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Abstract

Let G be a commutative monoid with cancellation and letR be a stronglyG-graded
associative algebra with finiteG-grading and with antiautomorphism. Suppose thatR sat-
isfies a graded polynomial identity with antiautomorphism. We show thatR is a PI algebra.
 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Throughout this paper all rings and algebras are associative. The reader is
referred to [7,16] for basic concepts and results on rings with (generalized)
polynomial identities. LetG be a monoid with unitye and cancellation. LetF
be a commutative ring with 1, andR an F -algebra. We say thatR is almost
G-graded if there areF -submodulesRg ⊆ R, g ∈ G, such thatR = ∑

g∈GRg

and RgRh ⊆ Rgh for all g,h ∈ G. If
∑

g∈GRg is direct (i.e.,
∑

g∈GRg =⊕
g∈GRg), then we say thatR is G-graded. Further, set supp(R) = {g ∈ G |

Rg �= 0}. TheG-grading is said to befinite if |supp(R)| < ∞. A G-graded algebra
R is calledstrongly G-graded if

(1) supp(R) consists of invertible elements,
(2) R has an identity 1, and
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(3) 1∈ RgRg−1 =Re for all g ∈ supp(R).

WhenG is the group of order 2, aG-graded algebra is called asuperalgebra.
Let U(F) be the group of invertible elements ofF , and letR be aG-graded

algebra. Assume thatG is commutative. An automorphismφ :R → R of the
F -module R is called anantiautomorphism of the G-graded algebra R if
Rφ

g = Rg for all g ∈ G and there exists a mapν :G × G → U(F) such that
ν(e,p) = 1 = ν(p, e) and (ab)φ = ν(p, q)bφaφ for all a ∈ Rp , b ∈ Rq , and
p,q ∈ G. In the case whenR is a superalgebra withG = {e, g} andν(g, g) = −1,
the antiautomorphismφ is called asuperinvolution provided thatφ2 = 1.

Throughout the rest of the paper, we assume the following conditions:

(1) G is a commutative monoid with cancellation,
(2) F is an associative ring,
(3) R is an associativeF -algebra with a finiteG-grading, and
(4) φ :R→ R is an antiautomorphism of theG-graded algebraR.

Let X = ⋃
g∈GXg be a disjoint union of infinite setsXg , g ∈ G, and let

F〈X〉 be the freeF -algebra onX. Let A be an almostG-gradedF -algebra. An
elementf (x1, x2, . . . , xn) ∈F〈X〉 is said to be aG-graded polynomial identity on
A provided thatψ(f ) = 0 for all algebra homomorphismsψ :F〈X〉 → A with
ψ(Xg) ⊆Ag for all g ∈ G.

We denote the set{xφ | x ∈ X} as Xφ , and define a mapδ :X ∪ Xφ → G

by the ruleδ(x) = g = δ(xφ) for all x ∈ Xg , g ∈ G. Next, given a monomial
M = x

ε1
1 x

ε2
2 . . . x

εn
n ∈ F〈X ∪ Xφ〉, where eachεi ∈ {1, φ}, we set δ(M) =

δ(x1)δ(x2) . . . δ(xn). An elementf (x1, x2, . . . , xn) ∈ F〈X ∪ Xφ〉 is said to bea
G-graded polynomial identity with φ on R provided thatψ(f ) = 0 for all algebra
homomorphismsψ :F〈X∪Xφ〉 → R with ψ(Xg) ⊆Rg andψ(xφ) = ψ(x)φ for
all x ∈ Xg , g ∈ G.

Let h(x1, x2, . . . , xn) ∈ F〈X ∪ Xφ〉 with at least one of it coefficients is
equal to 1. It is easy to see that ifh is a G-graded polynomial identity with
antiautomorphism forR, thenR satisfies a multilinearG-graded polynomial
identity f (x1, x2, . . . , xn) ∈ F〈X ∪ Xφ〉 with at least one of the coefficients of
f is 1. In this case, we may assume, without loss of generality, that the monomial
x1x2 . . . xn is involved inf with 1 as the coefficient, and that there existsg ∈ G

such thatδ(N) = g for all monomialsN involved inf . We set

Gf = {
δ(x1), δ(x2), . . . , δ(xn)

} ⊆ G.

In 1986 Bergen and Cohen [8] proved thatR is PI provided thatG is
a finite group,F is a field, andRe is a PI algebra. This result was extended to
algebras over arbitrary commutative rings by Kelarev [11]. Bahturin and Zaicev
[3] obtained an analogous result for algebras over a field with finiteG-grading
whereG is any monoid with cancellation. Sehgal and Zaicev [17] proved that ifH
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is a normal subgroup of a groupG with finite index and the group algebraF [G],
considered asG/H -graded algebra, satisfies aG/H -graded polynomial identity,
thenF [G] is a PI algebra. Note, that in this caseF [G] is a stronglyG/H -graded
algebra. Recently Beidar and Chebotar obtained the following generalization of
their result.

Theorem 1.1 [5, Theorem 1.1].Let G be a monoid with unity e and cancellation,
let F be a commutative ring with 1, and let R be an almost G-graded F -algebra
with finite G-grading satisfying a G-graded multilinear polynomial identity
f (x1, x2, . . . , xn). Suppose that the monomial x1x2 . . . xn is involved in f with
coefficient 1, δ(N) = δ(x1x2 . . . xn) for all monomials N involved in f and
Gf ⊆ supp(R). Then:

(i) If R is a prime ring and |supp(R)| = 2, then the ring Re contains a nonzero
ideal satisfying the standard identity St2n−2 of degree 2n − 2, and the ring
R satisfies a nontrivial generalized polynomial identity. If in addition R is a
simple ring with 1, then R is a PI algebra.

(ii) If both R and Re are prime rings, then Re satisfies St2n−2 and R is a PI
algebra.

(iii) If R has an identity 1 ∈ Re, Gf consists of invertible elements, and
RgRg−1 =Re for all g ∈ Gf , then R is a PI algebra.

On the other hand, in 1969 Amitsur [2] proved that a ringA satisfying
a polynomial identity with involution is PI (see [1,9,13] for earlier results).
Motivated by the aforesaid results we prove the following theorem.

Theorem 1.2. Let G be a commutative monoid with unity e and cancellation,
let F be a commutative ring with 1, and let R be a G-graded F -algebra with
an antiautomorphism φ. Suppose that |supp(R)| < ∞, and that R satisfies a
G-graded multilinear polynomial identity f (x1, x2, . . . , xn) with antiautomor-
phism such that the monomial x1x2 . . . xn is involved in f with coefficient 1,
δ(N) = δ(x1x2 . . . xn) for all monomials N involved in f , and Gf ⊆ supp(R).
Then:

(i) If R is a prime ring and |supp(R)| = 2, then the ring Re contains a nonzero
ideal satisfying the standard identity St4n−2 of degree 4n − 2, and the ring
R satisfies a nontrivial generalized polynomial identity. If in addition R is
a simple ring with 1, then R is a PI algebra.

(ii) If R and Re are both prime rings, then Re satisfies St4n−2 and R is a PI
algebra.

(iii) If R has an identity 1 ∈ Re, Gf consists of invertible elements, and
RgRg−1 =Re for all g ∈ Gf , then R is a PI algebra.
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We now give the following examples to justify the necessity of the conditions
set in Theorem 1.2. These examples are modification of Examples 1–3 from [5].

Example 1.3. Let G = 〈a〉 be a cyclic group of order 3. There exists aG-graded
algebraR over a field with an antiautomorphismφ such thatR is a simple
Artinian ring not satisfying a (generalized) polynomial identity,Re is a direct
sum of two skew fields andR satisfies aG-graded polynomial identity with
antiautomorphismf (x, y) = xyφ, x, y,∈Ra , such thatGf ⊆ supp(R).

Indeed, letD be a skew field with an antiautomorphismψ which is not a PI
ring (for instance,D may be the classical ring of quotients of the Weyl algebraA1

over the rational number field with involutionxψ

1 = y1 andy
ψ

1 = −x1 [15]). Let
F = Z(D) be the center ofD, letR= M2(D) be theF -algebra of 2× 2 matrices
overD and let{eij | 1 � i, j � 2} be a system of matrix units ofR. Further, set
u = e11, v = e22, and

Re = uRu + vRv, Ra = uRv and Ra2 = vRu.

Define an antiautomorphismφ of R by the rule(
a b

c d

)φ

=
(

dψ −bψ

−cψ aψ

)
for all a, b, c, d ∈D

and note thatR is aG-graded algebra satisfying aG-graded polynomial identity
with antiautomorphismf (x, y) = xyφ , x, y ∈ Ra .

Hence the first statement of the theorem does not hold in general if
|supp(R)| = 3. Next, the second statement does not hold in general ifRe is not
prime even ifR is a simple Artinian ring andRe is a direct sum of two skew
fields.

Example 1.4. Let G = {e, g} be a cyclic group of order 2. There exists aG-
graded algebraR over a field with an antiautomorphism∗ such thatR is a simple
ring (without identity) satisfying a generalized polynomial identity,R is not a PI
algebra,R satisfies aG-graded polynomial identity

f (x1, . . . , x5) = [x1, x2]x3[x4, x5], x1, x2, x4, x5 ∈Re, x3 ∈ Rg,

andGf = supp(R) = G (see Theorem 1.2(i)).
Indeed, letF be a field, letR be theF -algebra of infinite matrices with finite

number of nonzero entries and letu be the matrix whose(1,1) entry is equal to 1
and all the other ones are equal to 0. Obviouslyuxuyu− uyuxu is a generalized
polynomial identity onR andR is not a PI algebra. Further, set

Re = uRu + (1− u)R(1− u) and Rg = uR(1− u) + (1− u)Ru.

ClearlyR is a G-graded algebra. Next the transpose map∗ is an antiautomor-
phism of theG-graded algebraR andR satisfies theG-graded polynomial iden-
tity f (x1, . . . , x5).
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Example 1.5. Let G = {e, g} be a cyclic group of order 2 and letF be a field.
For any positive integern the algebraR = Mn(F) admits aG-grading such that
R is a stronglyG-graded algebra with antiautomorphism satisfying theG-graded
polynomial identityf (x1, . . . , x5) (see Example 2).

Indeed, letu = e11. As above setRe = uRu + (1 − u)R(1 − u) andRg =
uR(1−u)+ (1−u)Ru. ObviouslyR2

g =Re and soR is stronglyG-graded. We
already know thatf (x1, . . . , x5) is aG-graded polynomial identity onR and the
transpose map is an antiautomorphism of theG-graded algebraR. On the other
hand, the minimal degree of a polynomial identity onR is 2n [16, Lemma 1.4.3].
Therefore there exists no functionm = m(deg(f )) such that a simple algebra with
1 satisfying theG-graded polynomial identityf satisfies a polynomial identity of
degreem even ifR is a stronglyG-graded simple finite-dimensional algebra (see
Theorem 1.2(iii)).

The following two corollaries are special cases of the above theorem.

Corollary 1.6. Let R be a strongly G-graded algebra with identity and having
an antiautomorphism. Suppose that |supp(R)| < ∞, and R satisfies a G-graded
multilinear polynomial identity f (x1, x2, . . . , xn) with antiautomorphism such
that the monomial x1x2 . . . xn is involved in f with coefficient 1. Then R is a PI
algebra.

Corollary 1.7. Let R be a superalgebra with superinvolution. Suppose that
R satisfies a graded multilinear polynomial identity f (x1, x2, . . . , xn) with
superinvolution such that the monomial x1x2 . . . xn is involved in f with
coefficient 1. Further, assume that R is a prime ring. Then R satisfies a nonzero
generalized polynomial identity. If in addition R is a simple ring with 1, then R
is a PI algebra.

We also obtain the following generalization of Amitsur’s result [2] on algebras
with polynomial identities with involution.

Corollary 1.8. Let F be a commutative ring with 1, and R an F -algebra with
antiautomorphism φ. Suppose that R satisfies a polynomial identity with φ, and
at least one of the coefficients of the polynomial is equal to 1. Then R is a PI
algebra.

Proof. Let f (x1, x2, . . . , xn) ∈ F〈X ∪ Xφ〉 be a multilinear polynomial identity
with φ onR such that at least one coefficient off is equal to 1. LetR# be the ring
R with 1 adjoined. Clearly,R# satisfiesf ([x1, y1], . . . , [xn, yn]). SetG = {e} and
R#

e =R#. ThenR# is a stronglyG-graded algebra. The result now follows from
Corollary 1.6. ✷
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2. Proof of main theorem

We first set some further notation in place and obtain some preliminary results
for rings.

Let A be a ring. Given rightA-modulesU andV and a module maph :UA →
VA, we denote byhx the image ofx ∈ U underh. If I is a nonempty subset ofA,
we set

&(U;I) = {x ∈ U | xI = 0}.
Let n be a positive integer and letL1,L2, . . . ,Ln, M be rightA-modules.

We shall useun to denote the element(u1, u2, . . . , un) ∈ ∏n
k=1Lk , and usêui

n to
denote the element

(u1, . . . , ui−1, ui+1, . . . , un) ∈
n∏

k=1,
k �=i

Lk for i ∈ {1,2, . . . , n}.

Let a ∈ A be fixed. For nonnegative integerss andt with t � n, let

Eij :
n−t∏
k=1,
k �=i

Lk → HomA(Li ,M) (1 � i � n− t and 0� j � s + t)

be maps having the property that

n−t∑
i=1

s+t∑
j=0

Eij

(
ûi
n−t

)
uia

j = 0 for all un−t ∈
n−t∏
k=1

Lk.

If Eij = 0 for all i andj , they certainly have the above property. On the other
hand, under certain conditions, the converse is also true.

Lemma 2.1 [5, Lemma 2.1].Suppose that the following conditions are satisfied:

(i) For any 0 � r � n + s − 1 there exist a positive integer m = m(r) and
elements brq, crq ∈ A, q = 1,2, . . . ,m, such that

dr =
m∑

q=1

brqa
rcrq �= 0 and

M
m∑

q=1

brqa
pcrq = 0 for all p = 0,1, . . . , n+ s − 1, p �= r.

(ii) &(M;Adr) = 0 for all r = 0,1, . . . , n+ s − 1.

Then Eij = 0 for all i and j .
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Now let φ be a antiautomorphism ofA, and assume thatLk , 1 � k � n, are
A-A-bimodules with the unary operationφ such thatφ :Lk → Lk is a bijective
map, (xc)φ = cφxφ and (cx)φ = xφcφ for all c ∈ A and x ∈ Lk , 1 � k � n.
Further, letJ ⊆ {1,2, . . . , n} with |J | = n− t and let

Fip :
n∏

k=1,
k �=i

Lk → HomA(Li ,M) (1 � i � n and 0� p � t),

Ejq :
n∏

k=1,
k �=j

Lk → HomA(Li ,M) (j ∈ J and 0� q � t)

be maps such that

n∑
i=1

t∑
p=0

Fip

(
ûi
n

)
uia

p +
∑
j∈J

t∑
q=0

Ejq

(
ûj
n

)
u
φ
j a

q = 0 (1)

for all un ∈ ∏n
k=1Lk .

The following result, which we shall need in the sequel, is a generalization of
both Lemma 2.1 and [6, Theorem 3.3].

Lemma 2.2. Suppose that the following conditions are satisfied:

(i) For any 0 � r � 2n− 1 there exist a positive integer m = m(r) and elements
brk, crk ∈ A, k = 1,2, . . . ,m, such that

dr =
m∑

k=1

brka
rcrk �= 0 and

M
m∑

k=1

brka
scrk = 0 for all s = 0,1, . . . ,2n− 1 with s �= r,

(ii) &(M;Adr) = 0 for all r = 0,1, . . . ,2n− 1.

Then Fip = 0 and Ejq = 0 for all i , j , p, and q .

Proof. We proceed by induction onn − t . If n − t = 0, then (1) reads
n∑

i=1

n∑
p=0

Fip

(
ûi
n

)
uia

p = 0 for all un ∈
n∏

k=1

Lk,

and the result follows from Lemma 2.1.
In the inductive casen − t > 0, we may assume without loss of generality

that n ∈ J . SetJ ′ = J \ {n}. Substitutingaφ−1
un for un in (1), and using the
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notation(ûi
n−1, a

φ−1
un) for (u1, . . . , ui−1, ui+1, . . . , un−1, a

φ−1
un) and the likes,

we obtain
n−1∑
i=1

t∑
p=0

Fip

(
ûi
n−1, a

φ−1
un

)
uia

p +
t∑

p=0

Fnp(un−1)a
φ−1

una
p

+
∑
j∈J ′

t∑
q=0

Ejq

(
û
j
n−1, a

φ−1
un

)
u
φ
j a

q +
t∑

q=0

Enq(un−1)u
φ
na

q+1 = 0 (2)

for all un ∈ ∏n
k=1Lk . Multiplying (1) by a from the right and subtracting the

resulting expression from (2), we see that

n∑
i=1

t+1∑
p=0

F̃ip

(
ûi
n

)
uia

p +
∑
j∈J ′

t+1∑
q=0

Ẽjq

(
ûj
n

)
u
φ
j a

q = 0 (3)

for all un ∈ ∏n
k=1Lk , where

F̃i0
(
ûi
n

) = Fi0
(
ûi
n−1, a

φ−1
un

)
, 1 � i � n − 1,

F̃ip

(
ûi
n

) = Fip

(
ûi
n−1, a

φ−1
un

) − Fi,p−1
(
ûi
n

)
, 1 � i � n − 1, 1 � p � t, (4)

F̃i,t+1
(
ûi
n

) = −Fit

(
ûi
n

)
, 1 � i � n − 1, (5)

F̃n0
(
ûn
n

) = Fn0
(
ûn
n

)
aφ−1

,

F̃np

(
ûn
n

) = Fnp

(
ûn
n

)
aφ−1 −Fn,p−1

(
ûn
n

)
, 1 � p � t, (6)

F̃n,t+1
(
ûn
n

) = −Fnt

(
ûn
n

)
, (7)

and the maps̃Ejq (j ∈ J and 0� q � t + 1) are defined similarly. Applying the
induction assumption on (3), we see that, in particular,F̃ip = 0 for 1� i � n and
0 � p � t + 1.

Now, (5) implies thatFit = 0 for 1� i � n− 1. From (4) we infer thatFip = 0
for all 1 � i � n − 1 and 0� p � t . Analogously, (6) and (7) together yield that
Fnp = 0 for 0� p � t . Taking these into account, the identity (1) becomes

∑
j∈J

t∑
q=0

Ejq

(
ûj
n

)
u
φ
j a

q = 0 for all un ∈
n∏

k=1

Lk.

Substitutinguφ−1

k for uk (k = 1,2, . . . , n) in the above equation, we obtain

∑
j∈J

t∑
q=0

Ejq

(
u
φ−1

1 , . . . , u
φ−1

j−1, u
φ−1

j+1, . . . , u
φ−1

n

)
uja

q = 0,

and the result follows at once from Lemma 2.1.✷
As a special case of Lemma 2.2, we have the following corollary.
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Corollary 2.3. Let Fi,Ei :
∏n

k=1,
k �=i

Lk → HomA(Li ,M), i = 1,2, . . . , n, be maps

such that
n∑

i=1

Fi

(
ûi
n

)
ui +

n∑
i=1

Ei

(
ûi
n

)
u
φ
i = 0 for all un ∈

n∏
k=1

Lk.

Suppose that there exists an element a ∈ A such that the following conditions are
satisfied:

(i) There exist a positive integer m and elements brk, crk ∈ A, 0 � r � 2n − 1,
1 � k � m, such that for all r = 0,1, . . . ,2n− 1,

dr =
m∑

k=1

brka
rcrk �= 0 and

M
m∑

k=1

brka
scrk = 0 for all s = 0,1, . . . ,2n− 1 with s �= r.

(ii) &(M;Adr) = 0 for all r = 0,1, . . . ,2n− 1.

Then Fi = Ei = 0 for all i .

Before we can prove Theorem 2.1, some more results aboutG-gradedF -
algebras have to be stated.

Proposition 2.4 [5, Proposition 2.3].Let G be a monoid with cancellation and
let R be an almost G-graded algebra with finite G-grading. Let n = |supp(R)|,
let m be a positive integer, let L = ∑

g∈GLg be a G-graded subring of R (i.e.,
Lg ⊆ Rg is a subgroup and LgLh ⊆ Lgh for all g,h ∈ G) and let I be a right
ideal of Re. Further, let

H = {
g ∈ supp(R)

∣∣ g is not invertible in G or RgRg−1 = 0
}

and let U be the ideal of R generated by
∑

h∈H Rh. Then:

(i) If (Le)
m = 0, then Lnm = 0.

(ii) If Im = 0, then (IR)nm = 0.
(iii) U is a nilpotent ideal of R.

Proposition 2.5 [5, Proposition 2.4].Let G be a monoid with cancellation, R be
an almost G-graded algebra and n = |supp(R)| < ∞. Suppose that R is a prime
algebra. Then Re is a semiprime algebra containing nonzero ideals I1, . . . ,Im,
such that:

(a) Ii ∩ Ij = 0 for all i �= j ;
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(b) I = ⊕m
k=1Ik is an essential ideal of Re ;

(c) each Ik , k = 1,2, . . . ,m, is a prime ring;
(d) m � n;
(e) if dk ∈ Ik \ {0} (k = 1,2, . . . ,m) and d = ∑m

k=1 dk , then &(Rg,Red) = 0 for
all g ∈ G.

The next result is a special case of [3, Theorem 3].

Theorem 2.6. Let G be a monoid with cancellation, let F be a field and let R be
an almost G-graded algebra with finite G-grading. If Re is a PI algebra, then so
is R.

Theorem 2.7 [12, Theorem 3].Let E be a class of rings which is closed under
direct powers and homomorphic images. If every prime ring in E satisfies a
generalized polynomial identity, then E consists of PI rings.

Now, we are ready to prove the main theorem.

Proof of Theorem 1.2. Let P be a prime ideal ofR. SetR = R/P , and for
g ∈ G, setRg = (Rg +P)/P . It is clear thatR is an almostG-gradedF -algebra.
Givena ∈ R, we denotēa = a +P ∈R.

It follows from Proposition 2.4(iii) that supp(R) consists of invertible elements
and that

RgRg−1 �= 0 for all g ∈ supp(R). (8)

Next, Proposition 2.5 implies thatRe is a semiprime ring. Write

f (x1, . . . , xn) = f (xn) =
n∑

i=1

fi

(
x̂i
n

)
xi +

n∑
i=1

gi

(
x̂i
n

)
x
φ
i ,

where allfi(x̂
i
n) andgi(x̂

i
n) are multilinear polynomials inx1, x

φ
1 , . . . , xi−1, x

φ
i−1,

xi+1, x
φ
i+1, . . . , xn, x

φ
n . Let I1,I2, . . . ,Iw be ideals ofRe as in Proposition 2.5.

Assume that eachIl , l = 1,2, . . . ,w, does not satisfy St4n−2. We claim that

fi

(
ûi
n

)
ui = 0 for all i ∈ {1,2, . . . , n} andun ∈

n∏
k=1

Rδ(xk). (9)

Indeed, fix 1� l � w and recall thatIl is a prime ring. LetEl be the Martindale
(extended) centroid ofIl . If every elements ofIl is algebraic of degree� 2n− 1
over El , thenIl is a subring of the ring of(2n − 1) × (2n − 1) matrices over
the algebraic closure ofEl (see [4, p. 3928]), and so Amitsur–Levitzki theorem
[16] implies thatIl satisfies St4n−2, a contradiction. ThereforeIl contains an
elemental which is not algebraic of degree 2n − 1 overEl , which means that
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1, al, al2, . . . , al2n−1 are linearly independent overEl . By [7, Theorem 2.3.3], we
see that for anyr, 0� r � 2n − 1, there exist a positive integerm = m(l, r) and
elementsblrk, clrk ∈ Il , k = 1,2, . . . ,m, such that

dlr =
m∑

k=1

blrka
r
l clrk �= 0 and

m∑
k=1

blrka
s
l clrk = 0 for all s = 0,1, . . . ,2n− 1, s �= r.

We may assume without loss of generality thatm does not depend on bothl andr.
Now, set

ā =
w∑
l=1

al,

brk =
w∑
l=1

blrk, crk =
w∑
l=1

clrk (1 � r � 2n− 1 and 1� k � m),

and put

dr =
m∑

k=1

brkarcrk (1 � r � 2n− 1).

Then we have

dr =
m∑
l=1

dlr �= 0 and

m∑
k=1

brkascrk = 0 for s = 1,2, . . . ,2n− 1 with s �= r, (10)

for all r = 1,2, . . . ,2n− 1. It follows from Proposition 2.5(e) that

&
(
Rg,Redr

) = 0 for all g ∈ G andr = 1,2, . . . ,2n− 1. (11)

Without loss of generality, we may assume thata, brk, crk, dr ∈ Re for all r andk.
Now, regard eachRg as a rightRe-module. Then, from (10), we obtain, for
r ∈ {1,2, . . . ,2n− 1} andg ∈ G, that

dr =
m∑

k=1

brka
rcrk �= 0 and

Rg

m∑
k=1

brka
scrk = 0 for s = 1,2, . . . ,2n− 1 with s �= r. (12)
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Moreover, (11) yields

&
(
Rg,Redr

) = 0 for all g ∈ G andr = 1,2, . . . ,2n− 1. (13)

The left multiplications (induced by the rightR-module structure onR) by

fi(û
i
n) and by gi(û

i
n) (i = 1,2, . . . ,2n − 1 and un ∈ Rn) can be viewed as

elements of HomRe
(Rδ(xi ),Rh) where h = δ(x1x2 . . . xn). Since fi(û

i
n)ui =

fi(û
i
n)ui , we see from Corollary 2.3 that (9) is fulfilled. Note that (9) is true for

any multilinear polynomialf (xn) with antiautomorphismφ such thatf (un) = 0
for all un ∈ ∏n

k=1Rδ(xk).
(i) Assume thatR is prime and|supp(R)| = 2. ReplacingF by F/&(F;R)

we may assume thatF is an integral domain. SettingS =F \ {0} and considering
theS−1F -algebraS−1R, we reduce the proof to the case whenF is a field.

SinceR is prime, Proposition 2.4 implies thate ∈ supp(R). Let g ∈ supp(R)

with g �= e. Recalling thatg−1 ∈ supp(R), we conclude thatg = g−1 and so
g2 = e.

We claim that &(Re;Rg) = {a ∈ Re | aRg = 0} = 0. Indeed, letb ∈
&(Re;Rg). Then

bRRg = b(ReRg) + (bRg)Rg ⊆ bRg = 0

and sob = 0 becauseR is prime andRg �= 0.
We now seth = δ(xn) ∈ Gf ⊆ supp(R) = {e, g}. It follows from the above

result together with semiprimeness ofRe that&(Re;Rh) = 0. LetK = &(R;Rh).
ClearlyK is aG-graded ring and a left ideal ofR. Next,Ke = &(Re;Rh) = 0 and
so Proposition 2.4(i) implies thatK2 = 0. AsR is prime,K = 0.

Assume thatRe has no nonzero ideals satisfying St4n−2. Then (9) (withP = 0)
implies thatfn(un−1) ∈ K = 0, and so we conclude thatfn(x1, . . . , xn−1) is
aG-graded polynomial identity with antiautomorphism onR. Making use of in-
duction onn = deg(f ), we get thatRe contains a nonzero ideal satisfying St4n−4
and so St4n−2, a contradiction. ThereforeRe contains a nonzero idealI satisfying
St4n−2. Now setLp = IRp , p ∈ G, andL = ∑

p∈GLp . SinceLe satisfies St4n−2,
Theorem 2.6 implies thatL is a PI algebra. It now follows from [10] thatR sat-
isfies a nonzero generalized polynomial identity (see also [7, Theorem 6.3.20]).
Suppose that in additionR is a simple ring with 1. Then the central closure of
R is equal toR. It now follows from Martindale theorem on prime rings with
generalized polynomial identity [14] thatR has a nonzero socle and the associ-
ated skew field is finite-dimensional over its center (see also [7, Theorem 6.1.6]).
SinceR is simple, it coincides with its socle. In particular, 1 is an idempotent of
finite rank and so Litoff’s theorem [7, Theorem 4.3.11] yields thatR is a matrix
ring over a skew field which is of finite dimensional over its center. ThereforeR
is a PI algebra and the first statement of the theorem is proved.

(ii) Now assume that bothR andRe are prime rings. As above we reduce the
proof to the case whenF is a field. IfRe has a nonzero idealI satisfying St4n−2,
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thenRe satisfies St4n−2 and so Theorem 2.6 implies thatR is PI. Assume thatRe

has no nonzero ideals satisfying St4n−2. Then (9) implies thatfn(un−1)un = 0 for
all un ∈ ∏n

k=1Rδ(xk). Setting

I =Rδ(xn)Rδ(xn)−1, Kg = {b ∈Rg | bI = 0}, and K =
∑
g∈G

Kg,

we see thatK is a left ideal ofR. SinceI is a nonzero ideal ofRe by (8), we
conclude thatKe = 0. Therefore, Proposition 2.4(i) yields thatK is a nilpotent
ideal ofR, forcingK = 0. Asfn(un−1) ∈K, we see thatfn(xn−1) is aG-graded
polynomial identity onR. The second statement of the theorem now follows from
induction on deg(f ).

(iii) Suppose that 1∈ R, Gf consists of invertible elements, and 1∈ RgRg−1

for all g ∈ Gf .
Let r be a positive integer and letHr be the class of all homomorphic images

of G-graded algebrasB with finite G-grading, with antiautomorphism, satisfying
multilinearG-graded polynomial identityf with antiautomorphism in which the
monomialx1x2 . . . xn is involved with coefficient 1 and such that for anyg ∈ Gf

there existu1, u2, . . . , ur ∈ Bg and v1, v2, . . . , vr ∈ Bg−1 with
∑r

i=1uivi = 1.
Clearly the classHr is homomorphically closed and is closed under direct powers.
Further,R ∈ Hr for some integerr. In view of Theorem 2.7 it is enough to show
that every prime homomorphic imageB of aG-graded algebraB ∈ Hr satisfies a
nonzero generalized polynomial identity.

If Be contains a nonzero ideal satisfying St4n−2, then as in the proof of (i)
we get thatB satisfies a nonzero generalized polynomial identity. Therefore
we may assume without loss of generality thatBe has no nonzero ideals
satisfying St4n−2. Setg = δ(xn). It follows from (9) thatfn(un−1)Bg = 0 for
all un−1 ∈ ∏n−1

k=1 Bδ(xk). Since1̄ ∈ BgBg−1, we conclude thatfn(un−1) = 0 for

all un−1 ∈ ∏n−1
k=1 Bδ(xk). Proceeding inductively onk = deg(h), whereh is aG-

graded polynomial with antiautomorphism in which the monomialx1x2 . . . xm is
involved with coefficient 1, such thath(um) = 0 for all um ∈ ∏m

k=1Bδ(xk), we see
thatB satisfies a nonzero generalized polynomial identity. The proof is thereby
complete. ✷
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