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The last two decades have witnessed an exponential growth in the interest for using bio-
derived products, which has been driven by the need for replacing petroleum based mate-
rials reducing the fuel consumption and, equally important, for producing materials with
lower environmental impact. Vegetable oils constitute a rich source for many different
polymers and polymer precursors and they are being considered for the production of
‘‘greener’’ composites. The wide range of possible combinations of vegetable oils, chemical
modifications, polymerization routes, nature of the fillers and fibers used as reinforcement
materials allows tailoring the composite properties to fit the requirements of structural or
functional materials. Thus, a wide range of macro, micro and nanosized particles and fibers
have been proposed as reinforcements/fillers, including organic and inorganic ones, natural
or synthetic, in order to give adequate answers to specific requirements. Although, the role
of oil-based products may seem modest in some cases (partial replacement of synthetic
materials), there is a clear trend to increase the percentage of ‘‘green’’-based raw materials
in the formulations of commodities as well as specialty polymers/composites for high
added value applications. Examples of different types of reinforced thermoset and elasto-
meric bio-composites are presented in this short review.

� 2013 Elsevier Ltd. Open access under CC BY-NC-ND license.
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1. Introduction

Besides their use in foods, vegetable oils have always
found application in other areas such as lubricants, var-
nishes or paint solvents. In the last 20 years, plant oils be-
gan to receive a constant and growing attention from the
academy and industry. This interest is accompanying the
general revival of materials derived from renewable re-
sources that resulted from the need to replace fossil re-
sources and the growing compromise of using materials
with lower environmental impact, a requirement for which
bio-based products are generally better fitted than petro-
leum-based ones.

Vegetable oils, from edible to drying oils, are a rich
source of polymer precursors that can be modified to ex-
hibit various types of functionalities, leading to new
materials with a wide range of properties from structural
to functional. Reviews, dedicated chapters and books
have already been published reflecting the international
efforts to use these natural products to produce novel
polymers and polymer precursors for increasing the
number of its potential applications. Triglyceride mole-
cules can be chemically modified through hydrolysis or
transesterification or by reacting/modifying unsaturations
present in the fatty acid chains. This last option leads to
a large variety of functionalized molecules, with those
containing epoxy or hydroxyl groups being probably
the most popular choice. The interested reader may ac-
cess exhaustive reviews on the chemical modification
of vegetable oils for the production of polymeric materi-
als [1–6].

To further contribute to this area, this review will con-
centrate on the use of vegetable oils as the base-materials
for the production of polymer composites that incorporate
inorganic and organic particles and fibers, both synthetic
and natural in origin, and sized from the macro to the mi-
cro and nanoscale.

It is also interesting to notice that a literature search for
vegetable oil-composite materials shows that the number
of articles has grown exponentially since the end of the
nineties to present (from one or two articles to hundreds
per year), clearly illustrating the growing interest in the
use of vegetable oils as part of the formulation for polymer
composites, which in some cases have already reached
industrial scale.
2. Monomers from chemical modification of
triglycerides

As already mentioned in the introduction many exhaus-
tive works have been published on the subject of vegetable
oil modifications as source for the formulation of different
polymers [1–6]. For that reason, only a very brief summary
on that subject is included in this work, which is focused
on the use of these oil-based polymers for the production
of composites.

Vegetable oils are composed of triglyceride molecules
containing sites that can be chemically reacted in order
to introduce new functional groups [5]: essentially, double
bond and ester groups. Several of the synthetic pathways
reported in the literature are illustrated in Fig. 1 [5]. The
incorporation of new functional groups through chemical
modification results in monomers or resins to be applied
in polymerization reactions, just as polymer precursors de-
rived from the petrochemical industry.

Triglyceride molecules are formed by three fatty acid
chains joined to glycerol by ester groups. The fatty acids in-
volved contain a varied number of carbon–carbon double
bonds, but unless these double bonds are conjugated, they
are not reactive enough to produce viable materials by free
radical or cationic polymerization [3,4]. For that reason,
the isomerization of different plant oils containing noncon-
jugated multiple unsaturations has been reported as a first
step for carrying out crosslinking by cationic polymeriza-
tion, for example conjugated linseed oil and low saturation
soybean oil have been prepared using a rhodium-based
catalysts [7]. On the other hand, the naturally conjugated
triene structure of the tung oil makes it well fitted to poly-
merize by cationic polymerization [8,9] without any previ-
ous modification [10].

On the other hand, the modification of the double bonds
can incorporate functionalities like maleates (Fig. 1(5)) [5],
hydroxyl (Fig. 1(8)) [5,11,12] or epoxy (Fig. 1(7)) [5,13,14]
groups making possible a further reaction via ring opening
or polycondensation polymerization. After this reaction
step, the product can be used without further modification
in crosslinking reactions or it can be further modified
through other chemical steps broadening the variety of
functional molecules to be obtained. For example, the
epoxidized triglycerides can be reacted to attach vinyl
functionalities (Fig. 1(6)). Acrylates have been incorpo-
rated by reaction of the epoxy groups with acrylic acid,
and as an example the acrylated epoxidized soybean oil
(AESO) has been frequently reported in the preparation
of bio-based polymers and composites [15]. On the other
hand, maleate half esters and esters can be prepared by
the reaction of hydroxylated triglycerides with maleic
anhydride (Fig. 1(11)). Further on, these monomers can
be blended with reactive diluents and cured by free radical
polymerization to obtain thermoset polymers [16].

Another method for synthesizing more reactive mono-
mers from triglycerides is the chemical modification of
the ester groups to convert the triglyceride to monoglyce-
rides through a transesterification reaction with molecules,
such as glycerol (Fig. 1(3A)). The amidation reaction is
illustrated in Fig. 1(2) and (3B). The hydroxyl groups of
the glycerol moieties can be later reacted to incorporate
new useful groups such as a diacid, epoxy, or anhydride
(for example, Fig. 1(9) and (10)). Specifically, different



Fig. 1. Chemical pathways leading to polymers from triglyceride molecules. Reprinted with permission of Wiley [5].

Fig. 2. Simplified scheme of hydroxylation and alcoholysis reactions of vegetable oil [20].
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authors [17–19] have worked with soybean and linseed oil,
in order to obtain monoglyceride maleate half esters. They
modified the alcoholyzed vegetable oil with maleic anhy-
dride, and the resulting products were polymerized by free
radical reactions with reactive comonomers like styrene, in
some cases to be used as composite matrices.

Another possibility is to functionalize the unsaturation
sites and also to obtain the monoglycerides (Fig. 1(4)). For
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example, by alcoholysis of an unsaturated triglyceride, fol-
lowed by hydroxylation (epoxidation followed by oxirane
ring-opening) [20]. The simplified scheme of two steps is
shown in Fig. 2. In a first step, the triglyceride reacts with
peroxy formic acid to give an epoxidized triglyceride as an
intermediate product and subsequently the hydroxylated
oil. In the second step, the product of the first step reacts
with triethanolamine to give an alcoholyzed product [20].
If the vegetable oil is naturally hydroxylated (for example:
castor oil), the alcoholysis can be carried out to increase
the concentration of reactive hydroxyl groups. Several
works have reported on the use of alcoholyzed castor oil
or alcoholyzed hydroxylated oils for the production of
polyurethanes obtained by polycondensation reactions
with different isocyanate components [12,20,21]. The
hydroxyl groups in the resulting monomers can be further
reacted with molecules containing anhydride, diacid or
epoxy groups to form monomers useful for free-radical
polymerization.

Desroches’ review on vegetable oil derived bio-polyure-
thanes [6] presents a detailed review of different possible
synthetic routes and includes a useful list of commercial
bio-based polyols that can be applied in the production
of polyurethanes.

Other alternative routes have been considered although
not all of them have yet found use as composite matrices.
One of these routes, and a versatile one is that of the thiol-
ene chemistry [22]. It has been proved to be useful for the
production of polyols for polyurethane formulations or to
synthesize polyamine oils that become the curing agent
of epoxidized vegetable oils or alternatively, it can also
lead to the production of thermoplastics by thiol-ene poly-
addition [23–25]. Montero de Espinosa et al. [26] also fo-
cused on olefin metathesis and thiol-ene chemistry as
synthetic methods and polymerization techniques. A cata-
lytic route from fatty acids has lead to the synthesis of
intermediates for nylon 11 and 12 [27].

It is generally perceived that with time these new alter-
natives will find a place in the production of composites.
3. Vegetable oil-based composites

3.1. Glass fiber composites

Among the typical reinforcements for polymer compos-
ites are the ubiquitous glass fibers (GFs). Thus, it is under-
standable that they have also been considered as
reinforcement of plant oil-based thermoset resins. Exam-
ples of these are unsaturated polyester and epoxy resins,
or elastomer precursors such as polyols that are further
crosslinked with synthetic or plant oil-based comonomers,
using different curing and compounding processing meth-
ods. Although there is a large variety of plant oils available,
soybean oil appears frequently in the literature due to the
large production volume associated to it. Table 1 includes
examples of these composite materials to give a fast
glimpse of the broad range of properties that are possible
to obtain from the use of vegetable oil -based polymers
by using different modifications, crosslinking or polymeri-
zation routes, processes, fillers and fibers from macro to
micro and nanosizes. In particular examples of thermo-
set-glass fiber composites are included.

Khot et al. utilized an acrylated epoxidized soybean oil
to produce glass fiber composites by resin transfer molding
[5]. Depending on the fiber content, Young’s moduli of 5.2
to 24.8 GPa were measured for the composites bearing 35
and 50 wt.% of GF, respectively, and tensile strengths of
129–463 MPa, for the same samples.

Other authors studied GF composites prepared from a
mixture of synthetic and bio-based epoxy resins.
Chandrashekhara et al. used an epoxidized soy oil based
resin mixed with a commercial epoxy-amine system
formulated for use in pultrusion [28]. The soybean oil
was transesterified to obtain the methyl or allyl esters of
the fatty acids that were further epoxidized. Mixtures with
the synthetic epoxy resin were formulated from 0 to
30 wt.% of the bio-resin and they were cured by addition
of an amine hardener under a heating protocol that consid-
ered cure and postcuring. Since the epoxy groups in the
fatty acid chains are not terminal, the resulting molecular
structures contain a large concentration of dangling chains
that have a plasticizing effect, leading to more flexible
materials than the synthetic counterparts. Pultruded GF
composites (63 wt.%) were prepared with this resin and it
was observed that although the tensile and flexural prop-
erties were not strongly affected by the replacement of
the synthetic epoxy by the bio-based resin, there was a
clear improvement of the resistance of the composite to
impact damage. This was the result of the already dis-
cussed flexibility of the fatty acid chains and also the com-
paratively lower reactivity of the bio-based resin with
respect to the commercial epoxy. An additional and much
welcomed output of this study was the observed reduction
of the force needed to pultrude the composite bars (almost
30% reduction for the formulation made with a 30%
replacement of the epoxy resin by the bio-based one). This
benefit was explained by the lubricity properties contrib-
uted by the oil-based epoxy resin.

The plasticizing effect of the dangling chains was also
observed in other type of resins, and thus, it was reported
by Husíc et al. who prepared a soy-based polyol cross-
linked with crude polymeric diphenyl methane di-isocya-
nate (pMDI) and reinforced with up to 70 wt.% of glass
fiber fabric [29]. In this particular case, a short molecule
polyol was added to increase the rigidity of the composite.
Tensile and flexural properties were comparable to the re-
sults measured for an analogous glass fiber composite pre-
pared with a synthetic commercial polyurethane.

Cationic polymerization is another means of crosslink-
ing modified oils and Lu and Larock utilized this type of
reaction to prepare soybean oil and low saturation-soy
bean oil-based composites reinforced with 0–50 wt.% GF
mats [30]. The resins were reacted with styrene and divinyl
benzene (DVB), but previously the oils had to be isomer-
ized in the presence of rhodium catalyst to obtain species
with more reactive conjugated unsaturations. The mixture
contained 50 wt.% of vegetable oil and variable proportions
of styrene and divinyl benzene (10–20 wt.% of the last
one). The reaction consisted of a slow curing program from
60 to 110 �C, requiring 15 h at this last temperature. Gen-
erally speaking, the interfacial adhesion of these resins to



Table 1
Examples of polymer composites prepared from plant oil derived polymers.

Polymeric matrix Fiber/particle % Process Modulus (Pa) Strength Other improved
properties

Ref.

ESO (10%
replacement of
epoxy) + epoxy-
amine

Glass fiber 63 Pultrusion 5.64 � 1010 (T) Lubricity, 21% reduction of
the pulling force with 10%
epoxy-ESO replacement

[28]

AESO Glass fiber 35 RTM 5.20 � 109 (T) .29 � 108 (T) [5]
50 2.48 � 1010 (T) 4.63 � 108 (T)

Low saturated soy
oil/St/DVB
(50:20:20).
Cationic
crosslinking

Glass fiber 0 Compression
molding (GF-
mats)

1.50 � 108 (T) 7.90 � 106 (T) [30]
52 2.73 � 109 (T) 7.60 � 107 (T)

Soy oil-polyurethane Glass fiber 70 Hand lay-up 1.71 � 1010 (T) 2.59 � 108 (T) Plastification by bio-resin
incorporation

[29]

Linseed oil (DCDP-
ROM crosslinked)

Glass fiber 0 0.91 � 106 (T) [31]
40 6.80 � 108 (T)

Conjugated soy oil
(St-DVB
crosslinked)

Wheat straw 0 Compression
molding

4.59 � 108 (T) 1.47 � 107 (T) [36]
75 2.16 � 109 (T) 8.30 � 106 (T)

Conjugated soy oil
(DVB crosslinked)

Corn stover 80 1.40 � 109 (T) 7.4 � 106 (T) [37]

Methacrylic
anhydride
modified soybean
oil

Regenerated
cellulose

Compression
molding

1.80 � 1010 (T) 1.44 � 108 (T) High impact resistance [40]

AESO Hemp 20 RTM 4.40 � 109 (T) 3.50 � 106 (T) [5]
AESO (St

crosslinked)
Keratin fibers
(from chicken
feathers)

0 RTM 8.96 � 108 (F) 3.48 � 107 (F) Low dielectric constant
and expansion coefficient

[47]
30 1.59 � 109 (F) 4.52 � 107 (F)

Linseed oil (St
radical polym.)

Pine woodflour 40 1.50 � 109 (T) 1.99 � 107 (T) [41,42]
Aged (654 days) Aged (654 days)
2.10 � 109 (T) 3.22 � 107 (T)

Castor oil (PU) Banana fiber 0 Hand-lay up 5.89 � 106 (T) 1.96 � 106 (T) [38]

15(vol.) untreat 5.10 � 107 (T) 4.80 � 106 (T)
NaOH treat 5.40 � 107 (T) 1.01 � 107 (T)

Castor oil (PU) MDI-modified
cellulose

43 4.87 � 106 (T) [39]

Tung oil (PU) Pine woodflour 0 9.10 � 108 (T) 2.60 � 107 (T) Improved impact
resistance

[44]
30 3.03 � 109 (T) 4.49 � 107 (T)

ESO (amine cured) Nanoclay 0 1.20 � 106 (T) 1.27 � 106 (T) [48]
10 3.54 � 106 (T) 4.34 � 106 (T)

Conjugated low
saturated soy oil
(St-DVB
crosslinked)

Nanoclay
(reactive clay by
using a vinyl-
modifier)

0 2.56 � 108 (C) 2.50 � 107 (C) Improved barrier
properties and thermal
degradation behavior

[53]
2 5.84 � 108 (C) 4.80 � 107 (C)

Castor oil
(waterborne PU)

Nanocellulose 0 Casting 1.16 � 106 (T) 5.42 � 106 (T) Elongation
remains P 300%.
Nanocellulose favors
phase separation

[57]
4 4.83 � 106 (T) 8.09 � 106 (T)

Castor oil (PU from
alcoholyzed oil)

Nanocellulose 0 Casting 4.80 � 108 (T) 2.76 � 107 (T) [12]
0.5 6.36 � 108 (T) 1.92 � 107 (T)
1 6.80 � 108 (T) 3.12 � 107 (T)

(T) Tensile results.
(C) Compression results.
% All the concentrations are given as weight percent, except where specifically indicated.
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the glass fibers was not high and the fibers showed clean
surfaces protruding from the fracture surface. However,
the authors could observe that adhesion increased with
crosslinking density as higher concentration of DVB was uti-
lized in the formulation. The addition of 50 wt.% of glass fi-
bers to the low saturated soybean oil-styrene-DVB material
(50:20:20 weight ratio, the rest being the initiator and mod-
ifier) produced an increase in Young’s modulus from 150 to
2730 MPa and in tensile strength from 7.9 to 76 MPa. The
authors indicated that the soybean oil-based composites
have good structural damping properties, which can be
advantageous for applications where the reduction of noise
and vibration is required.

Henna et al. [31] used dicyclopentadiene (DCPD)-modi-
fied linseed oil crosslinked with DCDP as matrix for glass fi-
ber composites. Increasing DCDP concentration lead to
higher rubbery modulus (dynamic-mechanical measure-
ments), since the network had fewer free dangling side
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chains together with a lower molecular weight between
crosslinking points, thus, producing a more rigid material.
Similar arguments were used to explain the increase of Tg

under those conditions.
The incorporation of glass fibers did not change the po-

sition of the a transition as observed by the maximum of
tand, but it reduced the height of the peak, since the mate-
rial gained rigidity. Regarding the tensile properties, a 74.6
times higher Young’s modulus was reported for the 60:40
(modified oil-DCDP) composite containing 40 wt.% of glass
fibers.

From the above examples, most of them summarized in
Table 1, it is clear that high GF loads can be reached with
good wetting of the fibers, what allows reaching tensile
modulus as high as 56.4 GPa [28] and hundreds of MPa
in strength. In all cases, the replacement of synthetic
chemicals by bio-based monomers leads to reduced fragil-
ity of the components, due to the plasticizing effect of the
fatty acid dangling chains, which also showed to have a lu-
bricant affect in pultrusion of the glass fibers.
3.2. Other macro and micro-synthetic fillers/reinforcements

Aiming to reduce the environmental impact of different
waste materials, some of them have been considered as
polymer fillers; this solution being particularly interesting
when the matrices utilized are also environmentally
friendly. Following this line of thought, Ray et al. investi-
gated the behavior of a blend of an epoxy resin and maleat-
ed castor oil co-reacted with an amine and filled with
10 wt.% of fly ash [32]. Except for the reduced costs, there
were little extra benefits in composite performance due to
the addition of the ashes. On the other hand, the partial
replacement of the resin with a bio-epoxy one, resulted
in improved impact strength for the bio-modified formula-
tion, reduced glass transition temperature (Tg), and higher
intensity of the tand peak (dynamic-mechanical tempera-
ture-scans), which suggests that these materials could be
used in applications for damping of mechanical vibrations.

Analogously, Bassyouni et al. prepared a polyurethane
(PU) composite from castor oil (the polyol component),
polymeric diphenyl methane di-isocyanate (pMDI), and
milled waste-light bulbs (particle size 6300 lm) as filler.
Treatment of the glass with c-aminopropyltriethoxysilane
was considered in order to improve adhesion to the matrix
by co-reaction with the isocyanate component [33]. The
benefits of the glass addition were mainly observed in
the retarded thermal degradation, reduced swelling and
increased hardness, with all these improvements being
more important in the treated-particle composites.

Improved water resistance or damping properties have
been reported for PU-polyester nonwoven fabric and inter-
penetrated epoxy-polyurethane network filled with tita-
nate whiskers, both systems derived also from castor oil
[34,35].
3.3. Natural fiber/filler composites

The advances in the production of polymers from bio-
resources have been accompanied by the growing interest
to develop composites that incorporate bio-based particles
and fibers.

Pfister and Larock presented an interesting comparison
of the behavior of different cationically cured plant oils
used as matrices of agricultural fibers [36]. They consid-
ered composites prepared from corn, soybean, fish, and lin-
seed oils using up to 75 wt.% of different natural fibers,
corn stover, wheat straw, and switch-grass fibers. The
composites showed a largely increased rigidity with re-
spect to the unfilled thermosets, but they were also much
more brittle. The Young’s moduli reported were in the
range of 1.6–2.3 GPa and the tensile strengths were be-
tween 5.5 and 11.3 MPa. One interesting observation was
that higher degree of unsaturation of the natural oil lead
to better thermal and mechanical properties of the com-
posites, which can be linked to the higher crosslinking den-
sity that can be achieved in these materials. On the other
hand, wheat straw fibers offered the best performance
composites.

The same authors have also investigated composites
from corn stover and conjugated soybean oil or conjugated
linseed oil cured with DVB by radical copolymerization
[37]. Corn stover is a large volume residue left after harvest
and, as already mentioned in the case of other residues,
environmental reasons were involved in finding a use for
this waste material. The composites considered had a large
proportion of bio-based components, up to 90% in those
prepared with a matrix containing 50% natural oil, and
overall concentration of 80 wt.% of corn stover in the com-
posite. The Young’s moduli and tensile strength of these
composites reached 1.4 GPa and 7.4 MPa, respectively,
and although traditional wood plastic composites can
reach better performance, these ‘‘green’’ composites could
still find application in automotive and wall panels, ceiling
tiles, furniture, windows and doors.

Castor oil-based polyurethanes were chosen as matrices
for banana fibers processed by hand lay-up of short ran-
dom fiber-mats, followed by compression molding at room
temperature [38]. The banana fibers were chemically mod-
ified by NaOH extraction, a typical treatment of vegetable
fibers that eliminates plant fiber components (extractable
chemicals, lignin and hemicelluloses) increasing the fiber
roughness and cellulose concentration. The authors inves-
tigated the effects of varying the fiber volume fraction and
length on the tensile modulus and strength, and reported
that the optimum response for both types of composites
occurs when working with 30 mm fibers at 15 vol.%. The
properties were higher if working with treated fibers be-
cause of the improved chemical and mechanical interac-
tions at the interface (a reaction of the isocyanate with
fiber-OH groups was proposed).

Similar type of interactions are to be expected in the
castor oil-based polyurethane composites prepared by
Miao et al. [39], who reported a 5-times increase of the
tensile strength by addition of 43 wt.% of MDI-modified
cellulose to the formulation of the composite.

Resin transfer molding was the method chosen to pre-
pare an acrylated epoxidized soybean oil (AESO)-hemp fi-
ber composite [5]. The sample with 20 wt.% of hemp
showed a Young’s modulus of 4.4 GPa. The authors further
proposed the preparation of hybrid composites that incor-
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porate also GF, to combine the high performance of the syn-
thetic fibers with the low cost of the plant fibers.

Hybrid thermoset composites made from methacrylic
anhydride modified soybean oil and different natural fibers
were reported by Adekunle et al. [40]. They used 2D woven
fabrics made from jute and from regenerated cellulose, and
combination of both mats (hybrids). However, the best over-
all properties were found for the regenerated cellulose com-
posites with tensile strength and modulus of 144 MPa and
18 GPa, respectively.

Mosiewicki et al. investigated the behavior of thermoset
composite materials made from a linseed oil unsaturated re-
sin cured with styrene by peroxide initiated radical poly-
merization [41]. The pine wood flour (WF) used as
reinforcement had a tremendous impact on the glass transi-
tion temperature of the polymer (upwards shift of 40 �C in
the sample that contained 30 wt.% WF), accompanied by in-
creased glassy and rubbery storage modulus. All these char-
acteristics pointed out to strong interfacial interactions,
which was supported by scanning electron microscopy
(SEM) images of fracture surfaces showing perfectly poly-
mer-coated WF, negligible pull out of the low aspect ratio
flour and completely filled lumens in the wood cells. Addi-
tionally, Pukanszky’s model was applied to analyze the flex-
ural strength of the composites [42]. The fitting parameter
of the model, related to the interfacial strength, also showed
good correlation with a strong interfacial adhesion. At con-
centrations above 30 wt.% of WF the composites showed
increasing degrees of porosity, because of flour aggregation.

Although not frequently treated in the literature, oil-
based polymers and composites may suffer chemical aging
if some unsaturations remain unreacted after the modifica-
tion and/or the crosslinking steps. The chemical changes in-
volved correspond to the same complex mechanisms of
oxidation-crosslinking that takes place during oil drying.
Mosiewicki et al. showed that important variations of the
properties accompany the chemical changes [43]. Using
the pine WF- linseed oil -based composite discussed above,
the authors studied the variations in flexural properties of
the materials and reported increases of the modulus and
strength (1.5 GPa and 19.9 MPa, respectively, for the re-
cently prepared composite with 40 wt.% WF, and 2.1 GPa
and 32.2 MPa for the same sample after 654 days).

The same research group has also studied polyurethane-
pine wood flour composites prepared from a modified tung
oil. Tung oil is a drying oil with a long history in the industry
of varnishes and paints because of its good drying properties
and the quality of the coatings obtained. The oil was modi-
fied by hydroxylation of the unsaturations followed by alco-
holysis with triethanolamine. The high hydroxyl value of the
obtained polyol was well fitted to prepare rigid polyure-
thanes. WF and microcrystalline cellulose were used as rein-
forcements [20], with the best performance corresponding
to the WF composites, what was explained by the better dis-
persion of this reinforcement. Specific interactions were ex-
pected in these systems because of the co-reaction between
the OH groups of the matrix and reinforcement through the
isocyanate component. The pine-WF composites were fur-
ther studied to determine the effect of the WF concentration
on the final properties of the materials [44]. The excellent
compatibility between WF and the bio-polyurethane al-
lowed reaching composites with higher modulus and higher
strength, as compared with the neat polymer, but simulta-
neously with similar extensibility and much higher fracture
resistance; a behavior that had been highlighted in nano-
composites [45], but that was quite unusual for microcom-
posites. These materials (below 30 wt.% WF) showed
ultimate elongation comparable to that of the neat polymer,
and even higher values for WF concentrations of 10 and
15 wt.%. The 30 wt.% composite had a tensile modulus more
than threefold the value of the unfilled polyurethane and
the same was true for the total energy measured during
the falling dart impact test (123 and 389 J/m for the 0 and
30 wt.% composite, respectively). In this case, the fitting
parameter of the Pukanszky model for tensile strength also
indicated strong interfacial interactions; the reported value
being between 5 and 7, while a value higher than three is
indicative of good interface in the composite.

The authors also followed the degradation of the com-
posites buried in vermiculite inoculated with a mixed bacte-
rial culture and soil with natural flora [46] for more than a
year, and found that the more important degradation step
occurred during the first 60 days, and was probably related
to the hydrolysis and scission of dangling chains that corre-
spond to the fatty acids segments of the oil.

Although not much treated in the literature, interesting
composites have been developed from soybean resins and
hollow keratin fibers from chicken feathers [47]. These fi-
bers are low density, hollow, hydrophobic and as shown
by the authors well wetted by an acrylated epoxidized soy-
bean oil (AESO) and soybean oil pentaerythritol glyceride
maleate resins. In both cases the comonomer chosen to at-
tain crosslinking was styrene, and the composites were
light, with low dielectric constant and thermal expansion
coefficient, which made them potential candidates for elec-
tronic applications. Carbonized chicken feathers were also
investigated as possible sources for low cost carbon fibers.

The above examples (see also Table 1) showed that the
bio-derived thermoset composites have tensile modulus
mostly in the range of 1–3 GPa. Many of the authors point
out to their improved impact resistance and their potential
use as damping materials, due to the mechanical energy dis-
sipated by the relaxation of the dangling chains. Large mod-
ulus increase is also seen in elastomers, where the addition
of the natural fibers/particles gives leather -like characteris-
tics to these materials. Synergy has also been reported, con-
sisting in obtaining composites with higher rigidity than the
bio-polymer without appreciable loss of its extensibility. Fi-
nally, although scarcely reported, oxygen-driven crosslink-
ing via unreacted oil unsaturations (when these are
present) causes important changes in the material proper-
ties (sometimes beneficial changes), what cannot be ne-
glected in mass production.
4. Vegetable oil based nanocomposites

4.1. Nanoclay composites

Since the global surge of interest in nanostructured and
nanocomposite materials, nanoclays have occupied a large
proportion of the efforts of researchers around the world,



Fig. 3. WAXRD of castor oil based clay nanocomposites with varying
percentages of clay. Reprinted with permission of Elsevier [51].
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because of the natural source for the particles and the
promise of improving barrier as well as mechanical proper-
ties of the nanocomposites. Thus, it is only understandable
that they appear frequently in the literature as proposed
reinforcements for plant oil-based nanocomposites.

For example, Liu et al. prepared networks from an epox-
idized soybean oil (ESO) with nanoclay as reinforcement
[48]. While the tensile properties were improved up to
8 wt.% of clay addition, higher concentrations lead to prop-
erties reduction. These results were explained by the
immobilization (or partial immobilization) of the polymer
chains due to the presence of the silicate layers below
8 wt.% and the inevitable aggregation that took place at a
concentration of clay of 10 wt.%. The dynamic mechanical
analysis showed that these materials had glass transition
temperatures in the range of 11.8–20.7 �C (from 0 and
5 wt.% clay, respectively).

Uyama et al. used an epoxidized soybean oil (ESO) cat-
ionically crosslinked at high temperature in the presence
of organically modified montmorillonite (0–20 wt.%) [49].
In this case, dynamic mechanical analysis (DMA) showed
that the rubbery storage modulus increased with the clay
concentration, but also the Tg shifted from �2 to 4 �C for
samples bearing 0–15 wt.% of clay, respectively. This
change was explained as the result of the co-reaction of
ESO with the modified clay, which together with the rigid-
ity of the clay afforded freestanding flexible films instead
of a soft one without structural value.

Partial replacement (up to 20 wt.%) of a commercial
unsaturated polyester resin (UPE) with an epoxidized
methyl soyate (EMS) cured with (35 wt.% of styrene) was
used to prepare clay nanocomposites [50]. As it is frequent
when handling nanoparticles, the dispersion of the nano-
clay required the use of solvent and sonication. In general,
the replacement of the commercial resin by the bio-de-
rived one resulted in lower moduli and Tg, for which reason
nanoclays were added to the formulation. As it was already
discussed for glass fiber composites, the toughness of the
materials was increased by the use of the bio-resin; the en-
ergy absorption during deformation and failure was more
than double when replacing 10 wt.% of the UPE by the
bio-resin in the 1 wt.% clay nanocomposites.

Kaushik et al. prepared a polyurethane-nanoclay com-
posite, with castor oil as the polyol component, 1,4-butane
diol as chain extender and a stoichiometric quantity of MDI
as crosslinker [51]. A quaternary ammonium modified
montmorillonite was used to reinforce the polyurethane,
varying the concentration from 0 to 5 wt.%.

X-ray diffraction is a technique commonly used to de-
tect the degree of dispersion of the clays. If the structure
corresponds to intercalated silicate layers, the (001) peak
shifts to lower angle due to the increase of the interlayer
spacing. On the other hand, if the structure corresponds
to exfoliated clay nanocomposites, no peaks can be ob-
served in the X-ray diffraction (XRD) pattern. In the consid-
ered study, there were delaminated stacks of silicate
layers, but also individual platelets, and also agglomerates,
situation that was corroborated by transmission electron
microscopy (TEM) observation (both in Fig. 3). Tensile re-
sults shown in Fig. 4 are in agreement with the good dis-
persion observed; Young’s modulus, tensile strength, as
well as elongation at break increase with the clay concen-
tration, a very interesting result, since in traditional
composites higher rigidity is usually obtained at the cost
of lower elongation. Besides the expected improvement
of the thermal degradation behavior, the incorporation of
nanoclays also resulted in the improvement of the barrier
properties to the diffusion of vapor and liquid water. The
water vapor permeability at 98% relative humidity (RH)
and 25 �C dropped from 513 � 10�8 mm2 s�1 for the neat
polymer to 0.67 � 10�8 mm2 s�1, for the composite
containing 5 wt.% of modified montmorillonite. This
remarkable improvement is due to the tortuosity of the
diffusion path, but also to the strong H-bonding interac-
tions formed between the PU matrix and the platelets,
which stabilizes the composite structure and reduces the
availability of polar groups to attract water molecules.

Chen et al. worked with a mixed system of polyure-
thane prepared from castor oil and TDI partially reacted
and interpenetrated with epoxy-amine [52]. They also
reinforced the grafted-IPN with montmorillonite (MMT)
in clay/polymer ratios from 1/100 to 7/100. The addition
of MMT increased the Tg of the materials (about 7 �C) but
also the height of the tand peak (well above the value of
0.3, as measured by DMA) and its width. Both features
are indicative of a material that could be used for mechan-
ical damping. While a small MMT addition, one part per
hundred, improved the tensile and impact properties,
higher concentrations of clay do not have further beneficial
effect.

Cationically copolymerized conjugated soybean oil and
low saturated soybean oil with styrene and divinyl ben-
zene was also used as matrix of an organo-modified mont-
morillonite clay nanocomposite [53]. The sodium-clay was
modified by the usual ionic exchange with (4-vinylbenzyl)
triethylammonium chloride in aqueous solution and the
obtained dispersion consisted in a mixture of intercalated
and partially exfoliated montmorillonite for concentra-
tions below 2 wt.% and intercalated above that value, as
determined by wide-angle X-ray diffraction (WAXD) and
transmission electron microscopy (TEM). The polymeric



Fig. 4. Tensile strength (MPa), Young’s modulus (MPa) and elongation at break (%) for various polyurethane clay nanocomposites. Reprinted with
permission of Elsevier [51].
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matrix consisted on 50 wt.% of the oil-based resin, 20 wt.% of
styrene and 10 wt.% of DVB, the rest being the modified ini-
tiator. The glass transition temperature of these materials
(from the maximum in the peak of tand, DMA temperature
scans) decreased with MMT addition from 12 to 6 �C for the
conjugated soybean oil, and from 23 to 18 �C for the conju-
gated low saturated oil (0–5 wt.% MMT, respectively). The
effect was explained as resulting from the increased viscos-
ity of the medium that lead to incomplete mixing of the ini-
tiator and reduced propagation of the chains. On the other
hand, the presence of up to 2 wt.% of the nanoclay clearly
improved the barrier properties to water vapor and the ther-
mal stability of the composites, as already observed for
other clay composites. The compressive modulus was also
improved (from 256 to 584 MPa at 0 and 2 wt.% of montmo-
rillonite, respectively, for the composite based on the conju-
gated low saturated soybean oil).

In some cases, hybrid reinforced composites have been
fabricated; Liu et al. extruded soybean oil/epoxy-based com-
posites reinforced with glass fibers and modified with org-
ano-modified clays [54]. Miyagawa et al. also prepared
hybrid composites, incorporating organically modified
nanoclay and alumina nanowhiskers with diameter of 2–
4 nm and aspect ratio of 20–100 and treated with an ami-
no-terminated ethoxy-silane [55]. The composites had an
epoxy-anhydride matrix where 30–50 wt.% of the epoxy re-
sin was replaced by two different epoxidized vegetable oils,
linseed oil and soybean oil. The nanoparticles were dis-
persed in the epoxy using sonication and the resin was
cured with anhydrides. No changes in dispersion level were
observed in the composites as a function of the bio-resin
concentration. The addition of 5 wt.% of exfoliated nanoclay
to the bio-based epoxy material lead to a 30% increase of the
storage modulus at 30 �C, while the use of an equal concen-
tration of the alumina whiskers produced a 50% increase in
identical conditions, which was most probably related to the
different aspect ratio of the nanoparticles. The use of epox-
idized linseed oil (ELO), which had a higher epoxy function-
ality and lower molecular weight than the epoxidized
soybean oil (ESO), resulted in a transparent polymer differ-
ently from the phase separated opaque material produced
from ESO. Actually, the separation of a rubbery phase in
ESO based-composites lead to increased fracture toughness:
0.525, 0.520 and 1.54 MPa m1/2, for the neat epoxy system,
the 50% ELO and the 30% ESO, respectively.

As it has been frequently reported for synthetic-based
polymer composites, the addition of nanoparticles/nanofi-
bers largely improves mechanical properties at compara-
tively low loadings (Table 1). When adequate dispersion of
the nanofillers is obtained strength is preserved or even
much improved. In particular, the use of nanoclays improves
thermal degradation behavior as well as vapor barrier
properties.

4.2. Other nanoparticles and nanofibers

Lligadas et al. reported studies on epoxidized linseed oil
(ELO)-based composites containing polyhedral oligomeric
silsesquioxanes (POSS) [56]. To prepare the samples, 3-glyc-
idylpropylheptaisobutyl-T8-polyhedral oligomeric sils-
esquioxane was dissolved in a minimum of acetone and
mixed with ELO to obtain 2, 5 and 10 wt.% POSS concentra-
tions. Energy-dispersive X-ray spectroscopy (SEM-EDX) al-
lowed Si-mapping showing a good dispersion of the POSS
is obtained, although the DMA results showed that the
incorporation of the silsesquioxane increased the Tg of the
materials up to 5 wt.% concentration (44 �C and 52 �C for
the 0 and 5 wt.% samples), but higher concentrations re-
sulted in reduced Tg (42 �C for the 10 wt.% samples).

A waterborne polyurethane synthesized from castor oil
and polyethyleneglycol crosslinked with isophorone diiso-
cyanate was used as the matrix in a cellulose nanocrystals
composite with concentrations from 0.2 to 5 wt.% [57]. The
crystals obtained by acid hydrolysis of cellulose from Euca-
lyptus globulus had average length and diameter of
518.0 ± 183.4 nm and 21.7 ± 13.0 nm, respectively. A good
dispersion of the bio-nanoreinforcement was observed;
the Young’s modulus of the elastomeric material increased
with the nanofiber concentration from 1.16 MPa for the neat
PU to 4.83 MPa at 4 wt.% cellulose. At higher concentrations
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the modulus dropped because of the agglomeration of
the nanocrystals. On the other hand, the tensile strength
showed a maximum at 1 wt.% of nanocellulose
(12.22 MPa compared to 5.42 MPa for the unreinforced
PU), while the elongation at break was maintained above
300% for all the materials. An interesting observation was
that the addition of nanocellulose enhanced phase separa-
tion between soft and hard segments, with the largest
hydrogen bonding interactions occurring between the cel-
lulose crystals and the hard segments, which resulted in
the shift of the glass transition temperature of the hard
segments towards higher temperature.

Similarly, Maafi et al. prepared a polyurethane from
castor oil and hexamethylene diisocyanate (HDI) rein-
forced with cellulose fibers from alfa stems [58]. As in
the previous case strong interactions between matrix and
fibers were reported due to H-bonds, but also to co-reac-
tion between polymer and fibers. An important shift from
3336 to 3319 cm�1 in the infrared NH absorption was re-
ported for the composite containing 25 wt.% of cellulose.
The glass transition temperature and mechanical proper-
ties of the composites increased steadily up to 20 wt.% of
fibers, which was also an indication of the good dispersion
obtained.

Wik et al. synthesized an alcoholyzed castor oil for the
production of solid polyurethanes reinforced with nanocel-
lulose (NC) obtained by acid hydrolysis of microcrystalline
cellulose [12]. The chemical bonding of the NC to the ma-
trix was used to explain the significant increase in tensile
modulus with the addition of just 0.5 wt.% of NC
(479.5 MPa and 636.4 MPa for the unfilled PU and the
nanocomposite, respectively). From the reported results,
it appears that dispersion is better at 0.5 wt.% of NC and
some aggregation is already present at concentrations as
low as 1 wt. %. Tensile properties of the unfilled and filled
castor oil based-polyurethane are summarized in Table 1.

5. Special applications

5.1. Composite coatings and adhesives

Among the various possible applications of the oil-de-
rived polymer composites, adhesives and coatings have re-
ceived much attention. Konwar et al. prepared a polyester
resin from seed oil of Mesua ferrea L. (also known as Ceylon
ironwood, a hard wood tree from South Eastern Asia) rein-
forced with nanoclays in order to obtain a coating with im-
proved performance of hardness, mechanical properties,
impact and also chemical resistance, as well as gloss [59].
Glycerolysis of the oil followed by reaction with anhydride
and then, with a hydroxy-acid produced highly branched
molecules. The carbonyl containing polyester resin was
then reacted with a poly(amido-amine)-epoxy mixture in
the presence of the nanoclay. Hydrogen bonding between
the nanoplatelets and the resin occurred through the
amine as well as carbonyl moieties present in the matrix.
The addition of only 2.5 wt.% nanoclays improved the ten-
sile strength from 2.7 to 7.1 MPa, and also the elongation at
break from 24% to 145%, while the impact hardness im-
proved about 19%. Chemical resistance to water and acids
was improved with nanoclay addition up to a concentra-
tion of 2.5 wt.%, as well as thermal stability, gloss and
hardness. The biodegradability of the films was also inves-
tigated using the broth culture technique with bacterial
strains, resulting in larger bacterial growth in the nano-
composite than in the unfilled films.

Similar results, regarding hardness, tensile properties,
thermal stability and biodegradation were reported by
the same group, for a clay-nanocomposite prepared from
reactive mixtures of epoxy-amine and bio-based polyure-
thane derived from Mesua ferrea L. seed oil or the corre-
sponding diethanolamide derived fatty acids [60].

An interesting study focused on an alkyd soy oil resin
reinforced with polyaniline (PAni), 0.5–2 wt.% [61]. The
authors reported that for concentrations of PAni higher
than 1.5 wt.% phase separation occurred in 24 h. FTIR and
UV–Vis techniques indicated the presence of strong H-
bonds between the alkyd resin and PAni. The scratch hard-
ness and impact resistance increased with PAni, although
for the last property there was improvement only up to
1 wt.%. This improvement and the shorter drying time of
the films containing PAni suggested that they could be
used as corrosion protective coatings.

Other materials have been proposed as specialty coat-
ings, such as one prepared from castor oil (urethane macr-
omers containing carboxylic groups) with isophorone
diisocyanate, propionic or tartaric acid and hydroxymethyl
methacrylate [62]. Silver or gold nanoparticles were incor-
porated into the formulation and the polymer was cross-
linked by irradiation in the presence of a photoinitiator.
Good dispersion of the nanoparticles was reported, with
a rather wide distribution of particle sizes, which were
around 10 nm and 4 nm for the silver and gold particles,
respectively. The composite films had reduced hydropho-
bicity with increased nanoparticles concentration and im-
proved mechanical properties.

Silica nanoparticles have been considered to improve
the performance of a coating prepared from castor oil
and an isocyanate alkyl triethoxy silane, further hydro-
lyzed to form an organic–inorganic hybrid coating [63].
Similarly, Sharmin et al. prepared a mixture of DGEBA
epoxy and castor oil in a ratio of 70/30 by weight, and
10 wt.% of prehydrolyzed TEOS [64]. After the reaction an
organic–inorganic hybrid material was obtained, that was
used to prepare films by reaction with TDI. The biohybrid
coating was transparent, flexible, glossy and hard, showing
to be scratch and impact resistant.

5.2. Composite foams

Polyols obtained from vegetable oils can be used to pre-
pare composite polyurethane foams. The most widely re-
ported methods to synthesize the oil-based polyols are
the hydroxylation of the carbon–carbon double bonds
(present in the fatty acid segments of the oils) and alcohol-
ysis to obtain mono and diglycerides. Through these mod-
ifications, the hydroxyl group concentration in the
modified oils increases, as compared to the initial oils,
reaching values high enough to prepare rigid polyure-
thanes. In addition to polyol, an isocyanate source and a
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catalyst, foaming of polyurethanes requires a surfactant
agent and a foaming agent. Flexible to rigid foams with wide
diversity of properties can be achieved depending on the
polyol and the isocyanate components, the stoichiometric
ratios, additives and the preparation procedure.

Rigid cellular polyurethane composites made with natu-
ral fibers have been recently reported by Kuranska and Pro-
ciak [65]. They replaced up to 80% of a synthetic polyol by a
rapeseed oil based polyol, and used flax and hemp fibers of
0.5 mm length, to obtain composite foams with densities of
about 40 kg/m3. The concentration of fibers added is limited
by the cell growth and the thermal insulation requirements.
In general, the properties were comparable to those ob-
tained with a synthetic polyol, and allowed using a large
percentage of biobased materials. High fiber concentrations
(above 5 wt.%) affected the cell anisotropy index, since elon-
gation of the cells in the foam rise direction was observed.

Although castor oil is a vegetal triglyceride naturally con-
taining hydroxyl groups from the ricinoleic acid, it cannot be
used without chemical modification in the production of
highly rigid foams [66], because its hydroxyl value is not
high enough for this purpose. Mosiewicki et al. reported
the synthesis and characterization of castor oil based polyol
by the alcoholysis of the oil with triethanolamine [11]. The
synthesized polyol was then used in the formulation of
polyurethane foams with and without reinforcement. The
selected reinforcement/reactive filler was pine wood-flour
and acceptable foams were prepared using up to 15% by
weight of filler, although the compression properties de-
creased and the thermal conductivity slightly increased
Fig. 5. Scanning electron micrographs of the natural foams obtained with
with the addition of wood flour (from 39.4 mW/m�C to
45.3 mW/m�C for the bio-based foams with 0 and 15 wt.%
WF, respectively). The characteristic rising times of the
bio-foams were longer as compared with a commercial
foam system, for both, unfilled and filled samples, which
allowed achieving more uniform composite liquid
mixtures before reaction. The thermal stability of the foams
improved by addition of WF and by the total replacement of
the commercial polyol by the castor oil derived polyol. On
the other hand, the micro-sized filler introduced cell
disruption.

Fig. 5 shows the scanning electron micrographs of the ri-
gid foams formulated with the natural polyol as a function
of the wood flour content. There is no preferential orienta-
tion in the cells, being the cellular structure of the unfilled
foams, predominantly spherical and evenly distributed, with
few broken cells. In general, the cells appear closed for the
unfilled foam, with diameters ranging from 0.12 to
0.5 mm. The addition of WF to the formulation is responsi-
ble for an increase in the viscosity of the initial mixture,
which turns to be less expandable, giving rise to a more dis-
torted structure of cells, with a larger cell size distribution
(less uniform sizes).

Zhu et al. reported on the properties of soy polyol based
rigid polyurethane foams reinforced with cellulose microfi-
bers and with nanoclays [67]. As discussed in the previous
work the incorporation of the microfibers and nanoclays af-
fected the cellular structure of the foam, so that the cell size
decreased and the fraction of small cells increased, which
affected the mechanical properties. Thus, more rigid
a castor oil based polyol as a function of the wood flour content [11].
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composite foams were obtained (the basis of comparison
was the compressive strength of the foams).

Taking advantage of the wide versatility of polyure-
thanes, Aranguren et al. used castor oil to obtain polyure-
thane microfoams with different foaming levels that
were reinforced with pine wood-fibers or hemp [68]. Semi-
structural applications could benefit from the low density
and good mechanical properties of this type of polyure-
thanes, for example for the manufacture of car interior
panels or acoustic insulation panels for the construction
industry, among others. In this work, a surfactant agent
was used, but no catalyst in order to have a relatively
low reaction rate that allowed for the fibers incorporation.
Microfoamed composites with preferential orientation
were prepared from long hemp fibers. Also, samples with
random arrangement of short hemp or wood fibers were
obtained. As in other studies, aging was observed due to
oxidative crosslinking reactions that involve remnant
unmodified unsaturations in the vegetable oil-based pol-
yol. As a result, the modulus and strength of the material
increased with time, and very interestingly, there was no
decrease of the deformation to rupture, and for this reason
the aged materials showed higher toughness than the ori-
ginal composites.

5.3. Shape memory materials

Shape-memory polymers are a group of smart materials
with the capability to modify their shape, by fixing a tem-
porary shape and self-recovering their original dimensions
on requirement as response to an external stimulus
[69,70].

When the external stimulus is temperature, the value
that switches the response of the material is chosen to be
above the glass transition temperature (Tg) for crosslinked
amorphous polymers, or a melting temperature (Tm) for
semicrystalline polymers. Usually, above the switch tem-
perature (Tswitch) the material is rubbery and thus, it can
be easily deformed into a temporary shape by an external
force. This shape can be fixed by cooling the material be-
low the corresponding transition temperature and the ori-
ginal shape can be further recovered by heating above the
chosen Tswitch. The permanent shape of the material is fixed
by chemical or physical crosslinks that are stable in the
range of temperatures used.

Some authors have considered the use of bio-derived
precursors to prepare shape memory materials. In particu-
lar, it is remarkable the extensive work that the Larock’s
group has realized on thermoset polymers obtained by cat-
ionic polymerization of several unsaturated oils and sty-
rene and/or divinyl benzene, which could be considered
for the preparation of smart composites [10,71,72].

Rana et al. studied the behavior of a hyperbranched
polyurethane prepared from castor oil, polycaprolactone
diol, butanediol and MDI [73]. The triglyceride contributed
to the formation of a hyperbranched structure and helped
to improve the dispersion of the carbon nanotubes (CNTs).
The segmented polyurethanes obtained were semicrystal-
line with shape memory properties. The overall crystallin-
ity increased with addition of 2 wt.% CNT or reducing the
hard segments concentration, while the recovery of the
original form was improved with increasing concentra-
tions of CNT and hard segments.

Given the efforts dedicated to research on this type of
polymers, it is very probable that more publications will
appear soon on smart bio-composites in the next future.
6. Summary and future trends

Plant oils have already shown their versatility as
sources for polymers and precursors. Almost from the
beginning of the revival that started at the end of last cen-
tury, they were also proposed as composite matrices, and it
is clear from the work summarized in this review that the
trend is continuously growing and with promising results.
Some of the biopolymers and precursors mentioned are
nowadays commercial and there are companies that offer
derived bio-based polymers (epoxy, alkydic and polyure-
thane precursors being the most frequently found) for spe-
cific applications.

The research in the chemistry arena, that will allow
offering new or improved derived chemicals in the future,
has now permeated to the engineering and materials fields.
Interdisciplinary efforts are recognized as necessary to im-
prove formulations as well as processing conditions and
materials performance in final applications. Clearly, this
is the case observed in the publications that cover from
the synthesis and characterization of the polymers to the
selection of the reinforcement/filler and the various char-
acterization techniques of materials structure and perfor-
mance (mechanical and fracture), including specific ones
(fire resistance, hardness, thermal and electrical conductiv-
ity, etc.).

Different particles and fibers have already been tried,
from typical glass fibers to natural ones (wood flour and
vegetable fibers), including nanosized inclusions such as
nanoclays, carbon nanotubes, nanocellulose and also con-
ductive polymer aggregates or organic–inorganic nano-
structured copolymers. In all cases, compatibility was
intrinsic to the matrix-filler system or it could be devel-
oped by using compatibilizing agents or filler modifica-
tions. Different processes have also been utilized, clearly
the most common being casting and molding, but resin
transfer molding and pultrusion have also been reported.
Efforts in this area are needed to facilitate the transfer of
technology to profitable industrial production.

It is also interesting to remark that although the initial
use of plant oil based polymers was presented as a partial
(minimum) replacement of synthetic polymers to intro-
duce ‘‘green’’ materials in the formulation and little more
than that, the trend is to increase the percentage of bio-
based materials maintaining good overall performance
and/or with tailored special properties, a goal for which
the production of composites and nanocomposites is per-
fectly well fitted.
Acknowledgements

The authors wish to thank CONICET, MINCYT and
UNMDP. Thanks are also due to Dr. J.F. González for proof-
reading the manuscript.



M.A. Mosiewicki, M.I. Aranguren / European Polymer Journal 49 (2013) 1243–1256 1255
References

[1] Wool R. In: Wool RP, Sun XS, editors. Polymers and composite resins
from plant oils in bio-based polymers and composites. Burlington
(USA): Elsevier Academic Press; 2005. p. 56–113.

[2] Belgacem MN, Gandini A. In: Belgacem MN, Gandini A, editors.
Materials from vegetable oils: major sources, properties and
applications in monomers, polymers and composites from
renewable resources. Oxford (UK): Elsevier; 2008. p. 39–66.

[3] Lu Y, Larock RC. Novel polymeric materials from vegetable oils and vinyl
monomers: preparation, properties, and applications. ChemSusChem
2009;2(2):136–47.

[4] Xia Y, Larock RC. Vegetable oil-based polymeric materials: synthesis,
properties, and applications. Green Chem 2010;12(11):1893–909.

[5] Khot SN, Lascala JJ, Can E, Morye SS, Williams GI, Palmese GR, et al.
Development and application of triglyceride-based polymers and
composites. J Appl Polym Sci 2001;82:703–23.

[6] Desroches M, Escouvois M, Auvergne R, Caillol S, Boutevin B. From
vegetable oils to polyurethanes: synthetic routes to polyols and main
industrial products. Polym Rev 2012;52:38–79.

[7] Larock RC, Dong XY, Chung S, Reddy CK, Ehlers LE. Preparation of
conjugated soybean oil and other natural oils and fatty acids by
homogeneous transition metal catalysis. J Am Oil Chem Soc
2001;78:447–53.

[8] Meiorin C, Aranguren MI, Mosiewicki MA. Vegetable oil based
thermoset copolymers with shape memory behavior and damping
capacity. Polym Int 2012;64(5):735–42.

[9] Meiorin C, Aranguren MI, Mosiewicki MA. Smart and structural
thermosets from cationic copolymerization of a vegetable oil. J Appl
Polym Sci 2012;124(6):5071–8.

[10] Li FK, Larock RC. Synthesis, structure and properties of new tung oil-
styrene-divinylbenzene copolymers prepared by thermal polymeriza-
tion. Biomacromolecules 2003;4:1018–25.

[11] Mosiewicki MA, Dell’Arciprete GA, Aranguren MI, Marcovich NE.
Polyurethane foams obtained from castor oil based polyol and filled
with wood flour. J Compos Mater 2009;43(25):3057–72.

[12] Wik VM, Aranguren MI, Mosiewicki MA. Castor oil-based
polyurethanes containing cellulose nanocrystals. Polym Eng Sci
2011;51:1389–96.

[13] La Scala J, Wool RP. Effect of FA composition on epoxidation kinetics of
TAG. J Am Oil Chem Soc 2002;79(4):373–8.

[14] Petrovic ZS, Zlatanic A, Lava CC, Sinadinovic-Fiser S. Epoxidation of
soybean oil in toluene with peroxoacetic and peroxoformic acids –
kinetics and side reactions. Eur J Lipid Sci Technol 2002;104:293–9.

[15] Lu J, Khot S, Wool RP. New sheet molding compounds resins from
soybean oil. I. Synthesis and characterization. Polymer 2005;46:
71–80.

[16] La Scala J, Wool RP. Property analysis of triglyceride-based
thermosets. Polymer 2005;46:61–9.

[17] Wool RP, Kusefoglu S, Palmese G, Khot S, Zhao R, US Pat., 6 121 398;
2000.

[18] Can E, Kusefoglu S, Wool RP. Rigid, thermosetting liquid molding
resins from renewable resources. I. Synthesis and polymerization of
soy oil monoglyceride maleates. J Appl Polym Sci 2001;81:69–77.

[19] Mosiewicki MA, Aranguren MI, Borrajo J. Mechanical properties of
linseed oil monoglyceride maleate/styrene copolymers. J Appl Polym
Sci 2005;97:825–36.

[20] Mosiewicki MA, Casado U, Marcovich NE, Aranguren MI.
Polyurethanes from tung oil: polymer characterization and
composites. Polym Eng Sci 2009;49:685–92.

[21] Hu YH, Gao Y, Wang DN, Hu CP, Zhu S, Vanoverloop L, et al. Rigid
polyurethane foam prepared from a rape seed oil based polyol. J Appl
Polym Sci 2002;84:591–7.

[22] Desroches M, Caillol S, Lapinte V, Auvergne R, Boutevin B. Synthesis of
biobased polyols by thiol_ene coupling from vegetable oils.
Macromolecules 2011;44:2489–500.

[23] Türünc O, Meier MAR. Fatty acid derived monomers and related
polymers via thiol-ene (click) additions. Macromol Rapid Commun
2010;31:1822–6.

[24] Stemmelen M, Pessel F, Lapinte V, Caillol S, Habas J-P, Robin J–JA. Fully
biobased epoxy resin from vegetable oils: from the synthesis of the
precursors by thiol-ene reaction to the study of the final material. J
Polym Sci Part A: Polym Chem 2011;49:2434–44.

[25] Firdaus M, Meier MAR. Renewable co-polymers derived from vanillin
and fatty acid derivatives. Eur Polym J, in press. doi:10.1016/
j.eurpolymj.2012.10.017.

[26] Montero de Espinosa L, Meier MAR. Plant oils: the perfect renewable
resource for polymer science? Eur Polym J 2011;47:837–52.
[27] Jacobs T, Rybak A, Meier MAR. Cross-metathesis reactions of allyl
chloride with fatty acid methyl esters: efficient synthesis of a,v-
difunctional chemical intermediates from renewable raw materials.
Appl Catal A: General 2009;353:32–5.

[28] Chandrashekhara K, Sundararaman S, Flanigan V, Kapila S. Affordable
composites using renewable materials. Mater Sci Eng A 2005;412:2–6.

[29] Husíc S, Javni I, Petrovíc ZS. Thermal and mechanical properties of
glass reinforced soy-based polyurethane composites. Compos Sci
Technol 2005;65:19–25.

[30] Lu Y, Larock RC. Fabrication, morphology and properties of soybean
oil-based composites reinforced with continuous glass fibers.
Macromol Mater Eng 2007;292:1085–94.

[31] Henna PH, Kessler MR, Larock RC. Fabrication and properties of
vegetable-oil-based glass fiber composites by ring-opening
metathesis polymerization. Macromol Mater Eng 2008;293:979–90.

[32] Ray D, Ghorui S, Bandyopadhyay NR, Sengupta S, Kar T. New materials
from maleated castor oil/epoxy resin blend reinforced with fly ash. Ind
Eng Chem Res 2012;51:2603–8.

[33] Bassyouni M, Sherif SA, Sadek MA, Ashour FH. Synthesis and
characterization of polyurethane – treated waste milled light bulbs
composites. Compos Part B 2012;43:1439–44.

[34] Satheesh Kumar MN, Manjula KS, Siddaramaiah. Castor oil-based
polyurethane– polyester nonwoven fabric composites: mechanical
properties, chemical resistance, and water sorption behavior at
different temperatures. J Appl Polym Sci 2007;105:3153–61.

[35] Chen S, Wang Q, Wang T, Pei X. Preparation, damping and thermal
properties of potassium titanate whiskers filled castor oil-based
polyurethane/epoxy interpenetrating polymer network composites.
Mater Des 2011;32:803–7.

[36] Pfister DP, Larock RC. Cationically-cured natural oil-based green
composites: effect of the natural oil and the agricultural fiber. J Appl
Polym Sci 2012;123(3):1392–400.

[37] Pfister DP, Larock RC. Thermophysical properties of conjugated soy-
bean oil/corn stover biocomposites. Biores Technol 2010;101:6200–6.

[38] Merlini C, Soldi V, Barra GMO. Influence of fiber surface treatment and
length on physico-chemical properties of short random banana
fiber-reinforced castor oil polyurethane composites. Polym Test
2011;30:833–40.

[39] Miao S, Liu Y, Wang P, Zhang S. Castor oil and microcrystalline
cellulose based polymer composites with high tensile strength. Adv
Mater Res 2012;399–401:1531–5.

[40] Adekunle K, Patzelt C, Kalantar A, Skrifvars M. Mechanical and
viscoelastic properties of soybean oil thermoset reinforced with jute
fabrics and carded lyocell fiber. J Appl Polym Sci 2011;122(5):
2855–63.

[41] Mosiewicki MA, Borrajo J, Aranguren MI. Mechanical properties of
woodflour/linseed oil resins composites. Polym Int 2005;54(5):
829–36.

[42] Pukanszky B, Tudos F, Jancar J, Kolarik J. The possible mechanisms of
polymer–filler interaction in polypropylene–CaCO3 composites. J
Mater Sci Lett 1989;8:1040–2.

[43] Mosiewicki MA, Rojas O, Sibaja MR, Borrajo J, Aranguren MI. Aging
study of linseed oil resin/styrene thermosets and their composites
with wood flour. Polym Int 2007;57(7):875–81.

[44] Casado U, Marcovich NE, Aranguren MI, Mosiewicki MA. High strength
composites based on tung oil polyurethane and wood flour: effect of
the filler concentration on the mechanical properties. Polym Eng Sci
2009;49(4):713–21.

[45] Wu Q, Henriksson M, Liu X, Berglund LA. A high strength
nanocomposite based on microcrystalline cellulose and polyure-
thane. Biomacromolecules 2007;8:3687–92.

[46] Aranguren MI, González JF, Mosiewicki MA. Biodegradation of a
vegetable oil based polyurethane and wood flour composites. Polym
Test 2012;31(1):7–15.

[47] Wool RP. In: Wool RP, Sun XS, editors. Bio-based composites from
soybean oil and chicken feathers, in bio-based polymers and
composites. Burlington (USA): Elsevier Academic Press; 2005.

[48] Liu Z, Erhan SZ, Xu J. Preparation, characterization and mechanical
properties of epoxidized soybean oil/clay nanocomposites. Polymer
2005;46:10119–27.

[49] Uyama H, Kuwabara M, Tsujimoto T, Nakano M, Usuki A, Kobayashi S.
Green nanocomposites from renewable resources: plant oil-clay
hybrid materials. Chem Mater 2003;15:2492–4.

[50] Haq M, Burgueño R, Mohanty AK, Misra M. Bio-based unsaturated
polyester/layered silicate nanocomposites: characterization and
thermo-physical properties. Compos Part A 2009;40:540–7.

[51] Kaushik A, Ahuja D, Salwani V. Synthesis and characterization of
organically modified clay/castor oil based chain extended
polyurethane nanocomposites. Compos Part A 2011;42:1534–41.



1256 M.A. Mosiewicki, M.I. Aranguren / European Polymer Journal 49 (2013) 1243–1256
[52] Chen S, Wang Q, Wang T. Damping, thermal, and mechanical
properties of montmorillonite modified castor oil-based
polyurethane/epoxy graft IPN composites. Mater Chem Phys
2011;130:680–4.

[53] Lu Y, Larock RC. Novel biobased nanocomposites from soybean
oil and functionalized organoclay. Biomacromolecules 2006;7:
2692–700.

[54] Liu Z, Erhan SZ, Calvert PD. Solid freeform fabrication of soybean oil-
based composites reinforced with clay and fibers. J Am Oil Chem Soc
2004;81(6):605–10.

[55] Miyagawa H, Mohanty A, Drzal LT, Misra M. Effect of clay and
alumina-nanowhisker reinforcements on the mechanical properties
of nanocomposites from biobased epoxy: a comparative study. Ind
Eng Chem Res 2004;43:7001–9.

[56] Lligadas G, Ronda JC, Galia M, Cádiz V. Bionanocomposites from
renewable resources: epoxidized linseed oil-polyhedral oligomeric
silsesquioxanes hybrid materials. Biomacromolecules 2006;7:
3521–6.

[57] Gao Z, Peng J, Zhong T, Sun J, Wang X, Yue C. Biocompatible
elastomer of waterborne polyurethane based on castor oil and
polyethylene glycol with cellulose nanocrystals. Carbohydr Polym
2012;87:2068–75.

[58] Maafi EM, Tighzert L, Malek F. Elaboration and characterization of
composites of castor oil-based polyurethane and fibers from alfa
stems. J Appl Polym Sci 2010;118:902–9.

[59] Konwar U, Karak N, Mandal M, Mesua ferrea L. Seed oil based highly
thermostable and biodegradable polyester/clay nanocomposites.
Polym Degrad Stab 2009;94:2221–30.

[60] Dutta S, Karak N, Saikia JP, Konwar BK. Biocompatible epoxy
modified bio-based polyurethane nanocomposites: mechanical
property, cytotoxicity and biodegradation. Biores Technol 2009;100:
6391–7.

[61] Alam J, Riaz U, Ahmad S. Nanostructured polyaniline reinforced
sustainable resource (soy oil alkyd) based composites. Polym
Compos 2010;2010(31):32–7.

[62] Melinte V, Buruiana T, Balan L, Buruiana EC. Photocrosslinkable acid
urethane dimethacrylates from renewable natural oil and their use
in the design of silver/gold polymeric nanocomposites. React Funct
Polym 2012;72:252–9.

[63] Mülazim Y, Cakmakc E, Kahraman MV. Preparation of photo curable
highly hydrophobic coatings using a modified castor oil derivative as
a sol–gel component. Progress Org Coat 2011;72:394–401.

[64] Sharmin E, Akram D, Ghosal A, Rahman O, Zafar F, Ahmad S.
Preparation and characterization of nanostructured biohybrid.
Progress Org Coat 2011;72:469–72.

[65] Kuranska M, Prociak A. Porous polyurethane composites with
natural fibres. Compos Sci Technol 2012;72:299–304.

[66] Baser SA, Khakhar DV. Castor oil-glycerol blends as polyols for rigid
polyurethane foams. Cell Polym 1993;12(5):340.

[67] Zhu M, Bandyopadhyay-Ghosh S, Khazabi M, Cai H, Correa C, Sain M.
Reinforcement of soy polyol-based rigid polyurethane foams by
cellulose microfibers and nanoclays. J Appl Polym Sci 2012;124(6):
4702–10.
[68] Aranguren MI, Rácz I, Marcovich NE. Microfoams based on castor oil
polyurethanes and vegetable fibers. J Appl Polym Sci.
2007;105(5):2791–800.

[69] Wei ZG, Sandström R, Miyazaki S. Review. Shape-memory materials
and hybrid composites for smart systems. Part I. Shape-memory
materials. J Mater Sci 1998;33:3743–62.

[70] Behl M, Lendlein A. Shape-memory polymers. Mater Today
2007;10(4):20–8.

[71] Li F, Larock RC. New soybean oil-styrene-divinylbenzene
thermosetting copolymers. V. Shape memory effect. J Appl Polym
Sci 2002;84(8):1533–43.

[72] Li F, Larock RC. New soybean oil–styrene–divinylbenzene
thermosetting copolymers. VI. Time–temperature–transformation
cure diagram and the effect of curing conditions on the thermoset
properties. Polym Int 2003;52:126–32.

[73] Rana S, Karak N, Cho JW, Kim YH. Enhanced dispersion of carbon
nanotubes in hyperbranched polyurethane and properties of
nanocomposites. Nanotechnology 2008;19(49):495707.

Mirna Alejandra Mosiewicki obtained her
PhD from the INTEMA, UNMdP, Argentina in
2005 (green composites). She was posdoctoral
fellow at the University of Alabama, USA
(2007) working on nanocomposites. She has
been working on renewable resources based
polymers and its micro and nanocomposites.
Her present professional interests are poly-
mers from renewable resources, nanocom-
posites functional properties. She is coauthor
of 25 international papers, 3 book chapters
and more than a 40 conference papers.
Mirta Inés Aranguren is Ph.D. from the
U. Minnesota (USA) and presently she is
Professor at the Universidad Nacional de Mar
del Plata and head of the Ecomaterials group
at INTEMA. Her research interests are poly-
mers, composites and nanocomposites based
on biomass. She was recipient of IFS grants
and award and a Guggenheim Fellowship to
work on related subjects. She is co-author of
90 international papers, several book chap-
ters, and more than 150 conference contri-
butions.


	A short review on novel biocomposites based on plant oil precursors
	1 Introduction
	2 Monomers from chemical modification of triglycerides
	3 Vegetable oil-based composites
	3.1 Glass fiber composites
	3.2 Other macro and micro-synthetic fillers/reinforcements
	3.3 Natural fiber/filler composites

	4 Vegetable oil based nanocomposites
	4.1 Nanoclay composites
	4.2 Other nanoparticles and nanofibers

	5 Special applications
	5.1 Composite coatings and adhesives
	5.2 Composite foams
	5.3 Shape memory materials

	6 Summary and future trends
	Acknowledgements
	References


