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Treatment effect estimation is one of the mainstays of the
field of outcomes research. It is, for example, a key com-
ponent in analyzing the cost-effectiveness of a proposed
qualitative intervention. Some outcomes researchers are
hesitant to use retrospective data for treatment effect esti-
mation because of the potential endogeneity of the treat-
ment variable. This is unfortunate, given the abundance
and other advantages of retrospective data. Others who
have used retrospective data have ignored the endogene-
ity problem, or have not recognized its potential for caus-

ing bias in their estimates. In this paper, an econometric
method that is unbiased in the presence of endogeneity
and therefore broadens the potential for use of retro-
spective data in the estimation of treatment effects is
proposed. This two-stage method is also designed to ac-
commodate nonlinearity in the relationship between the
treatment variable and the outcome. An easy to apply

 

GAUSS

 

TM

 

 implementation of the estimator is offered.
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Introduction

 

Many analyses in the field of outcomes research are
motivated by a desire to evaluate the influence of a
qualitative variable (referred to as the treatment: d)
on another variable (referred to as the outcome: y).
The treatment is usually binary and its influence on
the outcome is typically referred to as the treatment
effect. Examples of applied contexts that require
the estimation of treatment effects abound in both
the public and private sectors. For instance, a key
component of nearly every healthcare reform pro-
posal is the extension of public health care insur-
ance coverage to segments of the population that
are not currently covered. Whether or not an indi-
vidual citizen is granted public health insurance
coverage is a qualitative policy variable and mea-
suring its treatment effect on yearly healthcare ex-
penditure levels should be of great interest to public
policy makers. Similarly, as an important compo-
nent of assessing the cost-effectiveness of pharma-
ceutical products, researchers must be able to accu-
rately measure the effect of a drug on patient
outcomes such as subsequent hospitalizations or
physician visits.

In the present paper, an econometric method
that can be used to estimate treatment effects from

retrospective data is proposed. The method is de-
signed to deal with two complications that typi-
cally arise in this context. First, because of the non-
experimental nature of the data, estimation is
likely to be biased due to the presence of con-
founders. A confounder is a variable that both ex-
erts influence on the outcome and is correlated
with the treatment. In the health insurance exam-
ple mentioned earlier, age would be a confounder
because older individuals tend to spend more on
healthcare and are more likely to possess health in-
surance coverage. Ignoring the effect of age would
therefore cause an upward bias in the estimate of
the health insurance treatment effect. Age, how-
ever, is an observable variable. Therefore, its ef-
fects can be accounted for in a regression modeling
framework. The effect of age, or any other observ-
able confounder, can be controlled by including it
as an additional regressor in the model. The more
technically troublesome case is the one involving
unobservable confounders. If unobservable con-
founders are present, the treatment is said to be en-
dogenous. Endogeneity is a particularly difficult
problem because, due to the nonobservability of
the confounder(s), direct application of the regres-
sion approach is not a feasible solution. Indeed it
is the lack of econometric methods for dealing with
the endogeneity problem that has greatly impeded
the use of retrospective data for treatment effect es-
timation. This is unfortunate because retrospective
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data is typically less costly to obtain than clinical
trials data, and in many contexts is the only so-
cially or ethically acceptable data option. More-
over, although experimental or clinical trials data
are less likely to involve endogeneity, results ob-
tained therefrom can only be used to analyze the
efficacy of the treatment. On the other hand, esti-
mates from retrospective data afford an assessment
of the effectiveness of the treatment, which is often
the research objective [1]. The econometric method
proposed extends the regression approach in a way
that yields unbiased estimates in the presence of
endogeneity, and therefore broadens the potential
for use of retrospective data in the estimation of
treatment effects.

The second complicating factor in the estima-
tion of a treatment effect is the possible nonlin-
earity of the relationship between the treatment
and the outcome. For example, the treatment ef-
fect of a drug on subsequent doctor visits may
differ depending on the frequency with which the
individual consults his physician. Such nonlinear-
ity can be accommodated through the appropri-
ate nonlinear regression formulation. Nonlineari-
ties in the modeling of treatment effects may also
arise as a means of maintaining logical consis-
tency when the outcome variable is restricted in
range. For example, yearly health care expendi-
ture is strictly nonnegative so a logically consis-
tent regression model of the health insurance
treatment effect must itself be nonnegative. The
exponential functional form is often used for this
purpose [2]. Another example is the case in
which the outcome variable is itself a binary vari-
able. Here a nonlinear binary response model
like logistic regression or probit analysis is apro-
pos. In addition to the elimination of bias due to
endogeneity, the proposed treatment effect esti-
mator is designed to accommodate nonlinearity
in the relationship between the treatment and the
outcome.

This paper details a generic nonlinear regres-
sion formulation, including a description of how
unobservable confounders are accounted for in
modeling the treatment effect. The estimator is de-
veloped and GAUSS

 

TM

 

 computer software imple-
menting the method is discussed.

 

Nonlinear Regression with an Endogenous 
Treatment Effect

 

The objective is to estimate the effect of a binary
qualitative variable (d 

 

�

 

 1 or 0) on a continuous or
qualitative outcome variable (y) using retrospective

data. For example, Treglia et al. [3] estimated the rel-
ative treatment effect that dothiepin (vs. fluoxetine—
both antidepressants) has on healthcare resource uti-
lization following the initiation of antidepressant
therapy. The healthcare resources examined in the
study included: general hospital accident and emer-
gency room admissions, general hospital nonaccident
and emergency room admissions, patients’ visits to
general practitioners, psychotherapy referrals, other
general referrals to healthcare providers, the number
of prescriptions for the antidepressant originally as-
signed, the number of follow-up antidepressant pre-
scriptions, and counts of anxiolytic, hypnotic, and
other prescriptions. One of the problems with using
retrospective data is bias in the estimation of the
treatment effect due to the presence of confounders—
i.e., variables that influence the outcome and are cor-
related with the treatment. In the example, patient
behavioral data observed in a retrospective survey are
biased for the purpose at hand mainly because the
surveyed individuals freely chose (under the advice/
prescription of their physicians) to take dothiepin or
fluoxetine. It may, for instance, be the case that older
individuals are both more likely to visit the physician
and more likely to take dothiepin, perhaps due to dif-
ferences in side effects. A variable such as age is an
observable confounder. Observable confounders can
be dealt with by including them in a regression
framework. It may also be that the relative treatment
effect of dothiepin versus fluoxetine may differ with
age and other observable confounders, so that the
conventional linear regression specification in which
the treatment effect is assumed to be constant will not
suffice. Instead a nonlinear formulation of the regres-
sion is required. Moreover, the dependent variable in
this example, i.e., the number of doctor visits, is lim-
ited in range and is nonnegative. A nonlinear form
like exponential regression is often used to impose
such range restrictions. These notions can be formal-
ized, for cases involving observable confounders
only, via a nonlinear regression model based on the
following conditional mean assumption:

(1) 

where x is the row vector of observable confound-
ers, 

 

�

 

 is the conformable column vector of regres-
sion coefficients, 

 

�

 

 is the regression coefficient of
the treatment variable, and J( ) is a known nonlin-
ear function. For instance, in the example dis-
cussed earlier, the dependent variable y is count
valued (i.e., y 

 

�

 

 0, 1, 2, . . .) so Treglia et al. [3]
implement the following version of (1):

E y  x, d[ ] J xβ dγ+( )=

E y  x, d[ ] exp xβ dγ+{ }=
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which is everywhere nonnegative in accordance
with the range of y. Likewise, for binary response
models (y 

 

�

 

 0 or 1), the following would be used:

where F( ) is a probability distribution function.
This nonlinear form restricts the regression to the
unit interval as would be required of the mean of
any binary random variable.

In regression models arising from (1), the treat-
ment effect of d is measured as

where the x subscript denotes that the expectation
is taken with respect to the observable confound-
ers. The parameters of (1) can be easily and con-
sistently (in the statistical sense) estimated from
retrospective data by applying the nonlinear least
squares (NLS) estimation method. The treatment
effect would then be consistently estimated as:

(2)

where  and  are the NLS estimates of 

 

�

 

 and 

 

�

 

,
i denotes a particular sampled individual (i 

 

�

 

1, . . . , n), and n is the sample size.
If the treatment (d) is endogenous, then in ad-

dition to the observable confounders in x, the
model involves unobservable confounders which
will henceforth be represented by the scalar vari-
able 

 

�

 

. In the example introduced above (in which
d denotes whether or not dothiepin versus fluoxe-
tine was prescribed, y denotes the number of doc-
tor visits, and x denotes observable confounders
like age) 

 

�

 

 might include unobservable confound-
ers like underlying disease severity, patient and/or
physician preferences, and patient’s prior compli-
ance. Because it is a confounder, 

 

�

 

 is correlated
with d and exerts an influence on y, i.e., d is en-
dogenous. The endogeneity of d is made explicit
through the following extensions of the regression
model characterized by (1):

(3)
and

(4)

where z denotes a row vector of observable vari-
ables that influence the treatment, 

 

�

 

 is the con-

E y  x, d[ ] F xβ dγ+( )=

Ex E y  x, d 1=[ ] E– y  x, d 0=[ ]

Ex J xβ γ+( ) J xβ( )–=

J xiβ̂ γ̂+( ) J xiβ̂( )–
i 1=

n

∑
n

--------------------------------------------------------------

�̂ �̂

d I zα ν 0>+( )=

E y  w, d, ν[ ] J xβ dγ θν+ +( )=

 

formable column vector of unknown parameters,
w is the vector of variables composed of the union
of the elements of x and z, and I( C ) denotes the
indicator function whose value is 1 if condition C
holds and 0 otherwise. Equation (3) captures the
correlation between 

 

�

 

 and d. It takes the form of
the typical index/threshold assumption underlying
a binary probit or logit model. The index in this
case is z

 

�

 

 

 

�

 

 

 

�

 

. This component of the model is de-
signed in a way that if the index exceeds an arbi-
trary threshold then the value of d is observed to
be equal to 1. As is conventional in binary re-
sponse models of this type, the threshold is set
equal to 0 for identification purposes. Equation
(4) formalizes the influence of 

 

�

 

 on y. If 

 

�

 

 were in-
stead an observable confounder, we would seek to
include it as an additional regressor in the relevant
nonlinear conditional mean regression formula-
tion. Equation (4) is designed with this in mind.
The version of expression (4) implemented by
Treglia et al. [3] is

.

This imposes the requisite nonnegativity constraint
while directly accounting for the influence of the
unobservable confounder 

 

�

 

. Note that if 

 

�

 

 were ob-
servable, the parameters of (4) could be estimated
via NLS as described earlier, and the treatment ef-
fect would be estimated as in (2). Unfortunately
this is not the case, so an alternative approach must
be found.

Given assumptions (3) and (4) it can be shown
that:

(5)

E y  w, d, ν[ ] exp xβ dγ θν+ +{ }=

E y  w, d[ ] d

E
zα–

∞

∫ y  w, d 1,ν=[ ]h ν( )dν

1 H zα–( )–
-------------------------------------------------------------------------

 1 d– ( ) 

E

 ∞– 

z

 

α–

 
∫

 

y  w, d 0,

 

ν=

 

[ ]

 

h

 

ν( )

 

d

 

ν

 
H z

 α– ( )
-------------------------------------------------------------------------+

=

 

d

J

 

z

 

α–

 

∞

 

∫

 

x

 

β

 

d

 

γ θυ+ +

 

( )

 

h

 

ν( )

 

d

 

ν

 

1 H z

 

α–

 

( )–
--------------------------------------------------------------------

 1 d– ( ) 

J

 ∞– 

z

 

α–

 
∫

 

x

 

β

 

d

 

γ θυ+ +

 

( )

 

h

 

ν( )

 

d

 

ν

 
H z

 α– ( )
--------------------------------------------------------------------+

=
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where h( ) and H( ) respectively denote the pdf
and cdf of 

 

�

 

 conditional on w [henceforth denoted
(

 

�

 

 

 

�

 

 w)]. The interpretation of equation (5) is intui-
tive. The first component of the expression to the
right of the first equals sign is the conditional
mean of y given the exogenous variables in w and
d 

 

�

 

 1. At the heart of this conditional mean is the
expectation of y given w, d 

 

�

 

 1, and 

 

�

 

 (i.e., the
term E[y 

 

�

 

 w, d 

 

�

 

 1, 

 

�

 

] ). Using assumption (4), we
replace E[y 

 

�

 

 w, d 

 

�

 

 1, 

 

�

 

] with J(x

 

�

 

 

 

�

 

 d

 

�

 

 

 

�

 

 

 

��

 

)
which is the nonlinear regression specification that
would be directly estimated via NLS if 

 

�

 

 were ob-
served. Unfortunately 

 

�

 

 is not observed so the
analysis must be conditioned on the limited, but
useful, information we have regarding 

 

�

 

, mainly
that if d 

 

�

 

 1 then 

 

�

 

 

 

	

 

 

 




 

z

 

�

 

. The probability of this
conditioning event, 1 

 




 

 H(

 




 

z

 

�

 

), is seen in the de-
nominator, and because 

 

�

 

 is unobserved, J(x

 

�

 

 

 

�

 

d

 

�

 

 � ��) must be integrated over the relevant range
of � to complete the desired conditional expecta-
tion. The formulation of the second component on
the right-hand side of (5) can be similarly inter-
preted.

If an acceptable candidate for the distribution
of (� � w), can be found [i.e., if H( ), and therefore
h( ) are specified], then (5) can be used as the basis
for consistent NLS regression estimation of the pa-
rameters of the model, and the treatment effect
can be estimated as in (2). The nonlinear regres-
sion specification that corresponds to (5) is

(6)

where J*(w, d, �, �, �, �) � E[y � w, d] as ex-
pressed in (5), and e � y 
 J*(w, d, �, �, �, �). In
general J*(w, d, �, �, �, �) cannot be expressed in
closed form. It can nevertheless be accurately and
efficiently evaluated using numerical approxima-
tion. Appropriate quadrature methods are avail-
able for this purpose [4]. Alternatively, simulation
methods can be used [5]. The GAUSSTM program
described later in the paper uses quadrature to ap-
proximate the requisite integrals.

When y is a binary qualitative variable (y � 0
or 1):

y J* w, d, β γ θ α, , ,( ) e+=

J* w, d, β γ θ α, , ,( )

d

F
zα–

∞

∫ xβ dγ θν+ +( )h ν( )dν

1 H zα–( )–
---------------------------------------------------------------------

     1 d– ( ) 

F

 ∞–
 

z

 

α–

 
∫

 

x

 

β

 

d

 

γ θν+ +

 

( )

 

h

 

ν( )

 

d

 

ν

 
H z

 α– ( )
---------------------------------------------------------------------+

=

 

In [6], it is shown that for nonnegative regressions
(e.g., count data models; y 

 

�

 

 0, 1, 2, . . . ), under
the assumptions that J(q ) 

 

�

 

 exp{q} and (

 

�

 

 

 

�

 

 w) is stan-
dard normally distributed, the following closed-
form expression for J*(w, d, 

 

�

 

, 

 

�

 

, 

 

�

 

, 

 

�

 

) obtains:

where 

 

�

 

( ) denotes the standard normal cumula-
tive distribution function (cdf). It is interesting to
note that for the linear case in which J(q) 

 

�

 

 q:

(7)

and if (

 

�

 

 

 

�

 

 w) is assumed to be standard normally
distributed, with 

 

�

 

( ) denoting the standard nor-
mal probability density function (pdf), (7) becomes:

which is the regression specification suggested by
Heckman [7]. If (

 

�

 

 

 

�

 

 w) is assumed to be logisiti-
cally distributed (7) becomes:

where 

 




 

( ) denotes the logistic cdf and

This specification was first suggested by Hay [8].

 

The Two-Stage Estimator

 

In most applications, NLS estimation of (6) can be
made easier by applying the following two-stage
analog to the method suggested by Heckman [7].
In the first-stage, the appropriate binary response
estimator [corresponding to the chosen specifica-
tion of H( ), the cdf of (

 
�   �  w)] is used to obtain ,

a consistent estimate of 
 

�
 

. In the second stage, es-

J* w d β γ θ α, , , , ,( ) xβ dγ+{ }exp=

dΦ θ zα+( )
Φ zα( )

-------------------------- 1 d–( )1 Φ θ zα+( )–
1 Φ zα( )–

-----------------------------------+
⎝ ⎠
⎜ ⎟
⎛ ⎞

×

J* w, d, β γ θ α, , ,( ) xβ dγ

θ d

ν h
zα–

∞

∫ ν( ) dν

1 H zα–( )–
---------------------------------- 1 d–( )

ν h
∞

zα–

∫ ν( ) dν

H zα–( )
----------------------------------+

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

+

+

=

J* w, d, β γ θ α, , ,( ) xβ dγ+ +=

θ d φ zα( )
Φ zα( )
---------------- 1 d–( ) φ zα( )

1 Φ zα( )–
-------------------------–

J* w, d, β γ θ α, , ,( ) xβ dγ+=

 θ d r zα( )
Λ zα( )
---------------- 1 d–( ) r zα( )

1 Λ zα( )–
-------------------------–+

r s( ) 1n 1 s{ }exp+( ) 1 s{ }exp+( )=

  s s{ }exp– 1 Λ s( )–[ ]

�̂
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timates of � and � can be obtained by applying the
NLS method to:

(8)

where

.

Using standard asymptotic results, it can be
shown that this two-stage estimator is asymptoti-
cally normal, with asymptotic covariance matrix:

where

and VAR( ) denotes the asymptotic covariance
matrix of the first-stage estimator of �. In practice
the following heteroskedasticity-consistent estima-
tor of V can be used:

where G1 and G2 are, respectively, the nx(K1� 2)
and nxK2 matrices whose typical rows are:

K1 and K2 are respectively the dimensions of x and
z, �* is the nxn diagonal matrix whose ith diago-
nal element is ,the squared residual (for the ith

sample member) from NLS estimation of (8), and
VÂR denotes the estimated asymptotic covariance
matrix of .

The main competitor for this two-stage estima-
tor would be a version of the generalized method
of moments (GMM) estimator of Hansen [9]. The
simplest and most familiar version of the GMM
estimator is the instrumental variables (IV) method
otherwise known as two-stage least squares (see
Greene [10] for a discussion of the IV method).
The problem with using IV estimation in this con-

y J* w, d, β γ θ α̂, , ,( ) e*+=

e* J* w, d, β γ θ α, , ,( ) J* w, d, β γ θ α̂, , ,( )–≡

V E g1′g1[ ] 1– E e2g1′g1[ ]

   E g 2 ′ g 1 [ ]′ VAR α( )ˆ E g 2 ′ g 1 [ ]

+

 E g 1 ′ g 1 [ ] 
1–

=

b
β
γ
θ

=

g1
∂J*
∂b
---------=

g2
∂J*
∂α
---------=

�̂

V̂ G1′G1( ) 1– G1′Ψ*G1

G1′G2VÂR G2′G1

+

G1′G1( ) 1–
=

g1i

∂Ji
*

∂b
-------- and g2i

∂Ji
*

∂α
--------==

eî
*2

�̂

 

text is that it fails to take account of nonlinearity
of the treatment effect. The only truly nonlinear
version of the GMM approach that has been sug-
gested in the present context is that of Mullahy
[11]. There are, however, two important short-
comings of Mullahy’s method vis-a-vis the method
reported here. First, Mullahy’s GMM estimator is
designed specifically for the case in which the con-
ditional mean regression model is exponential—
i.e., it is useful for nonnegative models only. The
formulation suggested here is generic in the sense
that it applies to any nonlinear or limited depen-
dent variable model that conforms to assumption
(4). Secondly, Mullahy’s model ignores important
structural information and therefore is less effi-
cient in the statistical sense than the method re-
ported in this paper. Specifically, his GMM ap-
proach ignores the structural information supplied
by assumption (3) used here. But (3) is a com-
monly accepted, and reasonable formulation for
binary response models, e.g., conventional probit
and logit models. The two-stage method reported
here was compared in a more general setting to
that of Mullahy and was found to be substantially
more efficient even for large sample sizes [12]. For
example, with 1000 simulated samples of size
20,000, the mean-square-error ratio (GMM/TSM)
was 2.31 for cases in which endogeneity was rela-
tively mild (the correlation between 

 

�

 

 and y was
low), and as large as 10.15 when endogeneity was
more severe.

Treglia et al. [3] applied the two-stage method
reported here to the estimation of the relative
treatment effect of dothiepin versus fluoxetine on
ten different resource utilization measures: accident
and emergency (A&E) hospital visits; non-A&E
hospital visits; doctor visits, general referrals; psy-
chotherapy referrals; follow-up antidepressants;
anxiolytic prescriptions; hypnotic prescriptions;
other prescriptions; and the antidepressants con-
sidered in the study, dothiepin and fluoxetine. The
specific versions of J( ) and H( ) that they used
were exp{ } and 

 

�

 

( ), respectively. For five of ten
regressions the estimates of 

 

�

 

 were significant at
the 1% level. In these cases failing to control for
the endogeneity of the treatment would have re-
sulted in estimation bias. After correcting for en-
dogeneity, the average individual who used dothi-
epin made 5.446 fewer doctor visits per year.

A GAUSS

 

TM

 

 implementation of the two-stage
estimator was developed which allows the user to
choose from among the following four specifica-
tions for J( ): J(q) 

 

�

 

 q, the linear specification for
conventional regression models; J(q) 

 

�

 

 exp(q), the
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exponential specification for nonnegative models;
J(q) 

 

�

 

 

 

�

 

(q), the prohibit, or J(q) 

 

�

 

 

 




 

(q), the logit,
for binary response models.

Possible choices for the distribution of (

 

�

 

 

 

�

 

 w)
are:

.

These selections are easily made through initial
settings at the top of the program along with other
user-supplied options. Application of the software
requires minimal GAUSS

 

TM

 

 programming experi-
ence.  

Conclusion

 

The specter of endogeneity bias has caused out-
comes researchers to avoid the use of retrospective
data for the estimation of treatment effects. In this
paper, an econometric method is proposed that, in
addition to being unbiased in the presence of en-
dogeneity, is designed to accommodate nonlinear-
ity in the relationship between the treatment vari-
able and the outcome. The two-stage estimator
suggested here is analogous to the sample selection
estimator proposed by Heckman [7] for the classi-
cal linear regression model. The estimator has
been fully implemented in the GAUSS

 

TM

 

 program-
ming language for many of the most popular non-
linear regression specifications, and application of
the software requires minimal GAUSS

 

TM

 

 program-
ming experience. Versions of the method that al-
low more flexibility in the functional form of the
regression specification are currently under devel-
opment.

H q( ) Φ q( )
Λ q( )

=
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