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Spontaneous Lorentz invariance violation (SLIV) realized through a nonlinear tensor field constraint
H2

μν = ±M2 (M is the proposed scale for Lorentz violation) is considered in tensor field gravity theory,
which mimics linearized general relativity in Minkowski space–time. We show that such a SLIV pattern,
due to which the true vacuum in the theory is chosen, induces massless tensor Goldstone modes
some of which can naturally be associated with the physical graviton. When expressed in terms of the
pure Goldstone modes, this theory looks essentially nonlinear and contains a variety of Lorentz and
CPT violating couplings. Nonetheless, all SLIV effects turn out to be strictly canceled in all the lowest
order processes considered, provided that the tensor field gravity theory is properly extended to general
relativity (GR). So, as we generally argue, the measurable effects of SLIV, induced by elementary vector
or tensor fields, are related to the accompanying gauge symmetry breaking rather than to spontaneous
Lorentz violation. The latter appears by itself to be physically unobservable, only resulting in a non-
covariant gauge choice in an otherwise gauge invariant and Lorentz invariant theory. However, while
Goldstonic vector and tensor field theories with exact local invariance are physically indistinguishable
from conventional gauge theories, there might appear some principal distinctions if this local symmetry
were slightly broken at very small distances in a way that could eventually allow one to differentiate
between them observationally.

© 2010 Elsevier B.V. Open access under CC BY license.
1. Introduction

It is no doubt an extremely challenging idea that spontaneous
Lorentz invariance violation (SLIV) could provide a dynamical ap-
proach to quantum electrodynamics [1], gravity [2] and Yang–Mills
theories [3] with photon, graviton and non-Abelian gauge fields ap-
pearing as massless Nambu–Goldstone (NG) bosons [4] (for some
later developments see [5–9]). This idea has recently gained new
impetus in the gravity sector—as for composite gravitons [10], so in
the case when gravitons are identified with the NG modes of the
symmetric two-index tensor field in a theory preserving a diffeo-
morphism (diff) invariance, apart from some noninvariant potential
inducing spontaneous Lorentz violation [11,12].

We consider here an alternative approach which has had a long
history, dating back to the model of Nambu [13] for QED in the
framework of nonlinearly realized Lorentz symmetry for the un-
derlying vector field. This may indeed appear through the “length-
fixing” vector field constraint

A2
μ = n2M2, n2 ≡ nνnν = ±1 (1)
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(where nν is a properly oriented unit Lorentz vector, while M is
the proposed scale for Lorentz violation) much as it works in the
nonlinear σ -model [14] for pions, σ 2 + π2 = f 2

π , where fπ is the
pion decay constant. Note that a correspondence with the nonlin-
ear σ model for pions may appear rather suggestive in view of the
fact that pions are the only presently known Goldstone particles
whose theory, chiral dynamics [14], is given by the nonlinearly re-
alized chiral SU(2) × SU(2) symmetry rather than by an ordinary
linear σ model.1 The constraint (1) means in essence that the vec-
tor field Aμ develops some constant background value

1 Another motivation for the constraint (1) might be an attempt to avoid an in-
finite self-energy for the electron in classical electrodynamics, as was originally
suggested by Dirac [15] (and extended later to various vector field theories [16])
in terms of the Lagrange multiplier term, 1

2 λ(A2
μ − M2), due to which the con-

straint (1) appears as an equation of motion for the auxiliary field λ(x). Recently,
there was also discussed in the literature a special quadratic Lagrange multiplier
potential [17], 1

4 λ(A2
μ − M2)2, leading to the same constraint (1) after varying the

action, while the auxiliary λ field completely decouples from the vector field dy-
namics rather than acting as a source of some extra current density, as it does in
the Dirac model. Formally, numbers of independent degrees of freedom in these
models appear different from those in the Nambu model [13], where the SLIV con-
straint is proposed to be substituted into the action prior to varying of the action.
However, in their ghost-free and stability (positive Hamiltonian) phase space areas
[17] both of them are physically equivalent to the Nambu model with the properly
chosen initial condition.
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〈
Aμ(x)

〉 = nμM (2)

and the Lorentz symmetry SO(1,3) formally breaks down to SO(3)

or SO(1,2) depending on the time-like (n2 > 0) or space-like
(n2 < 0) nature of SLIV. The point is, however, that, in sharp con-
trast to the nonlinear σ model for pions, the nonlinear QED theory,
due to the starting gauge invariance involved, ensures that all the
physical Lorentz violating effects turn out to be nonobservable. It
was shown [13], while only in the tree approximation and for the
time-like SLIV (n2 > 0), that the nonlinear constraint (1) imple-
mented into the standard QED Lagrangian containing a charged
fermion field ψ(x)

LQED = −1

4
Fμν F μν + ψ(iγ ∂ + m)ψ − e Aμψγ μψ (3)

as a supplementary condition appears in fact as a possible gauge
choice for the vector field Aμ , while the S-matrix remains unal-
tered under such a gauge convention. Really, this nonlinear QED
contains a plethora of Lorentz and CPT violating couplings when
it is expressed in terms of the pure Goldstonic photon modes (aμ)
according to the constraint condition (1)

Aμ = aμ + nμ

n2

(
M2 − n2a2) 1

2 , nμaμ = 0
(
a2 ≡ aμaμ

)
(4)

(for definiteness, one takes the positive sign for the square root
when expanding it in powers of a2/M2). However, the contribu-
tions of all these Lorentz violating couplings to physical processes
completely cancel out among themselves. So, SLIV is shown to be
superficial as it affects only the gauge of the vector potential Aμ

at least in the tree approximation [13].
Some time ago, this result was extended to the one-loop ap-

proximation and for both the time-like (n2 > 0) and space-like
(n2 < 0) Lorentz violation [18]. All the contributions to the photon–
photon, photon–fermion and fermion–fermion interactions violat-
ing physical Lorentz invariance happen to exactly cancel among
themselves in the manner observed long ago by Nambu for the
simplest tree-order diagrams. This means that the constraint (1),
having been treated as a nonlinear gauge choice at the tree (classi-
cal) level, remains as a gauge condition when quantum effects are
taken into account as well. So, in accordance with Nambu’s orig-
inal conjecture, one can conclude that physical Lorentz invariance
is left intact at least in the one-loop approximation, provided we
consider the standard gauge invariant QED Lagrangian (3) taken in
flat Minkowski space–time. Later this result was also confirmed for
spontaneously broken massive QED [19] and non-Abelian theories
[20] (some interesting aspects of the SLIV conditioned nonlinear
QED were also considered in [21]).

Actually, we here use a similar nonlinear constraint for a sym-
metric two-index tensor field

H2
μν = n2M2, n2 ≡ nμνnμν = ±1 (5)

(where nμν is now a properly oriented ‘unit’ Lorentz tensor, while
M is the proposed scale for Lorentz violation) which fixes its
length in a similar way to the vector field case above. Also, in
analogy to the nonlinear QED case [13] with its gauge invariant
Lagrangian (3), we propose the linearized Einstein–Hilbert kinetic
term for the tensor field, which by itself preserves a diff invariance.
We show that such a SLIV pattern (5), due to which the true vac-
uum in the theory is chosen, induces massless tensor Goldstone
modes some of which can naturally be collected in the physical
graviton. The linearized theory we start with becomes essentially
nonlinear, when expressed in terms of the pure Goldstone modes,
and contains a variety of Lorentz (and CPT) violating couplings.
However, all SLIV effects turn out to be strictly canceled in physical
processes once the tensor field gravity theory (being considered as
the weak-field limit of general relativity (GR)) is properly extended
to GR. So, this formulation of SLIV seems to amount to the fixing of
a gauge for the tensor field in a special manner making the Lorentz
violation only superficial just as in the nonlinear QED framework
[13]. From this viewpoint, both conventional QED and GR theo-
ries appear to be generic Goldstonic theories in which some of
the gauge degrees of freedom of these fields are condensed (thus
eventually emerging as a noncovariant gauge choice), while their
massless NG modes are collected in photons or gravitons in such
a way that the physical Lorentz invariance is ultimately preserved.
However, there might appear some principal distinctions between
conventional and Goldstonic theories if, as we argue later, the un-
derlying local symmetry were slightly broken at very small dis-
tances in a way that could eventually allow us to differentiate
between them in an observational way.

The Letter is organized in the following way. In Section 2 we
formulate the model for tensor field gravity and find massless
NG modes some of which are collected in the physical graviton.
Then in Section 3 we derive general Feynman rules for the basic
graviton–graviton and graviton–matter (scalar) field interactions in
the Goldstonic gravity theory. In essence the model contains two
perturbative parameters, the inverse Planck and SLIV mass scales,
1/M P and 1/M , respectively, so that the SLIV interactions are al-
ways proportional to some powers of them. Some lowest order
SLIV processes, such as graviton–graviton scattering and graviton
scattering off the massive scalar field, are considered in detail. We
show that all these Lorentz violating effects, taken in the tree ap-
proximation, in fact turn out to vanish so that physical Lorentz
invariance is ultimately restored. Finally, in Section 4 we present a
resume and conclude.

2. The model

According to our philosophy, we propose to consider the tensor
field gravity theory which mimics linearized general relativity in
Minkowski space–time. The corresponding Lagrangian for one real
scalar field φ (representing all sorts of matter in the model)

L(Hμν,φ) = L(H) + L(φ) + Lint (6)

consists of the tensor field kinetic terms of the form

L(H) = 1

2
∂λHμν∂λHμν − 1

2
∂λHtr∂

λHtr

− ∂λHλν∂μHμν + ∂ν Htr∂
μHμν (7)

(Htr stands for the trace of Hμν , Htr = ημν Hμν ) which is invariant
under the diff transformations

δHμν = ∂μξν + ∂νξμ, δxμ = ξμ(x), (8)

together with the free scalar field and interaction terms

L(φ) = 1

2

(
∂ρφ∂ρφ − m2φ2), Lint = 1

M P
Hμν T μν(φ). (9)

Here T μν(φ) is the conventional energy–momentum tensor for a
scalar field

T μν(φ) = ∂μφ∂νφ − ημν L(φ), (10)

and the coupling constant in Lint is chosen to be the inverse of
the Planck mass M P . It is clear that, in contrast to the tensor field
kinetic terms, the other terms in (6) are only approximately in-
variant under the diff transformations (8), as they correspond to
the weak-field limit in GR. Following the nonlinear σ -model for
QED [13], we propose the SLIV condition (5) as some tensor field
length-fixing constraint which is supposed to be substituted into
the total Lagrangian L(Hμν,φ) prior to the variation of the action.
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This eliminates, as we will see, a massive Higgs mode in the fi-
nal theory thus leaving only massless Goldstone modes, some of
which are then collected in the physical graviton.

Let us first turn to the spontaneous Lorentz violation itself,
which is caused by the constraint (5). This constraint can be writ-
ten in the more explicit form

H2
μν = H2

00 + H2
i= j + (√

2Hi �= j
)2 − (√

2H0i
)2

= n2M2 = ±M2 (11)

(where the summation over all indices (i, j = 1,2,3) is imposed)
and means in essence that the tensor field Hμν develops the vac-
uum expectation value (vev) configuration〈
Hμν(x)

〉 = nμν M (12)

determined by the matrix nμν . The initial Lorentz symmetry
SO(1,3) of the Lagrangian L(Hμν,φ) given in (6) then formally
breaks down at a scale M to one of its subgroups. If one assumes
a “minimal” vacuum configuration in the SO(1,3) space with the
vev (12) developed on a single Hμν component, there are in fact
the following three possibilities

(a) n00 �= 0, SO(1,3) → SO(3),

(b) ni= j �= 0, SO(1,3) → SO(1,2),

(c) ni �= j �= 0, SO(1,3) → SO(1,1) (13)

for the positive sign in (11), and

(d) n0i �= 0, SO(1,3) → SO(2) (14)

for the negative sign. These breaking channels can be readily de-
rived by counting how many different eigenvalues the vev matrix
n has for each particular cases (a)–(d). Accordingly, there are only
three Goldstone modes in the cases (a), (b) and five modes in
the cases (c)–(d).2 In order to associate at least one of the two
transverse polarization states of the physical graviton with these
modes, one could have any of the above-mentioned SLIV channels
except for the case (a). Indeed, it is impossible for the graviton to
have all vanishing spatial components, as one needs for the Gold-
stone modes in case (a). Therefore, no linear combination of the
three Goldstone modes in case (a) could behave like the physical
graviton (see more detailed consideration in [12]). Apart from the
minimal vev configuration, there are many others as well. A par-
ticular case of interest is that of the traceless vev tensor nμν

nμνη
μν = 0 (15)

in terms of which the Goldstonic gravity Lagrangian acquires an
especially simple form (see below). It is clear that the vev in this
case can be developed on several Hμν components simultaneously,
which in general may lead to total Lorentz violation with all six
Goldstone modes generated. For simplicity, we will use this form
of vacuum configuration in what follows, while our arguments can
be applied to any type of vev tensor nμν .

Aside from the pure Lorentz Goldstone modes, the question of
the other components of the symmetric two-index tensor Hμν nat-
urally arises. Remarkably, they turn out to be Pseudo-Goldstone

2 Indeed, the vev matrices in the cases (a), (b) look, respectively, as n(a) =
diag(1,0,0,0) and n(b) = diag(0,1,0,0), while in the cases (c-d) these matrices,
taken in the diagonal bases, have the forms n(c) = diag(0,1,−1,0) and n(d) =
diag(1,−1,0,0), respectively (for certainty, we fixed i = j = 1 in the case (b), i = 1
and j = 2 in the case (c), and i = 1 in the case (d)). The groups of invariance of
these vev matrices are just the surviving Lorentz subgroups indicated on the right-
handed sides in (13) and (14). The broken Lorentz generators determine then the
numbers of Goldstone modes mentioned above.
modes (PGMs) in the theory. Indeed, although we only propose
Lorentz invariance of the Lagrangian L(Hμν,φ), the SLIV con-
straint (5) formally possesses the much higher accidental symme-
try SO(7,3) of the constrained bilinear form (11), which manifests
itself when considering the Hμν components as the “vector” ones
under SO(7,3). This symmetry is in fact spontaneously broken, side
by side with Lorentz symmetry, at the scale M . Assuming again a
minimal vacuum configuration in the SO(7,3) space, with the vev
(12) developed on a single Hμν component, we have either time-
like (SO(7,3) → SO(6,3)) or space-like (SO(7,3) → SO(7,2)) viola-
tions of the accidental symmetry depending on the sign of n2 = ±1
in (11). According to the number of broken SO(7,3) generators,
just nine massless NG modes appear in both cases. Together with
an effective Higgs component, on which the vev is developed, they
complete the whole ten-component symmetric tensor field Hμν of
the basic Lorentz group. Some of them are true Goldstone modes
of the spontaneous Lorentz violation, others are PGMs since, as
was mentioned, an accidental SO(7,3) symmetry is not shared by
the whole Lagrangian L(Hμν,φ) given in (6). Notably, in contrast
to the scalar PGM case [14], they remain strictly massless being
protected by the starting diff invariance3 which becomes exact
when the tensor field gravity Lagrangian (6) is properly extended
to GR. Owing to this invariance, some of the Lorentz Goldstone
modes and PGMs can then be gauged away from the theory, as
usual.

Now, one can rewrite the Lagrangian L(Hμν,φ) in terms of the
Goldstone modes explicitly using the SLIV constraint (5). For this
purpose, let us take the following handy parameterization for the
tensor field Hμν

Hμν = hμν + nμν

n2
(n · H)

(
n · H ≡ nμν Hμν

)
(16)

where hμν corresponds to the pure Goldstonic modes4 satisfying

n · h = 0
(
n · h ≡ nμνhμν

)
(17)

while the effective “Higgs” mode (or the Hμν component in the
vacuum direction) is given by the scalar product n · H . Substituting
this parameterization (16) into the tensor field constraint (5), one
comes to the equation for n · H

n · H = (
M2 − n2h2) 1

2 = M − n2h2

2M
+ O

(
1/M2) (18)

taking, for definiteness, the positive sign for the square root and
expanding it in powers of h2/M2, h2 ≡ hμνhμν . Putting then the
parameterization (16) with the SLIV constraint (18) into the La-
grangian L(Hμν,φ) given in (6), (7), (9), one comes to the truly
Goldstonic tensor field gravity Lagrangian L(hμν,φ) containing an
infinite series in powers of the hμν modes. For the traceless vev
tensor nμν (15) it takes, without loss of generality, the especially
simple form

L(hμν,φ) = 1

2
∂λhμν∂λhμν − 1

2
∂λhtr∂

λhtr

− ∂λhλν∂μhμν + ∂νhtr∂
μhμν

+ 1

2M
h2[−2nμλ∂λ∂

νhμν + n2(n∂∂)htr
]

3 For nonminimal vacuum configuration when vevs are developed on several Hμν

components, thus leading to a more substantial breaking of the accidental SO(7,3)

symmetry, some extra PGMs are also generated. However, they are not protected by
a diff invariance and acquire masses of the order of the breaking scale M .

4 It should be particularly emphasized that the modes collected in the hμν are in
fact the Goldstone modes of the broken accidental SO(7,3) symmetry of the con-
straint (5), thus containing the Lorentz Goldstone modes and PGMs put together.
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+ 1

8M2
h2[−n2∂2 + 2(∂nn∂)

]
h2

+ L(φ) + M

M P
n2[nμν∂μφ∂νφ

] + 1

M P
hμν T μν

+ 1

2MM P
h2[−nμν∂μφ∂νφ

]
(19)

written in the O (h2/M2) approximation in which, besides the con-
ventional graviton bilinear kinetic terms, there are also three- and
four-linear interaction terms in powers of hμν in the Lagrangian.
Some of the notations used are collected below

h2 ≡ hμνhμν, htr ≡ ημνhμν,

n∂∂ ≡ nμν∂μ∂ν, ∂nn∂ ≡ ∂μnμνnνλ∂λ. (20)

The bilinear scalar field term

M

M P
n2[nμν∂μφ∂νφ

]
(21)

in the third line in the Lagrangian (19) merits special notice. This
term arises from the interaction Lagrangian Lint (9) after appli-
cation of the tracelessness condition (15) for the vev tensor nμν .
It could significantly affect the dispersion relation for the scalar
field φ (and any other sort of matter as well) thus leading to
an unacceptably large Lorentz violation if the SLIV scale M were
comparable with the Planck mass M P . However, this term can be
gauged away by an appropriate redefinition (going to new coordi-
nates xμ → xμ + ξμ) of the scalar field derivative according to

∂μφ → ∂μφ + ∂ρξμ∂ρφ. (22)

In fact with the following choice of the parameter function ξμ(x)

ξμ(x) = M

2M P
n2nμνxν,

the term (21) is canceled by an analogous term stemming from
the scalar field kinetic term in L(φ) given in (9).5 On the other
hand, since the diff invariance is an approximate symmetry of the
Lagrangian L(Hμν,φ) we started with (6), this cancellation will
only be accurate up to the linear order corresponding to the ten-
sor field theory. Indeed, a proper extension of this theory to GR
with its exact diff invariance will ultimately restore the usual dis-
persion relation for the scalar (and other matter) fields. Taking this
into account, we will henceforth omit the term (21) in L(hμν,φ)

thus keeping the “normal” dispersion relation for the scalar field
in what follows.

Together with the Lagrangian one must also specify other sup-
plementary conditions for the tensor field hμν (appearing even-
tually as possible gauge fixing terms in the Goldstonic tensor
field gravity) in addition to the basic Goldstonic “gauge” condi-
tion nμνhμν = 0 given above (17). The point is that the spin 1
states are still left in the theory and are described by some of the
components of the new tensor hμν . This is certainly inadmissible.6

Usually, the spin 1 states (and one of the spin 0 states) are ex-
cluded by the conventional Hilbert–Lorentz condition

∂μhμν + q∂νhtr = 0 (23)

5 In the general case, with the vev tensor nμν having a nonzero trace, this
cancellation would also require the redefinition of the scalar field itself as φ →
φ(1 − nμνη

μν M
M P

)−1/2.
6 Indeed, spin 1 must be necessarily excluded as the sign of the energy for spin 1

is always opposite to that for spin 2 and 0.
(q is an arbitrary constant, giving for q = −1/2 the standard har-
monic gauge condition). However, as we have already imposed the
constraint (17), we cannot use the full Hilbert–Lorentz condition
(23) eliminating four more degrees of freedom in hμν . Otherwise,
we would have an “over-gauged” theory with a nonpropagating
graviton. In fact, the simplest set of conditions which conform with
the Goldstonic condition (17) turns out to be

∂ρ(∂μhνρ − ∂νhμρ) = 0. (24)

This set excludes only three degrees of freedom7 in hμν and, be-
sides, it automatically satisfies the Hilbert–Lorentz spin condition
as well. So, with the Lagrangian (19) and the supplementary con-
ditions (17) and (24) lumped together, one eventually comes to a
working model for the Goldstonic tensor field gravity. Generally,
from ten components of the symmetric two-index tensor hμν four
components are excluded by the supplementary conditions (17)
and (24). For a plane gravitational wave propagating in, say, the
z direction another four components are also eliminated, due to
the fact that the above supplementary conditions still leave free-
dom in the choice of a coordinate system, xμ → xμ + ξμ(t − z/c),
much as it takes place in standard GR. Depending on the form
of the vev tensor nμν , caused by SLIV, the two remaining trans-
verse modes of the physical graviton may consist solely of Lorentz
Goldstone modes or of Pseudo-Goldstone modes, or include both
of them.

3. The lowest order SLIV processes

The Goldstonic gravity Lagrangian (19) looks essentially nonlin-
ear and contains a variety of Lorentz and CPT violating couplings
when expressed in terms of the pure tensor Goldstone modes.
However, as we show below, all violation effects turn out to be
strictly canceled in the lowest order SLIV processes. Such a can-
cellation in vector-field theories, both Abelian [13,18,19] and non-
Abelian [20], and, therefore, their equivalence to conventional QED
and Yang–Mills theories, allows one to conclude that the nonlin-
ear SLIV constraint in these theories amounts to a noncovariant
gauge choice in an otherwise gauge invariant and Lorentz invariant
theory. It seems that a similar conclusion can be made for tensor
field gravity, i.e. the SLIV constraint (5) corresponds to a special
gauge choice in a diff and Lorentz invariant theory. This conclu-
sion certainly works for the diff invariant free tensor field part (7)
in the starting Lagrangian L(Hμν,φ). On the other hand, its mat-
ter field sector (9), possessing only an approximate diff invariance,
might lead to an actual Lorentz violation through the deformed
dispersion relations of the matter fields involved. However, as was
mentioned above, a proper extension of the tensor field theory to
GR with its exact diff invariance ultimately restores the dispersion
relations for matter fields and, therefore, the SLIV effects vanish.
Taking this into account, we omit the term (21) in the Goldstonic
gravity Lagrangian L(hμν,φ) thus keeping the “normal” disper-
sion relation for the scalar field representing all the matter in our
model.

We are now going to consider the lowest order SLIV processes,
after first establishing the Feynman rules in the Goldstonic gravity
theory. We use for simplicity, both in the Lagrangian L (19) and
forthcoming calculations, the traceless vev tensor nμν , while our
results remain true for any type of vacuum configuration caused
by SLIV.

7 The solution for a gauge function ξμ(x) satisfying the condition (24) can gen-
erally be chosen as ξμ = �−1(∂ρhμρ) + ∂μθ , where θ(x) is an arbitrary scalar
function, so that only three degrees of freedom in hμν are actually eliminated.
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3.1. Feynman rules

The Feynman rules stemming from the Lagrangian L (19) for
the pure graviton sector are as follows:

(i) The first and most important is the graviton propagator
which only conforms with the Lagrangian (19) and the gauge con-
ditions (17) and (24)

−iDμναβ(k) = 1

2k2
(ηβμηαν + ηβνηαμ − ηαβημν)

− 1

2k4
(ηβνkαkμ + ηανkβkμ

+ ηβμkαkν + ηαμkβkν)

− 1

k2(nkk)
(kαkβnμν + kνkμnαβ)

+ 1

k2(nkk)2

[
n2 − 2

k2
(knnk)

]
kμkνkαkβ

+ 1

k4(nkk)

(
nμρkρkνkαkβ + nνρkρkμkαkβ

+ nαρkρkνkμkβ + nβρkρkνkαkμ

)
(25)

(where (nkk) ≡ nμνkμkν and (knnk) ≡ kμnμνnνλkλ). It automat-
ically satisfies the orthogonality condition nμν Dμναβ(k) = 0 and
on-shell transversality kμkν Dμναβ(k,k2 = 0) = 0. This is consis-
tent with the corresponding polarization tensor εμν(k,k2 = 0) of
the free tensor fields, being symmetric, traceless (ημνεμν = 0),
transverse (kμεμν = 0), and also orthogonal to the vacuum direc-
tion, nμνεμν(k) = 0. Apart from that, the gauge invariance allows
us to write the polarization tensor in the factorized form [22],
εμν(k) = εμ(k)εν(k), and to proceed with the above-mentioned
tracelessness and transversality expressed as the simple conditions
εμεμ = 0 and kμεμ = 0 respectively. In the following we will use
these simplifications. As one can see, only the standard terms given
by the first bracket in (25) contribute when the propagator is sand-
wiched between conserved energy–momentum tensors of matter
fields, and the result is always Lorentz invariant.

(ii) Next is the 3-graviton vertex with graviton polarization ten-
sors (and 4-momenta) given by εαα′

(k1), εββ ′
(k2) and εγ γ ′

(k3)

− i

2M
Pαα′

(k1)
(
ηβγ ηβ ′γ ′ + ηβγ ′

ηβ ′γ )
,

− i

2M
Pββ ′

(k2)
(
ηαγ ηα′γ ′ + ηαγ ′

ηα′γ )
,

− i

2M
Pγ γ ′

(k3)
(
ηβαηβ ′α′ + ηβα′

ηβ ′α)
(26)

where the momentum tensor Pμν(k) is

Pμν(k) = −nνρkρkμ − nμρkρkν + ημνnρσ kρkσ . (27)

Note that all 4-momenta at the vertices are taken ingoing through-
out.

(iii) Finally, the 4-graviton vertex with the graviton polarization
tensors (and 4-momenta) εαα′

(k1), εββ ′
(k2), εγ γ ′

(k3) and εδδ′
(k4)

i Q μν

(
ηαβηα′β ′ + ηαβ ′

ηα′β)(
ηγ δηγ ′δ′ + ηγ δ′

ηγ ′δ)
× (k1 + k2)

μ(k1 + k2)
ν

+ i Q μν

(
ηαγ ηα′γ ′ + ηαγ ′

ηα′γ )(
ηβδηβ ′δ′ + ηβδ′

ηβ ′δ)
× (k1 + k3)

μ(k1 + k3)
ν

+ i Q μν

(
ηαδηα′δ′ + ηαδ′

ηα′δ)(ηγ βηγ ′β ′ + ηγ β ′
ηγ ′β)

× (k1 + k4)
μ(k1 + k4)

ν . (28)
Here we have used the self-evident identities for all ingoing mo-
menta (k1 + k2 + k3 + k4 = 0), such as

(k1 + k2)
μ(k1 + k2)

ν + (k3 + k4)
μ(k3 + k4)

ν

= 2(k1 + k2)
μ(k1 + k2)

ν

and so on, and denoted by Q μν the expression

Q μν ≡ − 1

4M2

(−n2ημν + 2nμρn
ρ
ν

)
. (29)

Coming now to the gravitational interaction of the scalar field, one
has two more vertices:

(iv) The standard graviton–scalar–scalar vertex with the gravi-
ton polarization tensor εαα′

and the scalar field 4-momenta p1
and p2

− i

Mp

(
pα

1 pα′
2 + pα

2 pα′
1

) + i

Mp
ηαα′[

(p1 p2) + m2] (30)

where (p1 p2) stands for the scalar product.
(v) The contact graviton–graviton–scalar–scalar interaction

caused by SLIV with the graviton polarization tensors εαα′
and

εββ ′
and the scalar field 4-momenta p1 and p2

i

MMp

(
gαβ gα′β ′ + gαβ ′

gα′β)(
nμν pμ

1 pν
2

)
. (31)

Just the rules (i)–(v) are needed to calculate the lowest order pro-
cesses mentioned above.

3.2. Graviton–graviton scattering

The matrix element for this SLIV process to the lowest order
1/M2 is given by the contact h4 vertex (28) and the pole dia-
grams with longitudinal graviton exchange between two Lorentz
violating h3 vertices (26). There are three pole diagrams in total,
describing the elastic graviton–graviton scattering in the s- and t-
channels respectively, and also the diagram with an interchange of
identical gravitons. Remarkably, the contribution of each of them
is exactly canceled by one of three terms appearing in the contact
vertex (28). Actually, for the s-channel pole diagrams with ingoing
gravitons with polarizations (and 4-momenta) ε1(k1) and ε2(k2)

and outgoing gravitons with polarizations (and 4-momenta) ε3(k3)

and ε4(k4) one has, after some evident simplifications related to
the graviton propagator Dμν(k) (25) inside the matrix element

iM(1)

pole = i
1

M2
(ε1 · ε2)

2(ε3 · ε4)
2(−n2k2 + 2kμnμνnνλkλ

)
. (32)

Here k = k1 + k2 = −(k3 + k4) is the momentum running in the
diagrams listed above, and all the polarization tensors are prop-
erly factorized throughout, εμν(k) = εμ(k)εν(k), as was mentioned
above. We have also used that, since ingoing and outgoing gravi-
tons appear transverse (kμ

a εμ(ka) = 0, a = 1,2,3,4), only the third
term in the momentum tensors Pμν(ka) (27) in the h3 couplings
(26) contributes to all pole diagrams. Now, one can readily confirm
that this matrix element is exactly canceled with the first term in
the contact SLIV vertex (28), when it is properly contracted with
the graviton polarization vectors. In a similar manner, two other
terms in the contact vertex provide the further one-to-one cancel-
lations with the remaining two pole matrix elements iM(2,3)

pole . So,
the Lorentz violating contribution to graviton–graviton scattering
is absent in Goldstonic gravity theory in the lowest 1/M2 approxi-
mation.
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3.3. Graviton scattering on a massive scalar

This SLIV process appears in the order 1/MM p (in contrast to
the conventional 1/M2

p order graviton–scalar scattering). It is di-
rectly related to two diagrams one of which is given by the contact
graviton–graviton–scalar–scalar vertex (31), while the other corre-
sponds to the pole diagram with longitudinal graviton exchange
between the Lorentz violating h3 vertex (26) and the ordinary
graviton–scalar–scalar vertex (30). Again, since ingoing and out-
going gravitons appear transverse (kμ

a εμ(ka) = 0, a = 1,2), only
the third term in the momentum tensors Pμν(ka) (27) in the h3

coupling (26) contributes to this pole diagram. Apart from that,
the most crucial point is that, due to the scalar field energy–
momentum tensor conservation, the terms in the inserted gravi-
ton propagator (25) other than the standard ones (first bracket in
(25)) give a vanishing result. Keeping all this in mind together
with the momenta satisfying k1 + k2 + p1 + p2 = 0 (k1,2 and
p1,2 are the graviton and scalar field 4-momenta, respectively),
one readily comes to a simple matrix element for the pole dia-
gram

iM pole = − 2i

MMp
φ(p2)(ε1 · ε2)

2(nμν pμ
1 pν

2

)
φ(p1). (33)

This pole term is precisely canceled by the contact term, iMcon ,
when the SLIV vertex (31) is properly contracted with the graviton
polarization vectors and the scalar boson wave functions. Again,
we may conclude that physical Lorentz invariance is left intact in
graviton scattering on a massive scalar, provided that its disper-
sion relation is supposed to be recovered when going from the
tensor field Lagrangian L (19) to general relativity, as was argued
above.

3.4. Scalar–scalar scattering

This process, due to graviton exchange, appears in the order
1/M2

P and again is given by an ordinary Lorentz invariant ampli-
tude. As was mentioned above, only the standard terms given by
the first bracket in the graviton propagator (25) contribute when
it is sandwiched between conserved energy–momentum tensors of
matter fields. Actually, as one can easily confirm, the contraction
of any other term in (25) depending on the graviton 4-momentum
k = p1 + p2 = −(p3 + p4) with the graviton–scalar–scalar vertex
(30) gives a zero result.

3.5. Other processes

Many other tree level Lorentz violating processes, related to
gravitons and scalar fields (matter fields, in general) appear in
higher orders in the basic SLIV parameter 1/M , by iteration of
couplings presented in our basic Lagrangian (19) or from a fur-
ther expansion of the effective Higgs mode (18) inserted into the
starting Lagrangian (6). Again, their amplitudes are essentially de-
termined by an interrelation between the longitudinal graviton
exchange diagrams and the corresponding contact multi-graviton
interaction diagrams, which appear to cancel each other, thus elim-
inating physical Lorentz violation in the theory.

Most likely, the same conclusion could be expected for SLIV
loop contributions as well. Actually, as in the massless QED case
considered earlier [18], the corresponding one-loop matrix ele-
ments in the Goldstonic gravity theory could either vanish by
themselves or amount to the differences between pairs of similar
integrals whose integration variables are shifted relative to each
other by some constants (being in general arbitrary functions of
the external 4-momenta of the particles involved) which, in the
framework of dimensional regularization, could lead to their total
cancellation.

So, the Goldstonic tensor field gravity theory is likely to be
physically indistinguishable from conventional general relativity
taken in the weak-field limit, provided that the underlying diff
invariance is kept exact. This, as we have seen, requires the ten-
sor field gravity to be extended to GR, in order not to otherwise
have an actual Lorentz violation in the matter field sector. In this
connection, the question arises whether or not the SLIV cancel-
lations continue to work once the tensor field gravity theory is
extended to GR, which introduces many additional terms in the
starting Lagrangian L(Hμν,φ) (6). Indeed, since all the new terms
are multi-linear in Hμν and contain higher orders in 1/M P , the
“old” SLIV cancellations (considered above) will not be disturbed,
while “new” cancellations will be provided, as one should expect,
by an extended diff invariance. This extended diff invariance fol-
lows from the proper expansion of the metric transformation law
in GR

δgμν = ∂μξρ gρν + ∂νξρ gμρ + ξρ∂ρ gμν (34)

up to the order in which the extended tensor field theory, given
by the modified Lagrangian Lext(Hμν,φ), is considered.

4. Conclusion

We have considered spontaneous Lorentz violation, appearing
through the length-fixing tensor field constraint H2

μν = ±M2 (M is
the proposed scale for Lorentz violation), in the tensor field gravity
theory which mimics general relativity in Minkowski space–time.
We have shown that such an SLIV pattern, due to which the true
vacuum in the theory is chosen, induces massless tensor Goldstone
modes some of which can naturally be associated with the phys-
ical graviton. This theory looks essentially nonlinear and contains
a variety of Lorentz and CPT violating couplings, when expressed
in terms of the pure tensor Goldstone modes. Nonetheless, all the
SLIV effects turn out to be strictly canceled in the lowest order
graviton–graviton scattering, due to the diff invariance of the free
tensor field Lagrangian (7) we started with. At the same time,
actual Lorentz violation may appear in the matter field interac-
tion sector (9), which only possesses an approximate diff invari-
ance, through deformed dispersion relations of the matter fields
involved. However, a proper extension of the tensor field theory
to GR, with its exact diff invariance, ultimately restores the nor-
mal dispersion relations for matter fields and, therefore, the SLIV
effects vanish. So, as we generally argue, the measurable effects
of SLIV, induced by elementary vector or tensor fields, can be re-
lated to the accompanying gauge symmetry breaking rather than
to spontaneous Lorentz violation. The latter appears by itself to be
physically unobservable and only results in a noncovariant gauge
choice in an otherwise gauge invariant and Lorentz invariant the-
ory.

From this standpoint, the only way for physical Lorentz viola-
tion to appear would be if the above local invariance is slightly
broken at very small distances. This is in fact a place where the
Goldstonic vector and tensor field theories drastically differ from
conventional QED, Yang–Mills and GR theories. Actually, such a
local symmetry breaking could lead in the former case to de-
formed dispersion relations for all the matter fields involved. This
effect typically appears proportional to some power of the ra-
tio M

M P
(just as we have seen above for the scalar field in our

model, see (21)), though being properly suppressed by tiny gauge
noninvariance. Remarkably, the higher the SLIV scale M becomes
the larger becomes the actual Lorentz violation which, for some
value of the scale M , may become physically observable even at
low energies. Another basic distinction of Goldstonic theories with
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nonexact gauge invariance is the emergence of a mass for the
graviton and other gauge fields (namely, for the non-Abelian ones,
see [20]), if they are composed from Pseudo-Goldstone modes
rather than from pure Goldstone ones. Indeed, these PGMs are
no longer protected by gauge invariance and may properly ac-
quire tiny masses, which still do not contradict experiment. This
may lead to a massive gravity theory where the graviton mass
emerges dynamically, thus avoiding the notorious discontinuity
problem [23]. So, while Goldstonic theories with exact local in-
variance are physically indistinguishable from conventional gauge
theories, there are some principal distinctions when this local sym-
metry is slightly broken which could eventually allow us to dif-
ferentiate between the two types of theory in an observational
way.

One could imagine how such a local symmetry breaking might
occur. As was earlier argued [24], only local invariant theories pro-
vide the needed number of degrees of freedom for interacting
gauge fields once SLIV occurs. Note that a superfluous restriction
put on vector or tensor fields would make it impossible to set
the required initial conditions in the appropriate Cauchy problem
and, in quantum theory, to choose self-consistent equal-time com-
mutation relations [25]. One could expect, however, that quantum
gravity could in general hinder the setting of the required initial
conditions at extra-small distances. Eventually, this would mani-
fest itself in violation of the above local invariance in a theory
through some high-order operators stemming from the quantum
gravity influenced area, which could lead to physical Lorentz vi-
olation. This attractive point seems to deserve further considera-
tion.
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