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Sufhcient conditions are given for the L.&ability of a class of feedback 
systems consisting of a linear operator G and a nonlinear gain function, either 
odd monotone or restricted by a power-law, in cascade, in a negative feedback 
loop. The criterion takes the form of a frequency-domain inequality, 

Re[l + Z(jw)] G(jw) > 6 > OVw E (-00, +a), 

where Z(~W) is given by, Z( jw) = /3[ Yr( jw) -I- Yz( jw)] + (1 - j3)[ Ys( jcu) - Y,(-jo)], 
with 0 < /3 Q 1 and the functions yr(.), y2(*) and ys(.) satisfying the time- 
domain inequalities, 

s 

+m 
_m I ydt) + YaWI dt =G 1 - e> Yd.1 = 0, t < 0, 

yz(.) = 0, t > 0 and c > 0, 
and 

I 

m 

0 
I y&l dt < & , 

z 

cg being a constant depending on the order of the power-law restricting the 
nonlinear function. The criterion is derived using Zames’ passive operator 
theory and is shown to be more general than the existing criteria. 

1. INTRODUCTION 

Following the advent of Popov’s [l] frequency-domain stability criterion 
for the feedback system which can be posed in the Lur’e form, many recent 
publications have aimed at broadening the class of multipliers by imposing 
more restrictions on the nonlinear function. O’Shea [2] introduced a class of 
muitipliers with certain time-domain conditions, for systems with monotone 
and odd monotone nonlinearities and proved stability in these cases by using 
bounds on the input-output cross correlation function of the nonlinearity. 
Closely related results, with considerably more generalization, were obtained in 
the framework of operator theory by Zames and Falb [3]. In a recent publication, 
Thathachar [4] gave a stability criterion for systems with power-law restricted 
nonlinear functions which indeed form a subclass of odd monotone functions. 
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However, the proof in that paper requires the a priori assumption that the 
solutions are bounded and appears to take into account a limited class of 
nonlinearities. In the present paper, a similar system is considered and a 
criterion for Ls-stability is derived by using what is now well known as Zames’ 
positive operator theory. 

The main contribution here is considered to be the following: 

(1) The condition on the multiplier M = E + Z in [3] that the norm 
of the operator Z be less than unity is removed. 

(2) The stability criterion derived here for systems with odd monotone 
nonlinearities is more general than that in [3] and further takes into account 
the case of power-law nonlinearities. 

(3) The criterion is also general than that in [4] for the case of power- 
law nonlinearities and at the same time overcomes the boundedness assump- 
tion made in that paper. 

2. PROBLEM FORMULATION 

2a. Notations and Dejnitions 

It is assumed that the reader is familiar with the notions of normed spaces, 
linear spaces, inner products, Lz-spaces, extended L,-spaces (Lze) and extended 
norms on L,, . (These concepts are defined in Zames and Falb [3].) 

An “operator M” on L, is a single-valued mapping of L, into itself. 
The “gain of an operator M”, denoted by Y(M), is given by, 

An operator M is said to be “positive” if (x(e), l&(a)) 2 0 VX(*) EL, . 
If a stronger inequality of the form (x(.), Mx(*)) > 6(x(.), x(e)> holds 
Vx(*) ELM , 6 > 0, then the operator M is termed “strongly positive”. 

The “adjoint” of an operator M, denoted M* is a mapping of L, into itself 
such that, 

Cd.), Md*)) = @*XI(.), x2(.)) ‘h > *z EL,. 

2b. The Main Problem 

Consider the feedback system illustrated in Fig. 1. Assuming that G and N 
are operators in L, , the feedback equations may be formulated as, 

e, = x1 - w2 , (2.1) 
e2 = x2 4 wl , (2.2) 
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wl(t) = Ge,(t) = jr g(r) eI(t - T) &, 

44 = Ne&) = We,(t)), 

(2.3) 

(2.4) 

satisfying the following assumptions. 

2 
FIG. 1. The feedback system under consideration $j’ and E are written as G and N, 

respectively, in the text. 

(4 4.1 and x2(.) G(- ~0, + co), 
03 !A.> E&t- 00, + a) nL,(- a, + 00). 

It must be noted that the initial conditions are assumed to be zero in (2.3) 
and this does not result in any loss of generality (see [5]). 

Let G( jw) denote the Fourier transform of g( e). 

(C) In (2.4) N(.) is a real-valued function on (- co, + co) such that 
N(0) = 0 and N( *) is restricted by a power-law, i.e. it satisfies the following 
conditions: 

(i) UN(U) 3 Ova, 

(ii) N(a) = - N(- u) and dV(u)/d~ >, OVU, 

(iii) l/m < [d log N(u)]/(d log u) < mVu > 0, 

(2.5) 

(2.6) 

(2.7) 

where “rn” is the order of the power-law. 

(iv) / N(u)1 < K 1 u 1 for some K > 0 and all (I. (2.8) 

When the nonlinear function satisfies the above conditions, it will be said 
to belong to the class P. The particular case of m = 1 corresponds to linear 
feedback and as m ---f co, the nonlinear function approaches the class of odd 
monotone functions. An important property of this kind of nonlinearity 
is that it satisfies an inequality of the form 
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where cs is a constant, 

(2.10) 

For a derivation of this, see [4]. 
The problem of interest may now be stated as follows. Given the system 

described by (2.1)-(2.4) with the assumptions A, B, and C, find sufficient 
conditions on G for e,(.) and ez(.) to be in L,(- co, + co) and 

‘,‘z wl(t) = 0. 

3. THE STABILITY CRITERION 

3a. Main Theorem 

If there exist elements yi(.), yz(.), and ~a(.) in Ll(- cc, + cc) such that, 

y1(t) = 0, t < 0; yz(t) = 0, t > 0; y3(t) = 0, t < 0 (3.1) 

and 

s 

+a 
I ~10) + r&>l dt G 1 - 6, E>O (3.2) --m 

c2 being given by (2.10), and the inequality, 

Re[l + Z(~U)] G(jw) > 8 > OVw E (- co, + co), 

is satisfied for Z(jw) given by, 

(3.4) 

-we) = B[Yl(j~) + Yz(“h)l + (1 - B) F&J> - y3(-.bJ)I, (3.5) 

where ,8 is a constant and 0 < ,f3 ,< 1, then ei( *) and e2(*) are in 
L,(- co, + cc), and also lim,,, q(t) = 0. 

3b. A few Remarks 

Remark 1. A more general function Z,( jw) = Z( jw) + ajm, Q > 0 can 
be used in (3.4) if an additional condition limw+ 1 wG( ju)l = 0 is satisfied 
(see PI). 

Remark 2. It must be noted that the present criterion is more general 
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than the existing criteria. For the case of /I = 1, the multiplier [l + Z(~W)] 
reduces to the multiplier in [2] (in view of Remark 1) and [3]l and for the 
case of /3 = 0, the multiplier used in [4] is obtained. 

Remark 3. For the case of the nonlinearity being odd monotone, m = co 
and c2 from (2.10) is equal to unity. Hence the inequality (3.4) holds with 
(3.1), (3.2), (3.5), and 

Remark 4. Since [4] is a special case2 of the present criterion, an additional 
feature of the result given here is that for linear feedback, it reduces to the 
well known necessary and sufficient conditions corresponding to the Nyquist 
criterion. 

Remark 5. The multiplier [I + Z(jw)] used here is very general in the 
sense that any rational function P(s) which satisfies Re P(jw) > OVw, can be 
put in this form by spectral factorization (see [6]). 

4. PROOF OF THE STABILITY CRITERION 

Before going to the actual proof of the stability criterion, a few preliminary 
results will be established. 

4a. A Stability Theorem for Feedback Systems 

Here, a theorem given by Zames and Falb [3] for the stability of a general 
feedback system with the configuration as in Fig. 1 is invoked. 

THEOREM 1. If there is a mapping M of L, into L, such that : 

(i) there are linear maps M, and M- of L, into L, such that M = M-M, 
where M, and M- are invertible and M, , M;l, Mm*, M5-l are nonanticipative 
and have finite gains, 

(ii) MG and M*N are positive, 

(iii) MG . t gl zs s ron y positive and G has finite gain, then e,(.) and e2(*) 
are in L, . 

This theorem is fundamental and the rest of the proof involves recasting 
the information available so as to satisfy the conditions of this theorem. 

1 It must be noted that the condition (3.2) is not different from the condition in 
[2] or [3] since F is arbitrary. 

e The condition in [4] is slightly different from (3.4) in that 6 is allowed to be zero 
but involves somewhat more restrictions on the nonlinearity. 
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4b. Operator Factorization 

The importance of the factorization of an operator M into a product of 
two operators M, and M- is well broughtforth in the above theorem. The 
conditions for such a factorization will now be established. 

LEMMA 1. Let a be a commutative Banach algebra with an identity E. 
If z( .) is a nonzero element of g such that the frequency function Z( ju) is of the 

form (3.9, then (E + Z) is a strongly positive operator. 

Proof. 

= j3 Jlrn MT) + Ya(41 j$ 44 Nt - 4 dt fh 

+ (I- fl) lrn J’s(T) [/+m +> x(t - T, dt 
0 --m 

- /+m x(t) x(t + T) dt] dT 
-cc 

The integrals within the square brackets in the last term of the RHS 
cancel, and hence, 

since 

from (3.2) 

where R(T) is the autocorrelation function six(t) x(t - T) dt. 
This implies, 

Hence, 

(4.h Zx(*)) 2 - PO - l ) (x(.), 4.)). 

(4.h (E + Z> 4.)) = (4-L 4.1) + Cd-), Zx(.)> 

2 r1 - BU - 41 <N.), 4.)) 
3 4X(‘), x(.)h 

since 0 </3 < 1. Q.E.D. 
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This lemma is the crucial step in establishing the factorizability of the 
operator (E + Z). Since (E + Z) is strongly positive, its spectrum is con- 
tained entirely in the open RHP of the complex plane. We can take a simply 
connected domain D in the complex plane including all the spectrum points 
of (E + Z) but excluding the origin. Let I’ be a simple closed curve in D 
enclosing all the spectrum points. Sincef(6) = log 5 is a holomorphic function 
on D, the logarithm of (E + Z) exists3 and is given by the Dunford-Taylor 
integral (see [7]) 

f(M) = & j f(E) 6% - W-l df. 
r 

Hence, (E + Z) can be factorized into (E + Z) = Z-Z, where 

Z+ = exp[f’+ log(E + Z>l and Z- = exp[P- log(E + Z)], 

P+ and P- being projections on 5@ such that P- + P+ = E, , the identity 
of the space U(a, 9) which is the space of all continuous linear maps of A? 
into itself. It can be seen that Z, and Z- are invertible. 

4c. Positivity Conditions 

LEMMA 2. If IV(.) is an odd monotone function and x(.) E&(- CO, + co), 
then 

1 jt” x(t) N(x(t - T)) dt / < j-+m x(t) N@(t)) dt. 
--m --m 

The proof of this lemma is given in [3]. 

(5.1) 

LEMMA 3. If IV(.) E Pm and x(.) E&(- to, + CO), then 

1 jy: x(t) N(x(t - T)) at - jz, x(t) N(x(t + T)) dt 
where c2 is given by (2.10). 

The proof of this lemma follows from inequalit: 

G 2% s +m x(t) N@(t)) dt, 
-co 

(5.2) 

(2.9) and is given in [4]. 

s It must be noted here that Zames and Falb [3] have shown the existence of the 
logarithm of (E + Z) with the assumption, norm of Z less than 1. Such an assumption 
cannot be made here since an element Z(.) having Z&J) of the form (3.5) can have 
a norm greater than 1 and hence the existence of the logarithm is to be shown from 
different considerations. 
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LEMMA 4. If 2 is an element of a commutative Banach algebra g such that 
Z(jw) has the form (3.5) and N( *) E P”, then (E + Z)* N is positive where E 
is the identity element of 99. 

Proof. If x(e) EL&- co, + CO), 

(x(.),Z*Nx(*)) = jT Z(T) j+m x(t) iV(x(t + T)) dt dr 
--m 

= 
s ‘1 ~b’dT) + Yk)) + (1 - 8 hb) - Yd- +I 

s 
+m x(t) N(x(t + T)) dt dT 
-co 

= B jfm [YI(T) + ~~(41 ,:I 40 W(t + 4 dt d7 -02 

+ (1 - fl) jmY&) [ jim x(t) N(*(t + 7)) dt 
0 -cc 

- j+” x(t) N(x(t - T)) dt] dT. 
--@a 

Hence, 

1(x(*), Z*Nx(-))I < fi j$ 1 Yk) + Yz(dt j jl: dt) N(x(t + T)) dt j dT 

+ (1 - p) j," 1 Y&)1 1 j+m x(t) N(x(t + T)) dt --m 

- j;I x(t) N(x(t - T)) dt j dT 

Gcrs j-11 I rdd + Y a(~> I 1;: 40 W#)) dt dT 

from (5.1) and (5.2) 

< (4.L N4.h from (3.2) and (3.3). 

Hence, 

(x(.), (E +z>*Nd.)) = ((E +Z)x(*), Nx(.)) 

= (x(->, W-1) + (x(.), Z*Nx(.)) 

> 0. Q.E.D. 
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LEMMA 5. If 2 and G are elements of @ with Z( jw) of the form (3.5) and if, 

Re[l + Z(jw)] G( jw) 3 6 > OVw E (- co, + co), 

then (E + Z) G is strongly positive. 

The proof is quite straightforward and follows from an application of 
Parseval’s theorem, 

(x(e), y(e)) = & lirn X(jw) Y(-jw) dw. 
-02 

4d. Proof of the Main Result 

It can now be seen that the aim of the previous divisions (viz. 4b and 4c) 
was to systematically bring forth the satisfaction of the conditions of the 
fundamental theorem in Section 4a. Condition (i) is satisfied by Lemma 1 
and conditions (ii) and (iii) by Lemmas 4 and 5. Hence it follows that e,(.) 
and e,(*) are in L, . The proof of the assertion limt,, WI(t) = 0 when 
g(.) E L,(- co, + co) n L,(- co, + co) is given in Zames and Falb [3]. 
This completes the proof of the stability theorem. 

5. CONCLUSIONS 

A frequency-time domain stability criterion was established for the 
La-stability of a feedback system comprising of a linear transfer function 
and a nonlinearity of a certain class. A new form of multiplier was used to 
prove stability. The proof involved the factorization of operators in a Banach 
algebra of operators and this was related to the positivity properties of the 
operator. Finally, it was shown that the present criterion is very general 
and the earlier criteria are merely special cases of this. 
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