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1. Introduction

Scalar derivatives [13,14] were introduced for characterization of monotone operators
(in sense of Minty—Browder) which are an important tool for solving operator equations,
variational inequalities, complementarity problems and partial differential equations. The
asymptotic version of the scalar derivative was defined by Isac in [7] for generalizing a
classical fixed point theorem of Krasnoselskii. The scalar asymptotic derivatives generalize
the asymptotic derivatives used by Krasnoselskii in his theorem. By introducing the notion
of the inversion of a mapping a kind of duality between the scalar derivatives and the
scalar asymptotic derivatives will be obtained. This duality will be used for finding scalar
asymptotic derivatives of a mapping which in general are not asymptotic derivatives.
Replacing assumption 3 of Theorem 3.1 [7] of Isac by these expressions of the scalar
asymptotic derivatives various fixed point theorems will be generated. These fixed point
theorems will be used for generating surjectivity theorems, solving variational inequalities,
complementarity problems and integral equations.

2. Preliminaries

Let E be a Banach space aiitf the topological dual of. Let (E, E*) be a duality
betweenE and E*. This duality is with respect to a bilinear functional énx E* denoted
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by (-, -) and which satisfies the following separation axioms:

(s1) (x0,y)=0forally € E* impliesxg =0,
(s2) (x,yo) =0 forallx € E impliesyg=0.

For the weak topology ot (respectively ontE*) we use the Bourbaki’s terminology, that
is, the weak topology o is theo (E, E*)-topology and onE™* the o (E*, E)-topology.
Denote byL(E, E*) the set of continuous linear mappings fraininto E*. We remark
that if E = H, whereH is a Hilbert space, theR™ can be identified withH, the bilinear
functional generating the duality betweéhand E* with the scalar product off and
L(E, E*) with the space of continuous linear mappings fréminto H, which will be
denoted byl (H) [11].
Recall the following definitions [8]:

Definition 2.1. Let K C E and f: K — E*. f is calledcompletely continuous it is
continuous and the image of every bounded set is relatively compact.

Definition 2.2. We say that a non-empty st C E is a convex cone if:

(1) K+KCK,
(2) AK €K forall , e Ry.

A convex coneX is called pointed itk N (—K) = {0} and generating ik — K = E.

Definition 2.3. Let K C E be a convex cone. The convex cone
K*={yeE*|(x,y)>0forallx € K}
of E* is called the dual cone £ .
For more details about cones the reader is referred to [8].
Definition 2.4. Let A be a setX C E a pointed convex cone,y € K andf, g: A — E.
The relationx <k y defined byy — x € K is an order relation oiE. Define f <k g if
f) <k gz forallzeA.

Let (H, (-, -)) be a Hilbert space. Recall the following definitions:

Definition 2.5. A continuous operataZ : H — H is called skew-adjoint [1] if
<Z(x)7}7>=_<z()7)7x>» (1)

forall x, y € H.In[13]itis proved that relation (1) implies thatis linear.

Definition 2.6. A continuous linear operataP : H — H is called positive semidefinite
[15]if (P(x),x) >0, forallx € H.
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3. Inversions

Let (H, (-, -)) be a Hilbert space angl- || the norm generated by, -). The following
definition is an extension of Example 5.1 [4, p. 169]:

Definition 3.1. The operator
i H\ {0} — H\ {0}, i(x):n’“W
X
is calledinversion(of pole 0).

It is easy to see thatis one to one and~! = i. Indeed, since|i (x)|| = 1/||x]|, by the
definition ofi we havei (i (x)) =i (x)/]li (x)||> = ||x || (x) = x. Hencei is a global diffeo-
morphism ofH \ {0} which can be viewed as a global non-linear coordinate transformation
in H.

Let A C H such that 0= A and A \ {0} is an invariant set of the inversian i.e.,
i(A\{0}) =A\ {0} andf: A — H.Examples of invariant sets of the inversioare:

(1) F\ {0} whereF is a linear subspace @f (in particularF can be the wholé?),
(2) K\ {0} whereK C H is a pointed convex cone.

Now we define the inversion (of pole 0) of the mappifig

Definition 3.2. Theinversion(of pole 0) of the mapping is the mappind (f): A — H
defined by

T = { (o)) 20,

Proposition 3.1. The inversion of mapping® is a one to one operator on the set of
mappings f | f:A— H, f(0)=0}andZ"' =T, i.e,I(Z(f)) = f.

Proof. By definition Z(Z(f))(0) = 0. Hence,Z(Z(f))(0) = f(0). If x % 0 then

TEZ(H)H) = IxIPZH)E @) = IxPli)N2 £ GG x) = f(x). Thus, ZZ(f))(x) =
f(x)forallx e K. ThereforeZ(Z(f))=f. O

Proposition 3.2. Let f: A — A. Thenx # 0is a fixed point off iff i (x) is a fixed point of
VAGRR

Proof. Suppose that # 0 is a fixed point off, i.e., f (x) = x. Sincei (i (x)) = x we have
i) =x. (2)

Multiplying (2) by [li (x)||12 = 1/||x||? we obtainZ(f)(i (x)) = i (x). Thus,i(x) is a fixed
point of Z( f). Similarly can be proved thatifx) is a fixed point ofZ ( f), thenx is a fixed
pointof f. O
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LetD={xe H||x|| <1} andC = {x € H | |x|| = 1} be the unit ball and the unit
sphere ofH, respectively.

Proposition 3.3. Let f, g: A — H such t~hatf(x) =gkx)forallx e ANC and f(0) =
g(0) = 0. There exists unique extensiofisg: A — H of f|anp andg|anp, respectively,
such thatg =Z(f).

Proof. Let D° = {x €H ||x]l <1} First we prove the existence of the extensi mng.
Define the extensiong, g of f|anp andg|anp by

e i<
) = {I(f)(x) if x|l > 1.

and

o [fe i<
fx= {I(g)(x) if x|l > 1.

respectively. We have to prove that

§(x)=Z(Hx) 3)

forall x € A. We consider three cases:

First case x € AN D°. In this casg|x| < 1 and hencdji (x)| > 1. Thus, by definition
g(x) = g(x) and f (i (x)) = Z(g)(i (x)). By using these relations and the definition of the
inversion of a mapping, relation (3) can be proved easily.

Second case € A\ D. Inthis casd|x| > 1 and hencdi (x)|| < 1. Thus, by definition
g(x) = Z(f)(x) and f(i(x)) = f(i(x)). Relation (3) can be proved similarly to the
previous case.

Third casex € AN C. In this casg|x| = 1 and hencé(x) = x. Thus, by definition
g(x)=g() and f(i(x)) = f(x). In this case (3) is equivalent t6(x) = g(x), which by
the assumption made ghandyg it is true.

Now we prove the uniqueness of the extensigng. Suppose thaf, ¢ are extensions
of flanp andglanp, respectively, such that = Z(f). If |x|| < 1, theng(x) = g(x) =
g(x) since bothg andg are extensions of| anp. If ||x|| > 1, then|li (x)|| < 1. Sincef isan
extension off|anp, f(i(x)) = f(i(x)). By using this relation, relatiog(x) = Z(f)(x),
the definition of the inversion of a mapping and the definitiog @fe obtaing (x) = g(x).
Hence,$ = . Relationg = Z( f) implies f = Z(§). Hence relation/ = f can be proved
by interchanging the roles gf andg. O

In the case off = g Proposition 3.3 has the following corollary:

Corollary 3.1. Let f: A — H, f(0) = 0. There exists a unique extensign A — H of
flanp such thatf is a fixed point of (i.e., f = Z(f)).

It is easy to see that the inversion of mappings is linear, that & L(H, H) and
j:A < H is the embedding ofl into H thenZ(T o j) =T o j and that if||x|| - +o0
theni(x) — 0.



G. Isac, S.Z. Németh / J. Math. Anal. Appl. 278 (2003) 149-170 153

4, Scalar derivatives

Let (H, (-,-)) be a Hilbert space; € H a set which contains at least one non-isolated
point,G € H suchthaG € G, f: G — H andxg a non-isolated point of. The following
definition is an extension of Definition 2.2 [13]:

Definition 4.1. The limit
(f(x) — f(x0), x — xo0)

llx — xol|?

#,G T

ST (x0) = len_t%f
xeG

is called thelower scalar derivativeof f at xg along G. Taking limsup in place of

liminf, we can define the upper scalar derivatit&® (xo) of f atxo alongG similarly. If

G = G, then without confusion, we can shortly say lower scalar derivative and upper scalar

derivative instead of lower scalar derivative alaigand upper scalar derivative aloGy

respectively. In this case, we ongit from the superscript of the corresponding notations.

We have as follows:

Lemma4.l. Let K C H be an unbounded set such tliet K and K \ {0} is an invariant

set of the inversion. Letg: H — H. Then we have
jiminf (800> )
Ixll—o0  [lx]|
xekK

=Z(®)"* (0.

Proof. SinceK C H is unbounded and \ {0} is an invariant set aof, 0 is a non-isolated
point of K. Hence Z(g)*X (0) is well defined. Consider the global non-linear coordinate
transformatiory =i (x). Thenx =i(y) and we have
fiminf &)%) (x)’2x>
Ixll—00  [lx]|
xekK

=liminf(Z(g)(»),i(»).

y—0

yeK
from where, by using the definition of the lower scalar derivative along a set, it follows
easily the assertion of the lemmagd

5. Scalar asymptotic derivatives

Let (E, | - ||) be a Banach spacé;* the topological dual off, (E, E*) a duality
betweenE and E* with respect to a bilinear functional diix E* denoted by, -}, K C E
an unbounded sek C E such thatk < K and f: K — E*. The following definition is
an extension of the notion of scalar asymptotic derivatives defined in [7]:

Definition 5.1. We say tha” € L(E, E*) is a scalar asymptotic derivative ¢gfalongk if
o, fO) —TX) _ 0

limsup > <
[|lx || =400 [lx]]

xekK
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The operator of Definition 5.1 will be denoted By ;. (c0). If K = K, we can shortly
say scalar asymptotic derivative instead of scalar asymptotic derivative &loihg this
case, we omitk from the subscript of the corresponding notation. From now on, in this
section we suppose that= H, whereH is a Hilbert spacek = K, 0€ K andK \ {0}
is an invariant set of the inversian E* can be identified withH, the bilinear functional
generating the duality betweeh and E* with the scalar product off, and L(E, E*)
with L(H). The following proposition follows easily either directly by Definition 5.1 or
by Remark 6.1.

Proposition 5.1. If T is a scalar asymptotic derivative ¢f, then for any > 0the mapping
T + cl is also a scalar asymptotic derivative ¢f

Theorem 5.1. T € L(H) is a scalar asymptotic derivative of iff the upper scalar
derivative ofk in 0 is non-positivei.e.,h#(0) < 0)whereh: K — H,h=I(f =T o j) =
I(f)—Tojandj:K — E is the embedding of into E.

Proof. We shall suppose thdt € L(H) is a scalar asymptotic derivative gfand prove
that2#(0) < 0. The converse implication can be proved similarly. Indeed, sthed. (H)
is a scalar asymptotic derivative ¢f we have that

limsup (f(x) = T(x),i(x)) <0. (4)
llxl|—+o00
xek

Consider the global non-linear coordinate transformatica i (x) given by the global
diffeomorphismi. SinceK is unbounded and \ {0} is invariant undeti, O is a non-
isolated point ofK. Then,x =i(y) and by (4)

imSUp((f 0 )(y) = (T 0 j 01)(3). 3} <0
vek

Hence,

Hm%wquw—zawjwa@»<a
y—
yek

Thus, by the definition of the upper scalar derivative we Hé@) < 0. O
Corollary 5.1. 0 is a scalar asymptotic derivative gfiff Z(f)#(0) < 0.

The following theorem shows the surprising fact that evényith finite upper scalar
derivative in O is asymptotically scalarly differentiable.

Theorem 5.2. If Z(f)#(0) < +o0, then f is asymptotically scalarly differentiable and
T=1(H*O1

is a scalar asymptotic derivative gf, wherel : H — H is the identity operator.
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Proof. Indeed#(0) =0, whereh =Z(f) —T o j =Z(f) —Z(f)*(0)(I o j). Hence, the
result follows by using Theorem 5.1.0

The following remark follows easily by using Proposition 5.1.

Remark 5.1. Every operatot/ is a scalar asymptotic derivative gfwherec > Z(f)#(0)
is a constant.

6. Properties

Let (H, (-,-)) be a Hilbert space] - || the norm generated by, -) and f: H — H.
Recall the following notion [10]:

Definition 6.1. f is called -additiveif there existd > 0 and a function) : R, — R
such that lim_, oo (¥ (¢) /1) =0 and

I1f G+ y) = FO) = FDI<O(w ) +wdlyD),

forallx,ye H.

Theorem 6.1. Suppose thaf (¢x) is continuous irr for each fixedx. If f is y-additive
andyr satisfies

Q) vts) <Y (@)v(s), forall ¢, s e Ry,
2) v(@) <t forallr > 1,

then there exist a linear mappiy: H — H such that

20y (llx D llx|l
) =T, x)| S —F——5—> 3
15 < ==ua (5)
for all x € H. S is another linear mapping satisfying) iff 7 — S is skew-adjoint.
Proof. By Theorem 1 [10] there exists a unique linear mapginguch that
20 (|| x
£ @) - Teo) < 220D (6)

2-y(©2’

for all x € H. Moreover, by [10]T (x) = lim, .~ (f (2"x)/2"), for all x € H. Hence, by
using the Cauchy inequality in (6), we obtain (5). SupposeShaanother linear mapping
satisfying (5). Hence,
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(760 = S0| < [T = 700+ () = S00.0] < LFE D]

Then,

_ |/t 1 Y (n) 40y (Ix 1) [1x |
(T () = $(x), x)| = K;T(nx) - ;S(nx),x>‘ < QDL

Since lim,— oo (¥ (n)/n) = 0, we obtain that7 (x) — S(x), x) = 0. Thus,T — S is skew-
adjoint. Conversely, if" — S is skew-adjoint, therT (x) — S(x), x) = 0. Hence,
[(f(x) = S(x), x)| < [(f () = T(x), x)| + (T (x) = S(x), x)|

_ 209 (llx (D llx |l
= ’(f(x) - T(x),x)‘ < W

Remark 6.1. By the definition of the scalar asymptotic derivative, it follows easily that, if
U is a scalar asymptotic derivative gfandg : H — H satisfies the relation

(g(x),x) <0, (7

forall x € H, thenU is also a scalar asymptotic derivative pf+ g. Particularly, for any
skew-adjoint mapping, the mappingU is a scalar asymptotic derivative gf+ Z, or
equivalentlyU + Z is a scalar asymptotic derivative ¢f Moreover, for anyP continuous
linear positive semidefinite operatdf,+ P is also a scalar asymptotic derivative 6fAn
example for a non-linear mappingsatisfying (7) isg : R® — R3:

gu,v,w)=(—u+vw, —v+uw, —w — 2uv).

It would be interesting to study the properties of mappings satisfying the condition (7). Of
course, 0 is a scalar asymptotic derivative of these mappings.

Remark 6.2. By the Cauchy inequality it follows easily that every asymptotic derivative of
f is a scalar asymptotic derivative ¢f However, the converse is not true. Indeed, it can
be easily checked that jf : R® — R3:

f(u,v,w)=(vw, uw, —2uv),
then O is a scalar asymptotic derivativeobut it is not an asymptotic derivative gf.

Remark 6.3. Every continuous operatdt satisfying (5) is a scalar asymptotic derivative
of f. Indeed, we have

: (f(x) =Tx),x) 20 _ v(lxID)
lim < I —0.
u)lcnjfog llx112 2—-vy(2 e oo [lx ]|
7. Applications

7.1. Fixed point theorems

Let (H, (-,-)) be a Hilbert spaceK C H a generating closed pointed convex cone and
f:K — K. Ifin Theorem 3.1 proved in [7] we replace assumptions 1 and 2 by ‘.
completely continuous” we obtain as follows:
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Theorem 7.1. If the following assumptions are satisfied
(1) f is completely continuous,
(2) there exists a scalarly differentiable mappingis. K — H such thatfy: K — H,
[ <k+ foand|| f{(c0)] <1,
then f has a fixed point.
By Theorem 7.1 and Theorem 5.2 we have the following fixed point theorem:

Theorem 7.2. If the following assumptions are satisfied

(1) f is completely continuous,
(2) there exists a mappingy: K — H such thatf <x- fo andZ(fo)#(0) < 1,

then f has a fixed point.

Proof. By Theorem 5.2 the linear operatbr= Z( fo)*(0)/ is a scalar asymptotic deriva-
tive of fo. We have|| T || = |Z(f0)*(0)|. We consider two cases:

(1) Z(f0)*(0) < 0. In this case choosecae 1—1, 0] N [Z( fo)*(0), +o0o[. By Remark 5.1,
T = cl is a scalar asymptotic derivative ¢f with ||T|| = —c < 1.
(2) 0<Z(f0)*(0) < 1. Inthis casé|T || = Z(f0)*(0) < 1.

It follows that||T'|| < 1. By using Theorem 7.1f has a fixed point. O
Corollary 7.1. If the following assumptions are satisfied

(1) f is completely continuous,
(2) Z(H*0) <1,

then f has a fixed point.
Corollary 7.1 has the following interesting consequence:

Proposition 7.1. Letg: K — K be a completely continuous mapping such thatx ¢
andf:K — K, f=q—I1.ThenZ(f)*0) >0.

Proof. Suppose thaf(f)*(0) < 0. Sincek is generatingk # {0}. Leta € K \ {0}. Since
K+KCK,x+ f(x)+aeKforallx € K.Defineg,: K - K byg,(x) =x+ f(x)+a.

Sinceq, = g + a, g, is completely continuous. We also ha¥é;,)#(0) = 1+ Z(f)*(0)

< 1. Hence, by Corollary 7.4, has a fixed point, that is the equatigiix) = —a has a
solution. It follows thatu € — K. SinceK N (—K) = {0}, it follows thata = 0. But this is
in contradiction witha € K \ {0}. Hence Z(/)#(0) > 0. O
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7.2. Surjectivity theorems

Let (H, (-, -)) be a Hilbert spaceX € H a generating closed pointed convex cone and
f:K—> K.

Theorem 7.3. If the following assumptions are satisfied

(1) f=1-q,whereq: K — K is completely continuous ard<g I,
(2) There exists a mappinfh: K — H such thatfo <g+ f andZ(f0)#(0) > 0,

then f is surjective.

Proof. Let y € K arbitrary but fixed. Define the mapping, 0: K — H by gy0 =

x — fo(x)+y.SinceK + K CK,x— f(x)+y=¢q(x)+ye K for all x € K. Define
the mappingy, : K — K by g,(x) =x — f(x) + y. Itis easy to see that, is completely
continuousg, <x+ gy,0 and

Z(gy,0*(0) =1-Z(f0)*(0) < 1.

Hence, by Theorem 7.2, has a fixed point, that is the equatigiix) = y has a solution.
Sincey was arbitrarily choseny is surjective. O

Corollary 7.2. If the following assumptions are satisfied

(1) f=1—-q,whereq: K — K is completely continuous ard<g I,
2 Z(H* O >0,

then f is surjective.
Theorem 7.4. If the following assumptions are satisfied

(1) f=bI —q,whereb >0, q: K — K is completely continuous ard<g b/,
(2) there exists a mappingy: K — H such thatfo <x+ f andZ( fo)#(0) > 0,

then f is surjective.

Proof. By using Theorem 7.3 witlil/b) fo, (1/b) f and (1/b)q replacing fo, f andgq,
respectively, we obtain thél/b) f is surjective. Hencef is also surjective. O

Corollary 7.3. If the following assumptions are satisfied

(1) f=bI —gq,whereb >0, q: K — K is completely continuous ard<g b/,
2 Z(H* O >0,

then f is surjective.
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Lemma7.1l. Let A C H suchthatA \ {0} is an invariant set of the inversiorandY = {t |
7:A — H}. The inversion of mappingsis K *-monotone o1, i.e.,Z(t1) <g* Z(12), for
all t1, 2: A — H with 71 <g= 0.

Proof. Letty, 72: A — H such thatr; <g+ 72. We have to prove that

(Z(r)(x) = I(r2)(x), ¥) > 0, (8)

for all x € A andy € K. For x = 0 the inequality is trivial. Suppose that# 0. Since
A\ {0} is an invariant set of, i (x) € A. By the inequalityr; <+ t2, we have

(r1(i ) = 72(i(0), ) > 0. ©9)

Multiplying inequality (9) by|x||2, we obtain the required inequality (8)1
We remark that it is easy to see tlfais alsoK-monotone orr".

Proposition 7.2. If there exista,b € R with 0 <a < b andg¢: K — K completely con-
tinuous withg <g bI, such thatf =bI — g and

al <k f, (10)
forall x € K, then f is surjective.
Proof. We shall use Corollary 7.3. The first assumption of Corollary 7.3 is obviously

satisfied. It remains to prove that /)*(0) > 0. By inequality (10) and Lemma 7.1 with
A =K, we have

ax <g+ I(f)(x), (11)

for all x € K \ {0}. SinceK \ {0} is invariant underi, we also have (x) € K. Hence,
multiplying scalarly inequality (11) by(x), we obtain

(Z(H@),ix)=a. (12)
Tending withx to 0 in (12) it yields
IH* O >a>0. O

Corollary 7.4. Consider the case wheif = R" andK =R’} , where
Ri:{x:(xl,...,xn) | x;i >Oforal|i=1,...,n}

is the non-negative orthant @®". If f is continuous and there exist b € R, such that
O<a<band

al <k f <k bl, (13)

then f is surjective.

Proof. It is easy to see thak = K*. Hence, Corollary 7.4 is a straightforward conse-
guence of Proposition 7.2.0
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We remark that Corollary 7.4 remains true for the subctéshe orthants and their
images through orthogonal transformatiérizor these cones we hake < K * and there-
fore we can apply Proposition 7.2.

Example. Let H =R? K =R2,a,b e R, 0<a < b anda, B:R3 — [a, b] two arbitrary
continuous mappings. Define: K — K by the relation

f(x1,x2) = (a(x1, x2)x1, B(x1, X2)x2),

for every x = (x1,x2) € Ri. It is easy to see that the conditions of Corollary 7.4 are
satisfied. Hencef is surjective.

7.3. Integral equations

Let £2 C R be a bounded open sét?(£2) the set of functions o2 whose square is
integrable o2 and

L3(2) ={u e L?($2) | u(r) > 0 for almost alk € 2}.

L?($2) is a Hilbert space with respect to the scalar product

(u,v):/u(s)v(s)ds
Q

andLi(Q) is a generating closed convex pointed cong®2). Let£: 2 x 2 xR — R,
K:2x 2 — RandF: 2 xR — R. Denote byZz andZ, the inversions with respect to the
third and second variable, respectively. We recall the following definition and result [17]:

Definition 7.1. We say that’ is aghargtheodoryunction if L(s, ¢, u) is continuous with
respect ta: for almost all(s, ) € £2 x §2 and is measurable i, t) for eachu € R.

Theorem 7.5. If the following conditions are satisfied

(1) £ is a Charatheodory function,

(2) |L(s,t,u)| < R(s,t)(a + blu|) for almost alls, t € 2, Vu € R, wherea, b > 0 and
ReL?(2 x ),

(3) for anya > 0 the functionR, (s, t) = maXy <« |£(s, t, u)| is sumable with respect to
t for almost alls € £2,

(4) foranya > 0,

lim  sup

=0,
meiD)aO‘Mga

L2(2)

PD/[,(s, tu(r))de
2

wheremeg D) is the Lebesque measureldfandPp, is the operator of multiplication
by the characteristic function of the sbtC 2,

2 A subconeof a conek is a subset ok which is a cone.
3 A linear transformation oRR" is calledorthogonalif it is non-singular and the transpose of its matrix is
equal to the inverse of its matrix.
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(5) foranyg > 0,

lim

sup =0,
mesD)I=0u|| 5 o <B

L2(2)

‘/ﬁ(s,t, u(r)) dt
2

then the operator

Au)(s) :/E(s,t, u(t)) dt
2
is a completely continuous operator frab3(£2) into L2($2).

Since the integral of an almost everywhere non-negative function is non-negative, by
Theorem 7.5 we have as follows:

Coroallary 7.5. If conditions(1)—(5)of Theoren¥.5and condition
(6) L(s,t,u) >0forall u e RN[0, +oo[, for all s € 2 and for almost alk € £2

are satisfied, then the operator

Amm:/ﬁ@ummm
2

is a completely continuous operator frabg (£2) into L2 (£2).

By using Corollary 7.1, Corollary 7.5, Theorem 7.5 and the definition of the upper scalar
derivative it can be shown as follows:

Theorem 7.6. If conditions(1)—(6) of Corollary 7.5and condition

(7) 3¢,8 > Osuch that

Is(ﬁ)(sa t, M) - I3(,C)(S, ta 0) < 1
u
foralmostalls,r € 2 andforallu e [—¢,¢]NR

-5,

are satisfied, then the integral equation

u(s) :/E(s, t, u(t)) dt
2

has a solution: € L2 (2).

Proof. Consider the integral operatgr defined by the relation

NW®=/£@Lme~
2
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By Corollary 7.5,4 is a completely continuous operator frdhi(.Q) into L?r(Q). Itis
easy to see that

TCAY()(s) = / Ta(L)(s. 1, u(r)) dt. (14)
2
By (14)
(Z(A)(u) —Z(A)(0), u) _ f_Q fg (Z3(L)(s, t,u(t)) —I3(L)(s,t,0)u(s)dsdt
[Jue]|? [ u?(s)ds
B /_Q /_Q (Is(»c)(S;f;”(fu)()t;l—s(»c)(&fxo))M(s)u(t) ds dt
B [ u?(s)ds '

By the Cauchy inequality

2
//u(s)u(t)dsdt: </u(s)ds) </u2(s)ds. (15)
20 2 Q

By using (15) and the definition of the upper scalar derivative, we F&a®%(0) < 1, if
(6) holds. Hence, Theorem 7.6 is a consequence of Corollary 7.1 and Theorenm?7.5.

Corollary 7.6. If conditions (1)—(6) of Corollary 7.5 with K(s, ) F(¢t,u) in place of
L(s,t,u) and condition

(7) Fe, 8 > 0such that
L) t.w ~T(F@.0) _,

u

K(s, 1) 8,
foralmostalls,r € 2 and allu € [—¢,¢s]NR
are satisfied, then the integral equation

u(s) = / K(s, ) F(t,u))dt
2

has a solution: € L2 (£2).

By using Corollary 7.2 it can be proved similarly to Theorem 7.6 and Corollary 7.6 as
follows:

Theorem 7.7. If conditions(1)—(6) of Corollary 7.5with

mes2) u—L(»s,t,u)

in place ofL(s, t, u) and condition
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(7) 3¢, > Osuch that

I3(£)(S,t,u)_13(£)(S,t,0) >8
u =
foralmostalls,r € 2 andallu e [—¢,¢s]NR

9

are satisfied, then the integral equation

v(s) = / £(s, t, u(t)) dt
Q

has a solution: € L2 (£2) for everyv € L3 (R2).

Corollary 7.7. If conditions(1)—(6)of Corollary 7.5with

mes2) u—IK@,t)F(t,u)

in place ofL(s, ¢, u) and condition

(7) 3¢,8 > Osuch that

To(F)(t,u) — Ia(F)(t, 0) S5
u =
foralmostalls,r € 2 andallu e [—¢,s]NR

K(s, 1)

’

are satisfied, then the integral equation

v(s) = / K(s, ) F(t,u))dt
2

has a solution: € L2 (£2) for everyv € L2 ().

7.4. Variational inequalities and complementarity problems

163

Let (E, | - ||) be a Banach spacé;* the topological dual off, (E, E*) a duality

betweenE andE* and(-, -) the bilinear mapping which defines the dualjfy, E*).

Lemma 7.2. If {x,}peny C E, {ynlneny € E* are sequences such thdk,},cn IS
weakly convergent tor, € E and {y,},en IS Strongly convergent to, € E*, then

My 00 {Xn, Yn) = (X, Ys)-

Proof. The lemma is a consequence of the following formula:

(Xn, Yn) = (X5 Vi) = (X — X, Y — i) + (X, V) + (X, Yi) — 2(x4, Y4)-

We recall the following classical results:
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Theorem 7.8 (Eberlein—émulian).A setM C E is relatively weakly compact iff every
sequencéx, },en in M has a weakly convergent subsequence.

Proof. For a proof of this theorem the reader is referred to [16].

Proposition 7.3. Any closed ball inE* is o (E*, E)-compact.

Proof. This proposition is Proposition 1 in [3, Chapter IV, p. 11211
Recall the following definition [9]:

Definition 7.2. We say thata mapping, : E — E* satisfies conditionS)i if any sequence
{xn}nen C E with the following properties:

(1) {xnlnen iSo(E, E*)-convergentto, € E,
(2) {T1(xp)}nen iSo (E*, E)-cOnvergentta, € E*,
(3) Ilm Sup/lA)oo(-xna Tl(xl‘l)> g <X*, u*)

has a subsequence convergentto
Remark 7.1. Examples of mappings satisfying conditicm)}r are givenin [9].

Definition 7.3. We say that a mappinfp : E — E* is demicompletely continuous if the
following conditions are satisfied:

(1) T»is continuous,
(2) for every weakly convergent sequenog},en € E, a strongly convergent subse-
quence exists ifiT2(x,) }neN-

Remark 7.2.If E is a reflexive Banach space, then demicomplete continuity and complete
continuity are equivalent. However, i is a non-reflexive Banach space, then this fact is
not true.

In this section we shall give some application to variational inequalities and in particular
to complementarity problems.

Given a mapping : E — E* and a closed convex sét C E thevariational inequality
defined byf andD is the following problem:

VI(f, D): findx, € D suchthat f(x,),x —x4) >0, forallx € D.

If in particular the seh = K whereK is a closed convex cone i, and the dual cone of
K is K*, then in this case it is known [6,8] that the probl&fi( f, K) is equivalent to the
following non-linear complementarity problem

NCP(f, K): findx, € K such thatf (x,) € K* and(x,, f(xs))=0.

The theory of variational inequalities is one of the most popular domains of applied
mathematics [2,12].
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The complementarity theory is a relatively new domain of applied mathematics with
many application in economics, optimization, game theory, mechanics, engineering, etc.
[5,6,8,9].

Theorem 7.9. Let Ty, T>: E — E* be two mappings. If the following assumptions are
satisfied

(1) Ty is continuous, boundef.e., for any bounded set C E, T'(B) is bounded and
satisfies conditions)? ,
(2) T»is demicompletely continuous,

then, for every weakly compact non-empty convex’set E, the variational inequality
VI(Ty — T», D) has a solution.

Proof. Let A be the family of all finite dimensional subspade®f E such thatF N D is
non-empty. Consider the familg ordered by inclusion. Denote bf(x) = T1(x) — T2(x)
forall x e D and byD(F) = F N D, for eachF € A. For eachF € A we define

Ap:={yeD|{x—y, f(y)) =0 forallx e D(F)}.

For eachF € A the setAr is non-empty. Indeed, to show this it is sufficient to show that
the problenVI( f, D(F)) has a solution (since the solution set of the prob\éity, D(F))

is a subset oft ). We show now that the solution set of the probleiif, D(F)) is non-
empty. Indeed, lef : F — E denote the inclusion and' : E* — F* the adjoint (transpose)
of j. By our assumption we have that the mapping

j*ofoj:D(F)— F*
is continuous and

(x =y, ("o fo M) =(j(x=y),(fo D)= (x—y, fF(}),
forall x, y € D(F). Applying the classical Hartman—Stampacchia theorem [6] to the map-
ping j* o f o j and the seD(F) we obtain that the probleMI(f, D(F)) has a solution.
So, for anyF € A, the setAr is non-empty. Denote by, the weak closure oA r. We
have thaf) ;. 4 A7 # 0. Indeed, leti, , A7, ... A7, be afinite subfamily of the family
{A%}rea. Let Fg be the finite dimensional subspacefirgenerated by, F», ..., F,. Be-
causeF, C Fpforallk=1,2,...,n, we have_thaD(Fk) C D(Fp) forallk=1,2,...,n.
We haveAr, € Af,, which impliesA‘}po - A‘;k forall k =1,2,...,n, and finally we
have thaﬂ;’_=l A%, #0. SinceD is weakly compact we conclude thatyc 4 A% #0. Let
Vs € (\pes A, 1.6, fOr everyF € A, y, € A%. Letx e D be an arbitrary element. There
exists some € A such thatx, y, € F. Sincey, € A‘;, there exists a ndty;} € Ar such
that{y;} is weakly convergent tg... By Theorem 7.8, we can suppose that the{ne} is
a sequencéy, },en weakly convergent tg,.. We have

(Y« =Y, fO)) 20 and (x —y,, f(n)) =0,
or

(Yn — Y4 T1(¥n)) < {¥n — Y5>, T2(yn)) (16)
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and

(x = yn, To(yn)) = (x — yn, T2(yn)). (17)

By assumption (2) there exists a subsequencd7efy,)},cn, denoted again by
{To(yn)}nen, Strongly convergent to an elememng € E*. From formula (16) and con-
sidering Lemma 7.2 we have

|imSUp(y,1 — ¥+, T1(yn)) <0. (18)

n—oo

Becausd is bounded and considering Proposition 7.3, we can suppose (taking eventually
a subsequence 6%, },en) that{T1(y,) }nen IS Weakly convergent to an elemente E*.
Because

s TL(n)) = (¥n — Y+, T1(yn)) + (¥, T1(n)),
and considering formula (18), we obtain

|imSUp(y,1, T1(yn)) < (y«, vo).
n—oo
Hence by conditiomS)}F we obtain that the sequengg, },,en has a subsequence, denoted
again by{y, },en, strongly convergentte,. By assumption (2) we must ha¥e(y.) = uo.
From inequality (17) we obtaitx — y., T1(y«) — T2(yx)) = 0 for all x € D, and the proof
is complete. O

For everyn € N, we denote by
BO,n)={x e E||x| <n}.

Definition 7.4. We say that a non-empty subs&tof E is a weakly Lindelof set if the
following properties are satisfied:

(1) K is a closed convex unbounded set,
(2) for anyn € N such thatD,, = B(0, n) N K is hon-empty, we have thdd, is a weakly
compact set.

Examples for Lindelof sets

(1) Any closed convex unbounded set in a reflexive Banach space.

(2) Any closed pointed convex cone with a weakly compact base in an arbitrary Banach
space.

(3) Any closed convex unbounded subset of a closed pointed convexkcgeaerated by
a weakly compact convex sétwith 0 ¢ D.

Theorem 7.10.Let K C E be aweakly Lindel6f subset afig, 7> : E — E* two mappings.
If the following assumptions are satisfied

(1) 71 is continuous bounded and satisfies condiﬂﬁrﬁ,
(2) T»is demicompletely continuous,
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(3) there exists a real number> 0 such that

L. x, Th(x
¢ < liminf <71(2)>
lxl—=oc0 x|

xekK

’

(4) T> has a scalar asymptotic derivatiﬂg)s’,((oo) alongK such thau|T2’)S’K(oo) | <ec,
then the problem \(I'1 — 7>, K) has a solution.

Proof. We may suppose that for amye N, D, = B(0,n) N K is non-empty. We have
K =J,21D,. For eachn € N, D, is weakly compact and convex. By Theorem 7.9 the
problemVI(Ty — T», D,) has a solutiony,, € D, for everyn € N. Therefore we have

(x = yn, (T1 = T2)(yn)) 20 forallx € D,. (19)
If in (19) we putx = 0, we obtain
(Vs T1(yn)) < (s T2(yn)).

The sequencgy, },en is bounded. Indeed, if we suppose that|| — oo asn — oo, then
by assumptions (3) and (4) we have (supposing thal # O for all n € N)

¢ < liminf O FONE e O T20w)

=00 lynll2 lull=>oo  [lynll?
: , T — 1o 5(c0 . T (00

< limsup Zn: 200 = T2 D0) | iy o T2 0)
PARES ynll i =00 Iyl

2
<725 (00) |7 <c,

which is a contradiction. Therefore we conclude that},cn is a bounded sequence.
Hence, there exists: € N such that{y,} € D,,. BecauseD,, is weakly compact, by
Theorem 7.8, we have thét, },cn has a subsequence, denoted agaifyhy, cn, weakly
convergentto an element € K. SinceT1 is bounded, by Proposition 7.3, and considering
eventually again a subsequence, we can suppos€miat,)},.«n is weakly convergentin
E* (i.e.,0 (E*, E)-convergent) to an elemente E*. Letx € K be an arbitrary element.
There existsig € N such thatig > m and{y., x} € D,,, and obviousl\{y., x} € D, for

all n > ng. From formula (19) we deduce

(v =y, (T1 = T2)(yn)) 2 0 (20)
and
(x = Yn, (T1 — T2)(yn)) = 0. (22)

Because there exists a subsequgie€y,, ) }ken in {T2(yn) }nen Strongly convergentto an
elementw € E* and since

(Vs = Y T2(yn)) = (Vs — Yer T2(Yny) — W) + {yx — Yny» W),
by using Lemma 7.2 we obtain that

(¥« — Yni» T2(yn)) = 0 ask — oo.
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Therefore, by using (20) we have
lim Sup()’nk — Vi, Tl()’nk» <lim Sup(ynk = Vx TZ(ynk» =0
k— 00 k— 00

From the last inequality and the equality

<,Vnkv Tl(ynk)> = ()’nk - Vx, Tl(,Vnk)) + (¥4, Tl(ynk»v
we deduce the inequality

|imSUp(y,1k, Tl()’nk» < A{Ys, u).
k—o00
BecauseT; satisfies conditior(S)_lH we obtain that{y,, }xreny contains a subsequence,
denoted again bfy,, }ken, Strongly convergentto an element, which obviously must.be
Now computing the limit in (21), considering the propertiesTaofand 7> and applying
again Lemma 7.2, we obtain that

(x — y4, (T1 —T2)(yx)) >0 forallx e K,
i.e., the problenVI(Ty — T», K) has a solution. O

Corollary 7.8. If either E is a reflexive Banach space adC E is an arbitrary closed
convex pointed cone, dt is an arbitrary Banach space ankl C E is a closed convex
pointed cone with a weakly compact base, and the assumgti¢n@&!) of Theoreni’.10
are satisfied, then the problem NCR — T», K) has a solution.

Let (H, (-, -)) be a Hilbert space.

Theorem 7.11. Let K € H be a closed convex unbounded set such #iat{0} is an
invariant set of the inversiohand 71, 7o : H — H two mappings. If the assumptions

(1) 11 is continuous bounded and satisfies condms)ﬁ,
(2) T»is completely continuous,
(3) there exists a real number> 0 such thatc < Z(T1)*X(0),

(4) Z(1)"*(0) <
are satisfied, then the problem X} — 7», K) has a solution.

Proof. SinceK € H is unbounded, closed ankl \ {0} is an invariant set of, 0 € K

and 0 is a non-isolated point & . Hence Z(T1)*X (0) andZ(T2)*X (0) are well defined.

The proof of Theorem 7.11 follows by Theorem 7.10, by using Lemma 4.1 and a similar
argument to the proof of Theorem 7.20

By Corollary 7.8 and Theorem 7.11 we have as follows:

Corollary 7.9. If K C H is a closed pointed convex cone and the assumpf{ibrg4) of
Theoreni/.11are satisfied, then the problem NCR — T», K) has a solution.



G. Isac, S.Z. Németh / J. Math. Anal. Appl. 278 (2003) 149-170 169

8. Comments

(1) In [14] formulae for computing the scalar derivatives of mappings in interior points
of the domain of definition were given (formulae which can also be used to calculate
the scalar derivatives along a set, in interior points of this set). Throughout the paper
we gave some theorems containing assumptions concerning the scalar derivatives of
mappings in 0, where 0 was not an interior point of the domain of definition (or of
the set along which the scalar derivatives were taken). It would be interesting to give
computational formulae for the scalar derivatives in non-interior points of the domain
of definition (or of the set along which the scalar derivatives are taken). This could
lead to a series of new results.

(2) By Proposition 3.1 in the fixed point theorems and surjectivity theorems, containing
assumptions concerning the scalar derivatives(gf), we can firstly start with a map-
ping g and after that sef = Z(g). Then, the assumptions concerning the scalar deriv-
atives ofZ(f) can be rewritten as assumptions imposed to the scalar derivatiges of

9. Conclusions

By using a kind of duality between the scalar derivatives and scalar asymptotic deriva-
tives, a novel method for calculating the scalar asymptotic derivatives was found and used
for proving various fixed point theorems. These fixed point theorems were generated by a
fixed point theorem of Isac, which extends a classical fixed point theorem of Krasnosel-
skii. Applications for surjectivity theorems, integral equations, variational inequalities and
complementarity problems were given.
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