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Abstract

We investigate the variable performance of a genetic algorithm (GA) on randomly generated
binary constraint satisfaction problem instances which occur near the phase transition from sol-
uble to non-soluble. We -rst carry out a conventional landscape analysis and observe, next to
a number of common features related to the interaction structure, important di/erences between
the instances, such as the number of solutions, the quality of the paths to the solutions, and the
lengths and extent of the neutral paths for mutation. We then split the dynamics of the GA into
two phases: the ascent towards the high -tness region, and from this high -tness region to a so-
lution. To gain further information about the GA’s behavior in the -rst phase, we construct two
models based on the much simpler fully separable functions, and try to match instances which
show a similar performance distribution. Although far from exact, this technique of comparing
with analog search problems gives a hint about the landscape elements that are responsible for
the GA’s slow ascent. c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Genetic algorithms; Constraint satisfaction problems; Landscape analysis; Performance
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1. Introduction

Binary constraint satisfaction problems (CSPs, e.g. [19]) form an NP-complete class
of search problems rooted in operations research. Interest in randomly generated in-
stances arose in the early 1990s when a phase transition from solvable to unsolvable
was discovered when varying parameters of instance generators of several NP-complete
problems [3]. Instances generated near the phase transition proved to be particularly
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hard to solve, much harder than the instances away from it. Such a phase transition
was shown to occur in several random instance generators of the binary CSP [22]. This
turns them into useful, tunable problem generators where the hardness of a problem
can be controlled by only one or a few parameters.
Genetic algorithms (GAs, [10,7,2]) are stochastic search algorithms based on the

principle of ‘survival of the -ttest’. They have been applied to a wide variety of
optimization and search problems, partly because of their very good implementation-
cost-to-performance ratio. In applications, they usually do not appear in their basic form
called the simple GA, but in a form specialized towards the problem to be solved, often
incorporating additional heuristics. The GA has been specialized in many di/erent ways
to solve CSPs; we refer to [5,4] for an overview.
The dynamics of a simple GA operating on fully separable problems, i.e., search

problems where the variables do not interact with each other but provide independent
contributions to the -tness value, has been studied analytically and in great detail using
both dynamical systems [20] and statistical physics [17] approaches. Consisting only of
second-order interactions, one (major) step beyond full separability, the class of binary
CSPs has up to now proved to be too rich and diFcult to tackle with these techniques.
An alternative approach to learn about how a GA behaves on harder search problems
is to construct problem instance generators to analyze the instances statically, i.e., not
within the dynamics of a GA (see e.g. [12] for an overview of techniques), and to
empirically study the di/erence in GA dynamics when varying the parameter(s) of the
generator. The NK-landscape [13] is the most prominent example of such generators.
The -rst part of this contribution contains a conventional static analysis of CSP

instances near the phase transition, based on hill-climber and random walk experi-
ments for the mutation landscape, a Walsh analysis, and a schema analysis to catch
some of the crossover and population e/ects. Unfortunately, the analysis provides no
means for classifying the instances according to their GA performance, i.e., none of
the information can on its own be used for reliable a priori performance prediction.
What we do learn is that there are two possible causes for the slow ascent of the GA

toward the high -tness region: the high collateral noise between the low-order building
blocks, and the existence of a number of attractors which distract the GA from a direct
path to a solution.
The key idea explored in the second part of the paper is to learn from simpler

search problems which we design to be similar to the CSP instances in many aspects.
They share several static landscape properties, such as -tness distance correlation and
schema -tness distribution overlaps. Concentrating on the lengths of the paths towards
the high -tness region, we also require them to show a similar distribution of the
number of generations needed by the GA to reach this region. We call this distribution
the performance distribution.
By matching the performance distributions of a CSP instance to that of an instance

of each of the two models, and designing each model to reIect one of the suspected
causes of slowdown, we can answer the following questions:
• If collateral noise is the only cause of the slow ascent, how much evaluation noise
would we have to add to a fully separable function to achieve the same slowdown?

• If not noise but di/erent attractors causing meta-stable states are the main cause,
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how many of these attractors would we need, and how strong would they have to
be, to cause the same slowdown?

The remainder of this paper is organized as follows. We de-ne the CSP instance
generator in Section 2, and describe the GA and classify its observed performance
on a set of 100 instances in Section 3. In Section 4 we present the static landscape
analysis; a summary of the analysis can be found in Section 4.3. Section 5 is devoted
to study of the ascent of the GA by comparing model instances which show similar
performance distributions. We end the paper with Section 6, presenting conclusions
and an overview of further work. Appendix A contains a short overview of the Walsh
transform. Appendix B contains a direct calculation of the Walsh coeFcients for binary
CSPs.

2. Binary constraint satisfaction problems

A binary constraint satisfaction problem can be de-ned as
• a set of variables xi with i∈L={0; : : : ; ‘ − 1};
• a domain or alphabet �={0; : : : ; n− 1};
• a subset Cij⊂�×� for each pair of variables (i; j), with 06i¡j¡‘, which repre-
sents a constraint when it di/ers from the Cartesian product �×�. The elements
of �×�\Cij are called con3icts.
We refer to [19] for more general de-nitions, and drop the predicate ‘binary’ to

solely use the abbreviation CSP.
The goal of a CSP is to assign to the variables xi a value from their domain � in

such a way that all constraints are satis-ed. Formally, we say that a constraint Cij is
satis-ed if and only if (xi; xj)∈Cij. The couple (xi; xj) is then called a valid assignment.
When (xi; xj) =∈ Cij we say that the assignment (xi; xj) violates the constraint Cij. The
action taken by an algorithm to check if a constraint is violated or not by an assignment
is called a constraint check. The terms candidate solution, individual and string both
refer to a particular assignment of values to the variables.
CSPs do not have an explicit cost function associated to them. Black-box algorithms

like the GA require one because they cannot evaluate partial assignments. In the context
of randomly generated instances, the standard penalty function, which counts the num-
ber of violated constraints, is the most sensible one to use. We will use it throughout
the paper and call it the -tness function, sticking to GA terminology.
There exist di/erent models for randomly generating CSP instances (see [14] for

an overview). We use the one-parameter model E [1]: Select uniformly, independently
and with repetition, pn2‘(‘−1)=2 con3icts out of the n2‘(‘−1)=2 possible. In the limit
of the number of variables going to in-nity, a phase transition occurs from solvable to
unsolvable when varying p. When the number of variables is -nite, a parameter region
exists where the expected number of solutions is low, and solvable and unsolvable
instances coexist. It is called the mushy region. For an in-depth discussion about the
structures generated with this model, and its theoretical background, we refer to [14,1].
The experimental results presented in this paper are based on 100 solvable instances

of 30 variables and a domain size of 5, generated with p=0:099, which is at the very
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end of the mushy region. Only three of these instances can be solved within 50,000
constraint checks of a specialized forward-checker with conIict-directed back-jumping
[16]. The motivation for selecting only solvable instances is one of convenience; we
went as far as possible into the mushy region to avoid almost Iat instances with a
very large amount of solutions.

3. Performance of the GA

The simple GA whose performance on CSP instances we have tested is a generational
GA with a population of size 50, binary tournament selection, per-bit mutation at a
rate of 1=‘≈ 0:033, and one-point crossover with probability 0:8. The values of the
parameters were chosen because they are fairly standard and they yield reasonable
performance. The only parameter we will vary in the experiments described in this
paper is the crossover rate.
One immediately observes that there are easy and hard instances. We will use the

following loose classi-cation based on 20 independent GA runs per instance:
(1) easy: the median number of generations required to -nd a solution is less than

3000 (25 instances);
(2) medium hard: the median number of generations required to -nd a solution is

between 3000 and 12,000 (48 instances);
(3) hard: the median number of generations required to -nd a solution is higher than

12,000 (27 instances).
The ultimate aim of a static landscape analysis is to rank instances according to their
GA performance by only analyzing features of the problem instance. (This process is
also called a priori problem diFculty prediction.) The landscape analysis we carry out
in the next section will not provide suFcient information to do this reliably, which is
why we have not chosen to classify the instances more stringently.

4. Static landscape analysis

In this section, we present a static landscape analysis of the 100 instances. Since
most of the techniques we applied are only qualitatively reliable (e.g., a di/erence of
0:5 in the -tness distance correlation is likely to be of importance, but a di/erence of
0:1 may not be), we will only summarize the results of each analysis.

4.1. The mutation landscape

We started the analysis of the mutation landscape by performing 100 independent
hill-climber 2 runs on each instance. The number of times it cannot -nd a solution
is low for easy instances (mean 41.3, std. dev. 16.5), high for hard instances (mean
86.8, std. dev. 7.2), and in between (mean 64.3, std. dev. 15.1) for medium hard

2 The hill-climber modi-es the value of one variable per iteration.
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instances. These results indicate that the mutation landscape plays a signi-cant role,
but it is not all-dominant, in the sense that hill-climber performance cannot be used
for an individual classi-cation of GA performance. The distributions of hill-climber
performance per category overlap signi-cantly: the minimum (26) and the maximum
(89) of the ‘medium hard’ category are both beyond the means of the other classes.
As a by-product of the hill-climber runs we recorded the number of times a neutral

step, i.e., one which does not change the -tness, was taken. This number is largely
instance and run independent, and varies between 0.02 and 0.06. Given that there are
30 variables and 5 alphabet elements, i.e., 149 possible mutations, we found an average
of about 6 possible neutral steps per individual.
Next, we performed, for each instance, a random walk of 250,000 steps starting from

a solution, restricted to individuals in the -tness range 0–3 (i.e., mutations which led
to inferior individuals were ignored). We recorded the number of solutions encountered
during the walk. Easy instances have a high recorded number, hard instances a low
one, but because high and low numbers occur in the medium hard category we can
again not use this number to classify instances individually. We can only conclude that
easy instances have more solutions, hard instances have fewer, and that the landscape
is Iat enough for many solutions to be interconnected by -tness 0–3 paths.
The restriction on the order of the interactions between the variables to pairwise

interactions ensures that the landscape is smooth in the sense that the -tness values of
individuals in the near Hamming neighborhood can be well predicted. This is mathe-
matically formalized by the correlation length (-rst applied in a GA context in [15]),
which we have experimentally veri-ed to be around 10 for all instances. Note also
that the isotropy condition on the landscape, required to compute the correlation length
using random walks, is satis-ed because of the random generation of the conIicts of
the CSP. The correlation lengths obtained by starting the random walks in sub-optimal
individuals therefore yield identical values; the structure of the mutation landscape is
similar in average -tness and high -tness regions.
The 6tness distance correlation [11] of a mutation landscape is a measure of the

extent to which the -tness values of candidate solutions correlate with their Hamming
distance to a solution. It is computed using the formula

fdcS(f) =

∑
s∈S(f(s)− MfS)(d(s; s

∗)− MdS)

(
∑

s∈S(f(s)− MfS)2)1=2(
∑

s∈S(d(s; s
∗)− MdS)2)1=2

;

where S denotes a sample of the search space, d the Hamming distance metric, f the
-tness function, s∗ a solution, and

MfS =
1
|S|

∑
s∈S

f(s) and MdS =
1
|S|

∑
s∈S

d(s; s∗):

The onemax problem, which counts the number of ones in a binary string, is an
example of a problem which shows a perfect correlation. We computed the measure
based on a sample of the search space near a solution, and found good correlation
values between 0.7 and 0.8, independently of the choice of solution and instance.



172 B. Naudts, L. Schoofs / Theoretical Computer Science 287 (2002) 167–185

Finally, we performed a Walsh (discrete Fourier) transformation (see Appendix A,
and [6] for a discussion in the context of GAs) of the instances, based on the formulae
presented in Appendix B. Note that all Walsh coeFcients of order 3 and higher are nec-
essarily zero due to the binary interaction structure of the problem. A -rst observation
is that the magnitudes of the -rst-order coeFcients are all very similar, irrespective of
the instance: their modulus is largely within the range 0.1–0.6. The same holds for the
second-order coeFcients, whose modulus lies between 0.02 and 0.09. This similarity
will be discussed in the context of schema -tness distributions, in the next section.
To measure the importance of the -rst- versus second-order Walsh coeFcients, we

split the -tness value in a constant term (which is by far the largest), a -rst-order
contribution and a second-order contribution:

f(s) =
n‘∑
j=0

!j j(s) = !0 +
∑

1st order j
!j j(s) +

∑
2nd order j

!j j(s)

and observe, by randomly generating and evaluating, that in the average -tness region,
the second-order contribution is larger than the -rst-order in about 59% of the indi-
viduals. On average, however, the -rst-order contribution is a factor 2 larger than the
second-order. We conclude that the instances contain an important ‘fully separable’
or -rst-order component (whence the low -tness distance correlation), and that the
second-order component plays an equally strong role (it generates the local optima in
the mutation landscape). We also observed that the standard deviation of the size of
the -rst-order contributions has a similar classi-cation power as the hill-climber runs
and the random walks in the high -tness region. Statistics can be found in Table 1.

4.2. A schema analysis

We start with some terminology. A schema is a hyperplane of the search space �L.
It is usually written as a string over the augmented alphabet �′=�∪{∗}, where the ∗
plays the role of a wild card symbol. Technically, an individual s0 : : : s‘−1 belongs to
a schema h0 : : : h‘−1 if si=hi for all i such that hi =∗. We use the term schema 6tness
distribution to denote the distribution of -tness values of all individuals belonging to
a schema. The order of a schema is given by the number of non-wild card symbols
in the schema, the length of a schema is given by the largest distance between two
non-wild-card symbols. A hyperplane partition consists of all schemas with wild-card
symbols on the same positions. A schema competition is de-ned as the comparison of
the average -tness values of all schemas in a hyperplane partition.

Table 1
Statistics of the standard deviation on the size of the -rst-order contribution in the -tness function of CSP
instances, shown per category of GA performance

Category Mean Standard deviation Minimum Maximum

Easy 3.61 0.22 3.28 4.06
Medium hard 3.57 0.24 3.07 3.94
Hard 3.47 0.27 2.99 4.06
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The concepts of a schema and its -tness distribution are central to a simple and
intuitive hypothesis about the dynamics of a GA, which we present in the form of the
static building block hypothesis [9]:
Given any short, low-order hyperplane partition, a GA is expected to converge to
the winner of the corresponding schema competition.

Fit, short, low-order schemas are called building blocks. Note that the word static is
again used to denote that no actual GA dynamics is involved. A schema is called
deceptive when (a) it is the winner of its schema competition and (b) no solution
is contained in it. A search problem is called deceptive when it contains deceptive
low-order schemas. We refer to [21] for a discussion of deception. According to the
hypothesis, deceptive problems should be hard for a GA because they mislead its search
for a solution.
We have experimentally veri-ed the correlation between deception and GA perfor-

mance on the 100 instances, based on all the optima we found for each instance. The
results are similar to those of previous experiments: easy instances contain few decep-
tive schema competitions, hard instances contain many, but the middle group spans the
whole range. Deception cannot be used for the classi-cation of individual instances;
the following paragraphs give a hint of why this may be.
Irrespective of the instance and the order (1,2,3) of the hyperplane partition, we

observe that both mean and standard deviation of the schema -tness distributions in a
partition do not vary very much. Typical values for -rst- and second-order partitions
are between 39 and 42 for the mean and between 5 and 7 for the standard deviation—
clearly the distributions overlap signi-cantly. In many schema competitions, the di/er-
ence in mean between two schemas (the signal) is 2 orders of magnitude smaller than
the average standard deviation (the (collateral) noise). An application of the population
sizing rules of Goldberg et al. [8] would therefore lead to excessively large population
sizes to allow schema competition winners to dominate.
Given that the population size of our GA is only 50, and that population sizes of at

least 3 orders of magnitude larger would be necessary for the GA to decide between
building blocks, we expect that deception (w.r.t. static schema -tness distributions) does
not play a role of importance. Because of the large overlaps of the distributions, we
conjecture that the amount of deception is directly linked to the number of solutions in
the instance: the probability that a schema competition winner is contained in a solution
increases with the number of solutions. Of course, there is a correlation between the
number of solutions and GA performance, which gives deception a similar classi-cation
power.
The absence of strong schema competition winners makes it very unlikely that com-

binations of schema competition winners can be used to assemble a solution in linear
time. Indeed, if we group all -rst-order winners, we obtain an individual which vio-
lates between 16 and 26 constraints, depending on the instance. Similar results hold
for consensus individuals assembled with second-order winners. However, a quadratic
time greedy algorithm which -xes variables successively based on -rst-order (w.r.t. the
free variables) schema means reaches near-optimal values.
This observation, together with the fact that many GA runs reach the high -t-

ness region in a reasonable number of generations, indicates that the signal-to-noise
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Fig. 1. The signal-to-noise ratio associated with the highest signal within a -rst-order partition (-rst-order
w.r.t. the free variables), averaged over all -rst-order partitions, for an increasing number of free variables,
starting from a solution. The data are based on a sample of 10,000 strings per partition, of one medium hard
instance and a fully separable function, generated according to the noise model of Section 5.2 but without
noise term.

ratio improves with the number of variables getting -xed. Fig. 1 con-rms: it shows
the signal-to-noise ratio associated with the highest signal within a -rst-order schema
competition (-rst-order w.r.t. the free variables), averaged over all -rst-order com-
petitions, for an increasing number of free variables, starting from a solution. The
data are based on a sample of 10,000 strings per partition of one medium hard
instance.
The -gure also shows that the signal-to-noise ratios di/er little from those of a fully

separable function. This similarity can be explained for the region with many -xed vari-
ables as follows: each time a variable gets -xed, the second-order interaction between
this variable and a free variable is converted into an independent (non-interacting) con-
tribution to the free variable. These independent contributions help break the symmetry
which is present when all variables are free, and make the function look more like a
fully separable one. The fact that the signal-to-noise ratios improve in a fully separa-
ble function with the number of variables getting -xed is solely due to the reduced
variance.

4.3. Summary

(1) There is a good but not perfect correlation between GA performance and the
proportion of times a hill-climber gets stuck in a local optimum.
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(2) The -rst- and second-order components play an equally important role. The second-
order component is responsible for local optima, but it is most of the times not
strong enough to catch the GA in a local optimum.

(3) The high number of possible neutral mutation steps ensures a good connectivity
in the 0–3 -tness band, where the GA typically spends a large part of its time.

(4) The ascent toward high -tness is initially slowed down by the high amounts of
collateral noise between building blocks. As search progresses, the GA is able to
pick up a stronger signal.

5. Matching performance distributions

In this second part of the paper we focus on the ascent of the GA toward the high
-tness region (the 6rst phase). We study the structure of the CSP instances further by
comparing two models on which the GA shows a similar performance distribution.

5.1. The technique

We de-ne the performance distribution of the GA on a search problem as the
distribution of number of generations required to -nd a solution (or to reach the high
-tness region, depending on the object of interest), obtained over many independent
runs. Fig. 2 shows 6 such distributions, plotted as histograms, for two di/erent problems
and each time three di/erent crossover rates. Note that the runs are grouped according
to the logarithm of the number of generations to get a better view on the short runs.
The performance distribution is a signature of the GA-search problem combination.

It is well possible that di/erent combinations yield similar distributions; however, as
Fig. 2 shows, the di/erences can be large and the shape of the distribution may be
retained under variations of GA parameters. Important characteristics of the search
landscape are reIected in the distribution. Observe, for example, the similarity in shape
of the needle-in-a-haystack problem in Fig. 2 and the second phase (from -tness 3 to
a solution) of a GA with crossover on a medium hard CSP instance in Fig. 3.
The models presented in the next two sections are designed to have -rst-phase

performance distributions which can match those of the CSP instances. They are also
designed to have similar landscape characteristics:
• Their -tness distance correlation value is between 0.7 and 0.8.
• The overlap of the low-order schema -tness distributions within a competition is
within the same order of magnitude. Stronger, the curves of signal-to-noise ratios of
-rst-order schemas with respect to free variables match reasonably well.

• They contain an important -rst-order component, as they are based on fully separable
functions.

5.2. The noise model

The -rst family of functions which we use to model the -rst phase of the GA is
based on one fully separable function on which uniform noise is added. The functions
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Fig. 2. Performance distributions of the GA on a fully separable function (again with 30 variables and 5
alphabet elements) and a 6-variable, 5 alphabet elements needle-in-a-haystack problem.
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Fig. 3. Performance distributions of the second phase of the GA on a medium hard CSP instance, with
crossover (rate 0.8) and without. Note the typical form of the distribution of the GA with crossover, which
corresponds well to the form of the needle-in-a-haystack performance distributions.

are of the form

f(s) =
∑

06i¡‘
gi(si) + U (a; b); ∀s ∈ �‘: (1)

The values gi(0) are set to 0, the values gi(a), a =0, are drawn from a uniform
distribution on the set {1; 2; 3; 4}. At each function evaluation, we add noise which is
drawn from a uniform distribution on the set of integers {a; : : : ; b}, where a and b are
the parameters of the family.
The motivation for this model is two-fold: we want to investigate whether the second-

order components can be replaced by a noise term, and we want to -nd out whether
the small di/erence between the signal-to-noise ratio of the fully separable function and
that of the CSP instance is important. Adding the (-tness independent) noise to the
fully separable function decreases the signal-to-noise ratio appropriately in the region
of many free variables, as shown in Fig. 5, at the expense of a worse match when the
number of -xed variables is high.
Fig. 4 shows the conformance w.r.t. performance distribution of the model for

an easy, medium hard and hard instance. The noise terms we used are respectively
U (−4; 9), U (−2; 11) and U (−2; 15), which shows that we can slow down the GA
quite a bit by almost systematically underestimating the -tness of the individuals.
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Fig. 4. Performance distributions of the GA on three CSP instances (rows: easy, medium hard, hard) and
instances of the noise model which match for a crossover rate of 0.8 (-rst column). When crossover is
switched o/ (second column), the distributions do not match anymore. Parameter settings for the model are
detailed in Section 5.2.
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Fig. 5. The signal-to-noise ratio associated with the highest signal within a -rst-order schema competition
(-rst-order w.r.t. the free variables), averaged over all -rst-order competitions, for an increasing number of
free variables, starting from a solution. The data are based on the same medium hard instance as in Fig. 1,
and the corresponding noise and attractor model.

The main problem with this model is that it appears to be unstable with respect
to crossover rate variation, i.e., if we -x the model parameters which caused a good
match for a GA with crossover rate 0.8, we -nd that the distributions do not match
anymore when the crossover rate is decreased to 0.4 or crossover is switched o/.

5.3. The attractor model

A second parametrized family of functions used to model the -rst phase of the GA
running on the CSP instances is based on a combination of fully separable functions,
each associated with an attractor string. Here, we assume that the di/erences in signal-
to-noise ratios are not that important, but that the slowdown is caused by the presence
of attractors that make the GA lose time.
The primary attractor t0 is the all 0 string. We also use K secondary attractors tk ,

k=1 : : : K . With probability �, tki =0. Otherwise it is assigned a value drawn from a
uniform distribution on {1 : : : 4}. The parameter � controls the Hamming distance to
the primary attractor.
The joint -tness function is de-ned as the minimum of the -tness functions fk

associated with attractor tk , 06k6K . Each of these will make use of the same set of
penalties, de-ned as follows. Let for all a∈�, gi(a)=1 with probability 0:5. Otherwise,
we assign a number drawn from a uniform distribution on {2; 3; 4; 5}. This system of
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assignments ensures a -tness distance correlation which is similar to that of the CSP
instances.
The -tness functions fk associated to the attractors are based on functions hk

hk(s) =
∑

06i¡‘
z(k; i; si) with z(k; i; si) =

{
0 when si = tki ;
gi(si) otherwise:

(2)

The main idea here is that penalties are given for each position where an individual
deviates from the attractor. The primary attractor f0 is de-ned to be exactly h0. To
avoid K + 1 optima, we modify the value of hk , k¿0, when an individual comes too
close to the attractor:

fk(s) =
{

hk(s) when d(s; tk)¿ P1;
max(hk(s); P2) otherwise;

(3)

where d(·; ·) denotes the Hamming distance between two strings. This modi-cation
turns the upper part of the basin of attraction into a plateau, which will cause a hill-
climber or a GA to loose time by going to the plateau. However, when P1 and � are
suFciently large, it does not create a local optimum in which the algorithms get stuck.
Fig. 6 shows the conformance of the model for the same easy, medium hard and hard

instance as used in Fig. 4. The parameter settings of the model are detailed in Table 2.
It proved harder to -nd parameters which produced a good match, especially with the
long tails in the distribution of the model. In contrast to the noise model, the attractor
model is reasonably stable with respect to crossover rate variation. The signal-to-noise
ratio versus the number of free variables plot for the (10,0,24,28) model instance, on
the other hand, is very di/erent from that of the medium hard CSP instance.

5.4. Discussion

Rigorously speaking, we have only answered the following two questions:
• How much evaluation noise do we have to add to a fully separable function to
achieve the same slow ascent toward the high -tness region as a GA does on a CSP
instance?

• How many ‘fully separable’ attractors do we need, and how strong do they have to
be, to cause the same slowdown?

for one particular choice of algorithm, i.e., one choice of parameter setting of the GA.
We observed that the attractor model is relatively stable with respect to crossover rate
variation. For the noise model, however, we need di/erent model instances for di/erent
GA parameter settings.
Of course, similarity of two search problems based on their performance distributions

does not imply that the problems are identical to a GA. It is probable that very weird
search problems can be constructed which still show a similar performance distribution
to that of the CSP instances. We neither have any guarantee that the models represent
important aspects of the low -tness region of the CSP instances.
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Fig. 6. Performance distributions of the GA on three CSP instances (rows: easy, medium hard, hard) and
instances of the attractor model which match for a crossover rate of 0.8 (-rst column). When crossover
is switched o/ (second column), the distributions remain similar, but the match looses quality. Parameter
settings for the model are detailed in Section 5.3 and Table 2.
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Table 2
Parameter settings for the matching instances of the attractor model

Category K � P1 P2

Easy 10 0.85 10 15
Medium hard 10 0 24 28
Hard 48 0 21 22

But the fact that we can reproduce the performance distribution using well-motivated
models that share important characteristics with the CSP instances, makes us believe
that we have caught two important aspects of the structure of the instances.

6. Conclusions and further work

The summary of the static landscape analysis of 100 randomly generated CSP in-
stances presented in Section 4.3 gives the impression of a smooth search landscape
which is only diFcult for a GA because of the lack of guidance toward the solutions.
The hardness of an instance correlates well, but not perfectly, with the number of lo-
cal optima in the mutation landscape. The connectivity in the high -tness band, the
amount of deception, and the variance on the -rst-order contribution also correlate to
a similar degree with the hardness. toward the solutions. The hardness of an instance
correlates well, but not perfectly, with the number of local optima in the mutation
landscape. The connectivity in the high -tness band, the amount of deception, and
the variance on the -rst-order contribution also correlate to a similar degree with the
hardness.
We conjecture that the ascent towards the high -tness region is slowed down by

collateral noise between the building blocks and the presence of attractors which, al-
though weak, nevertheless distract the GA from a direct path to a solution. Using two
models which show a similar performance distribution, we have quanti-ed the amounts
of noise and the number and importance of the attractors that are needed to cause a
similarly slow ascent.
On the to-do side, we would like to -nd a noise model which is more stable with

respect to crossover rate variation, and investigate the stability of both models when
other parameters, such as mutation rate or selection pressure, are varied. We have
actually created a model for the second phase, based on one primary attractor and sev-
eral randomly generated secondary attractors at Hamming distance 3 from the primary
attractor. This ensures that neutral mutation paths exist between the attractors. Unfor-
tunately, this model is very unstable with respect to crossover rate variation, and we
do not believe that it fully reIects the landscape elements that cause the slow search
for a solution. This also calls for further research.
The ultimate goal of this line of research is to sketch an accurate picture of the CSP

search landscape as the GA sees it, and to construct a classi-er that can quantify to
which extent search problems match this picture.
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Appendix A. The Walsh transform

This appendix brieIy recalls the Walsh or discrete Fourier transform.
Let r be an nth primitive root of unity. We start by de-ning the n‘-dimensional

complex matrix Vn; ‘ containing the Walsh functions for an alphabet of size n and
strings of length ‘. The elements vij of Vn;1 are de-ned as vij=rij. For example
V1;1=(1),

V2;1 =
(
1 1
1 −1

)
and V3;1 =


 1 1 1
1 r r2

1 r2 r


 :

Matrix Vn; ‘ is constructed as Vn; ‘=V⊗‘
n;1 , with V

⊗‘ denoting the tensor product of
‘ copies of the matrix V . The tensor product of two matrices A=(aij)∈Rn×m and
B=(bij)∈Rp×q is de-ned as

A⊗ B = (aijB) =




a00B : : : a0(m−1)B
...

. . .
...

a(n−1)0B : : : a(n−1)(m−1)B


 :

We denote by In; ‘ the identity matrix of size n‘.

Lemma 1. For any positive integer ‘, we have MVn; ‘Vn; ‘=n‘In; ‘ where MVn; ‘ denotes
the complex conjugate of the matrix Vn; ‘.

When f is the vector of function evaluations of a -tness function f, the Walsh
transform is de-ned as w=Wn; ‘ f with Wn; ‘=n−‘=2Vn; ‘. The components of the vector
w are called the Walsh coeFcients of f. The Walsh functions can be de-ned as
 t(s)=rst . The Walsh coeFcients permit to recover f because an application of the
lemma leads to

f = MW n;‘(Wn;‘f ) =Wn;‘w:

Appendix B. The Walsh transform of binary CSPs

Suys [18] calculates the Walsh coeFcients wi of functions of the form

f(s) =
∑

06i¡j¡‘
gij(si; sj); s ∈ �L:

Binary CSPs can easily be written in this form: gij(si; sj) is set to one if there is
a constraint between variables i and j and a conIict between the values si and sj,
otherwise it is set to zero.
The Walsh coeFcients are indexed according to the formula ani + bnj—other coef-

-cients are necessarily zero. When both a and b are zero, the average over the entire
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search space is taken and denoted by w0. It equals

w0 =
1
n2

∑
06i¡j¡‘

a;b∈�

gij(a; b):

When a or b are zero, but not both, the index refers to a -rst-order Walsh coeFcient
which is computed by

wkni =
1
n2

∑
a∈�

rka


 ∑
06p¡i¡‘

c∈�

gpi(c; a) +
∑

i¡q¡‘
d∈�

giq(a; d)


 :

When both a and b are non-zero, we have second-order coeFcients

wani+bnj =
1
n2

∑
c;d∈�

rac+bdgij(c; d):
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