low levels and its expression further declined from 3 dpf onward, requiring prolonged staining to show positive signal. In VPA-treated embryos and hdac3 morphants, gdf11 expression in all domains was up-regulated (Figs. S4A and B). At 26–28 hpf, gdf11 mRNA was localized to brain and eyes with no expression in the posterior part of the embryo (Fig. S4A). From 2 dpf onward, it is expressed in the pharyngeal arch region, the pectoral fin bud and several defined bilateral ventral areas anterior to the fin bud. By 4 dpf, expression in the notochord is obvious. Although no liver or pancreas expression could be detected in WT embryos in whole mount by WISH, expression was observed in liver at 48 hpf or in the adjacent mesoderm at 3 dpf under VPA by tissue sections (Figs. S4A, D’ vs. D, F’ vs. F). At 5 dpf, gdf11 expression was essentially undetectable. No gdf11 expression can be detected in embryos injected with hdac3 mRNA in all stages, consistent with hdac3 being a repressor of gdf11 transcription (data not shown). All together, this expression pattern supports a link between gdf11 and hdac3 in zebrafish development.

gdf11 is involved in zebrafish exocrine pancreas development

GDF11 has been reported to regulate the production and maturation of islet progenitor cells in mouse endocrine pancreas development. One report showed that Gdf11 knockout mice

Fig. 11. (a) VPA induced gdf11 expression in zebrafish embryos. WT zebrafish embryos were treated with VPA at shield stage and total RNA was extracted at various developmental stages. gdf11 mRNA level was analyzed by real-time RT-PCR. gdf11 mRNA level of the control embryos at each stage is set to be 1. (b) gdf11 neutralized the liver defects induced by hdac3. To confirm that hdac3 suppresses liver growth by suppressing gdf11 gene, a double knockdown of hdac3 and gdf11 as well as simultaneous overexpression of both genes was performed. Knockdown of gdf11 neutralized the effect of hdac3 knockdown (D vs. B). On the other hand, overexpressions of gdf11 lead to a small liver phenotype similar to hdac3 morphants (G vs. E). Simultaneous overexpression of both genes leads to the neutralization of the liver phenotype induced by overexpression of gdf11 alone (H vs. F), although liver in the double overexpression embryos was often not restored to the same size of the control (compare E and H).
On the other hand, another report indicated a conflicting result of increased gdf11 expression in morphants. Normal insulin expression in gdf11 morphants showed that endocrine pancreas formation was generally not affected. Although insulin expressing cells were localized somewhat more posterior at 2 dpf in the trunk compared to 5 bp mismatch MO injected embryos (Figs. 12A and B; 80% of injected embryos, n = 50), its expression and localization were similar to control at 3 dpf (Figs. 12C and D). At 5 dpf, a slightly larger endocrine pancreas was observed in about 10% of gdf11 morphants (n = 50) whereas the remaining embryos presented normal size endocrine pancreas (Figs. 12E and F). While exocrine pancreas formed at the normal developmental stage, an expanded elaB positive area was observed at 5 dpf in almost 80% of injected embryos (n = 100) (Figs. 12G–H), suggesting a repressive role for gdf11 in exocrine pancreas growth.

Discussion

In this work, we showed for the first time that HDACs are required for liver and exocrine pancreas development in zebrafish. Inhibiting HDACs by VPA interfered with early liver development including specification of endoderm cells to hepatoblasts, budding of liver primordium from anterior endoderm and differentiation of hepatoblasts to hepatocytes. In VPA-treated embryos, absence/delay of expression was observed for three undifferentiating liver markers (hhex, prox1 and foxa3), indicating disruption of liver specification and differentiation. Transient VPA treatment from 6 hpf to 18 hpf leads to delay in liver development in Tg(fabp:RFP; elaA:EGFP) embryos, with RFP+ liver first appearing at 4 dpf (Table 1A). When VPA was transiently present from 6 hpf to 24 hpf, 50% of embryos have no hhex expression at 32 hpf (Table 1B). These results demonstrate that HDACs are required for hepatoblast determination from endoderm in stages much earlier than the formation of its primordium around 24 hpf. Our results are consistent with the recent finding that bmp and fgf signaling is required for liver specification from 18 hpf to 24 hpf (Shin et al., 2007).

Under continuous VPA treatment, expression of hhex, prox1 and foxa3 in liver was observed from 48 hpf onward but Cp expression in liver was not observed until 4 dpf, demonstrating the presence of hepatoblasts at 2 dpf, but lack of differentiation of these cells until 4 dpf. When present from 24 hpf to 36 hpf transiently (hepatoblast already specified), 70% of embryos at 48 hpf lack Cp expression while a small Cp+ liver was observed the remaining embryos. However, liver size is nearly normal judged by prox1 and hhex expression in these embryos. These results clearly indicate that VPA also suppressed hepatoblasts differentiation to hepatocytes, resulted in absence or less number of differentiated hepatocytes. They also show that endoderm cells remain competent to become hepatoblasts after 24 hpf and hepatoblasts remain competent to differentiate into hepatocytes after 4 dpf.

When present from 48 hpf to 60 hpf or 3 dpf (Cp+ hepatocytes already present), VPA leads to a small liver at 3 dpf (Tables 1A and B). Even though VPA is removed subsequently, liver still remains small up to 5 dpf. These results suggest that VPA either suppressed additional hepatoblast differentiation to Cp+ hepatocyte from 48 hpf onward, proliferation of Cp+ hepatocyte or both. Furthermore, inhibiting HDACs during 2–3 dpf seems to have a long lasting effect on subsequent liver growth/expansion, possibly through modulation of chromatin structure. When VPA is present from 3 dpf onward, liver developed normally and grew to normal size, suggesting a lack of inhibition on hepatocyte proliferation when HDACs are inhibited after 3 dpf. Further studies of hepatocyte proliferation under VPA are required to clarify if VPA also inhibited hepatocyte proliferation when present continuously or transiently between 2 dpf and 3 dpf.

We used VPA concentration at 20 μM or less which showed minimum developmental delay and no gross developmental defects during early developmental stages. The morphological features of the embryos before 3 dpf were comparable with control embryos (Fig. S1). Circulation was normal in treated embryos up to 4 dpf, and slowed down or stopped at 5 dpf in the embryo.
majority of the embryos (data not shown). The size of the embryos was comparable with untreated control up to 5 dpf. Therefore, the liver and exocrine pancreas defects observed in VPA-treated embryos were not due to the non-specific teratogenic or toxic affect. Indeed, VPA concentration less than 30 μM has been previously reported to be non-teratogenic in zebrafish embryo (Gurvich et al., 2005; Herrmann, 1993). We further showed that the liver defects are due to inhibition of HDACs using a structurally different HDAC inhibitor TSA and a non-active VPA analog valproamide.

VPA also effectively disrupted embryonic angiogenesis (Figs. 1 and 3). Similar although milder angiogenesis defects were observed in hadc1 mutant, hadc1 morphants (Pillai et al., 2004; Isenberg et al., 2007), and hadc3 morphants (this work). Double knockdown of hadc1 and hadc3 generated severe angiogenesis defects, similar to high concentration VPA treatment (Fig. 9 and data not shown). These results demonstrate the importance of these two hadcs in embryonic blood vessel formation. Indeed, knockdown of hadc1 gene suppressed about 75% of total HDAC activity while knockdown of hadc3 leads to a reduction of about 25% of total HDAC activity in zebrafish embryos (Fig. 5). One possible mechanism through which VPA inhibits angiogenesis in zebrafish embryos is suppression of vegf expression (our unpublished data).

We demonstrated here that the liver defects induced by VPA in zebrafish embryos are not a result of its inhibition of angiogenesis. At similar level of angiogenesis inhibition, specific chemical angiogenesis inhibitors did not interfere with liver formation (Fig. 3). Altogether, these results supported a role of HDACs but not vascularization in liver formation. This is consistent with a previous report of normal liver budding in cloche mutant in which the vasculature is severely defective (Field et al., 2003).

Through antisense MO knockdown, we further demonstrated that both hadc1 and hadc3 are required for liver formation. However, while hadc1 is more globally required for angiogenesis, hadc3 is more specifically required for liver formation. Similar to hadc1 mutant, severe developmental defects were observed in hadc1 morphants, consistent with the significant contribution of this gene to total HDAC enzymatic activity in zebrafish embryos (Fig. 5). On the other hand, knockdown of hadc3 specifically perturbed liver formation without affecting pancreas development. In hadc3 morphants, expressions of earlier liver markers (bhex, prox1 and foxa3) as well as differentiation markers (Cp and Ifabp) in liver region were delayed or reduced in similar fashion as in low concentration VPA (10 μM or 5 μM) -treated embryos, indicating the requirement of this gene in liver specification, budding and differentiation. In hadc3 morphants, a small liver is present at 3 dpf. At 5 dpf, the number of liver cells was reduced to about 50% of control embryos (Fig. S2). However, since higher doses of VPA induced more severe defects in liver formation, it is likely that additional hadcs are also involved. Indeed, hadc1 morphants also showed defects in liver growth (Fig. 6). However, due to more global function of hadc1, these morphants presented severe gross developmental defects from 3 dpf onward. It is possible that the liver defect in hadc1 morphants is a secondary effect of other developmental defects in these embryos. To identify more target genes important for liver and pancreas development, a microarray approach has been adopted to identify genes influenced by low level VPA during a relevant developmental period (data will be presented elsewhere).

We further showed that gdf11 is a possible target of hadc3 in liver development in zebrafish. Knockdown of gdf11 rescued the small liver phenotype in hadc3 morphants (Fig. 11) while overexpression of gdf11 suppressed liver growth, generating a small liver phenotype resembling hadc3 morphants, possibly by suppressing hepatocyte proliferation (Fig. 11). Most importantly, overexpression of hadc3 could partially rescue the liver growth defect in gdf11 overexpressing embryos as well as in VPA-treated embryos, consistent with the result that gdf11 mRNA expression was up-regulated by VPA. However, simultaneous overexpression of both hadc1 and hadc3 did not lead to more efficient rescue of VPA suppressed small liver phenotype. Since VPA inhibits multiple HDACs, it is possible that additional hadc genes in zebrafish are also involved. These results demonstrate the functional antagonism between hadc3 and gdf11, suggesting that hadc3 may promote liver growth by suppressing gdf11 gene function in zebrafish. However, since liver formed normally up to 3 dpf in gdf11 overexpressing embryos, it is clear that hadc3 also functions through other target genes.

The Wnt/β-catenin pathway has been shown to be important in vertebrate liver morphogenesis and overexpression of β-catenin in chicken leads to 3-fold increase in liver weight (Suksawaweng et al., 2004). In mouse, suppression of β-catenin resulted in reduced liver cell proliferation (Monga et al., 2003). Recently, mesodermal Wnt signaling was also shown to regulate liver specification in zebrafish (Ober et al., 2006). As HDAC inhibitors such as VPA have been shown to alter Wnt-dependent gene expression and regulate β-catenin pathway (Pillai et al., 2004; Wiltse, 2005), the induced defects in zebrafish liver formation could potentially involve alterations in Wnt signaling pathways as well.

Histone acetylation has been reported to be a checkpoint for transduction of FGF signals to induce mesoderm in Xenopus through transcription factor AP-1 (Xu et al., 2000). AP-1-mediated mesoderm induction in the animal caps is dramatically suppressed by the HDAC inhibitor TSA at a dose-dependent manner. Interestingly, this suppression can be rescued by ectopic expression of HDAC3 at early stage. Since Bmp and Fgf signaling is essential for liver specification in zebrafish (Shin et al., 2007), it will be interesting to know if hadc3 function in early liver development is linked to Fgf.

VPA also interfered with exocrine pancreas formation. elaB expression normally starts from about 56 hpf and reach very high level in pancreas at 4 dpf (Mudumana et al., 2004). However, in VPA-treated embryos, elaB expression only appeared at 5 dpf. In contrast, the expression of endocrine pancreas marker insulin was normal, consistent with the model that the two parts of the pancreas derive from different progenitors and evolve differently during development. It has
been suggested that the mammalian liver and ventral pancreas arise from a common progenitor within the ventral foregut endoderm (Deutsch et al., 2001). Recently, fate map analysis of zebrafish pancreas confirmed that the dorsal pancreas (strictly endocrine) and ventral pancreas (primarily exocrine) come mostly from independent cell populations (Ward et al., 2007).

We did not detect any obvious changes in both endocrine and exocrine pancreas development in \(\text{hdac3} \) morphants (Fig. 7). Early endocrine pancreas development in \(\text{gdf11} \) morphants is also generally normal as indicated by insulin expression pattern (Fig. 12), although about 10% of morphants showed a slightly larger endocrine pancreas at this stage. However, exocrine pancreas was clearly enlarged at 5 dpf in \(\text{gdf11} \) morphants as judged by \(\text{elaB} \) expression pattern. As the pancreas phenotype in \(\text{gdf11} \) morphants only becomes obvious at 5 dpf, and the fact that the effectiveness of MO inhibition of gene expression declines quickly after 3 dpf, whether \(\text{hdac3} \) has any role in pancreas development needs to be further explored.

Recently, epigenetic modifications of DNA and histone by methylation have been shown to help execute specific developmental programs, affecting the terminal differentiation of intestine, exocrine pancreas and retina, but not endocrine pancreas and liver in zebrafish (Rai et al., 2006). Our data here clearly support the model that epigenetic modifications of histone/transcription factors by acetylation/deacetylation are also regulators of liver organogenesis.

Conclusion

We demonstrated for the first time that HDACs are required for early liver development in zebrafish embryos including specification, budding, and differentiation. They are also involved in exocrine pancreas formation but have no effect on the development of endocrine pancreas. While \(\text{hdac1} \) is more globally required for embryonic development including liver and exocrine pancreas, \(\text{hdac3} \) is more specifically required for liver formation. We further show that \(\text{hdac3} \) and \(\text{gdf11} \) function antagonistically in liver growth, consistent with earlier reports that \(\text{hdac3} \) negatively regulates \(\text{gdf11} \) transcription. \(\text{gdf11} \) also negatively regulates exocrine pancreas growth while its influence on endocrine pancreas is quite limited. In addition, we show that vascularization is not required for liver formation in zebrafish.

Acknowledgments

This work was supported by Singapore Biomedical Research Council grant BMRC/01/1/21/17/068. We thank the following people from the Department of Biological Sciences, National University of Singapore for their help: Dr. WK Chan for \textit{prox1} probe, Dr. S Korzh for \(\text{Cp} \) probe and Ms. YL Wu for help in zebrafish maintenance.

Appendix A. Supplementary data

References

