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a b s t r a c t

Variational iteration method has been used to handle linear and nonlinear differential
equations. The main property of the method lies in its flexibility and ability to solve
nonlinear equations accurately and conveniently. In this work, a general framework of
the variational iteration method is presented for analytical treatment of fractional partial
differential equations in fluid mechanics. The fractional derivatives are described in the
Caputo sense. Numerical illustrations that include the fractional wave equation, fractional
Burgers equation, fractional KdV equation, fractional Klein–Gordon equation and fractional
Boussinesq-like equation are investigated to show the pertinent features of the technique.
Comparison of the results obtained by the variational iterationmethodwith those obtained
by Adomian decomposition method reveals that the first method is very effective and
convenient. The basic idea described in this paper is expected to be further employed to
solve other similar linear and nonlinear problems in fractional calculus.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Recent advances of fractional differential equations are stimulated by new examples of applications in fluid mechanics,
viscoelasticity, mathematical biology, electrochemistry and physics. For example, the nonlinear oscillation of earthquake
can be modeled with fractional derivatives [1], and the fluid-dynamic traffic model with fractional derivatives [2] can
eliminate the deficiency arising from the assumption of continuum traffic flow. Based on experimental data fractional partial
differential equations for seepage flow in porous media are suggested in Ref. [3], and differential equations with fractional
order have recently proved to be valuable tools to themodeling of many physical phenomena [4]. Different fractional partial
differential equations have been studied and solved including the space–time fractional diffusion-wave equation [5–7], the
fractional advection-dispersion equation [8,9], the fractional telegraph equation [10], the fractional KdV equation [11] and
the linear inhomogeneous fractional partial differential equations [12].
TheAdomian decompositionmethod [13–17] and the variational iterationmethod [18–38] are relatively newapproaches

to provide an analytical approximation to linear and nonlinear problems, and they are particularly valuable as tools for
scientists and applied mathematicians, because they provide immediate and visible symbolic terms of analytical solutions,
as well as numerical approximate solutions to both linear and nonlinear differential equations without linearization or
discretization. The decomposition method has been used to obtain approximate solutions of a large class of linear or
nonlinear differential equations [13,14]. Recently, the application of the method is extended for fractional differential
equations [10,11,39–44]. The variational iterationmethod, which proposed by Ji-Huan He [19–28], was successfully applied
to autonomous ordinary and partial differential equations and other fields. Ji-Huan He [3] was the first to apply the
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variational iteration method to fractional differential equations. Recently Odibat and Momani [41–47] implemented the
variational iteration method to solve linear and nonlinear differential equations of fractional order.
The objective of this paper is to extend the application of the variational iterationmethod to obtain analytical solutions to

some fractional partial differential equations in fluid mechanics. These equations include wave equation, Burgers equation,
KdV equation, Klein–Gordon equation and Boussinesq-like equation. The variational iteration method is a computational
method that yields analytical solutions andhas certain advantages over standard numericalmethods. It is free from rounding
off errors as it does not involve discretization, and does not require large computer obtainedmemory or power. Themethod
introduces the solution in the form of a convergent fractional series with elegantly computable terms. The corresponding
solutions of the integer order equations are found to follow as special cases of those of fractional order equations.
Throughout this paper, fractional partial differential equations are obtained from the corresponding integer order

equations by replacing the first-order or the second-order time derivative by a fractional in the Caputo sense [48] of order
α with 0 < α ≤ 1 or 1 < α ≤ 2.

2. Preliminaries and notations

We give some basic definitions and properties of the fractional calculus theory which are used further in this paper.

Definition 2.1. A real function f (t), t > 0, is said to be in the space Cµ, µ ∈ R if there exists a real number p(> µ), such
that f (t) = tpf1(t), where f1(t) ∈ C[0,∞), and it is said to be in the space Cmµ iff f

(m)
∈ Cµ,m ∈ N .

Definition 2.2. The Riemann–Liouville fractional integral operator of order α ≥ 0, of a function f ∈ Cµ, µ ≥ −1, is defined
as

Jα f (t) =
1

Γ (α)

∫ t

0
(t − τ)α−1f (τ )dτ , α > 0, t > 0,

J0f (t) = f (t).

Properties of the operator Jα can be found in [49–51], we mention only the following: For f ∈ Cµ, µ ≥ −1, α, β ≥ 0 and
γ > −1:

1. Jα Jβ f (t) = Jα+β f (t),
2. Jα Jβ f (t) = Jβ Jα f (t),
3. Jαtγ = Γ (γ+1)

Γ (α+γ+1) t
α+γ .

The Riemann–Liouville derivative has certain disadvantageswhen trying tomodel real-world phenomenawith fractional
differential equations. Therefore, we shall introduce a modified fractional differential operator Dα proposed by M. Caputo
in his work on the theory of viscoelasticity [48].

Definition 2.3. The fractional derivative of f (t) in the Caputo sense is defined as

Dα f (t) = Jm−αDmf (t) =
1

Γ (m− α)

∫ t

0
(t − τ)m−α−1f (m)(t)dt, (2.1)

form− 1 < α ≤ m,m ∈ N, t > 0, f ∈ Cm
−1.

Also, we need here two of its basic properties.

Lemma 2.1. If m− 1 < α ≤ m, m ∈ N and f ∈ Cmµ , µ ≥ −1, then

Dα Jα f (t) = f (t),

and

JαDα f (t) = f (t)−
m−1∑
k=0

f (k)(0+)
tk

k!
, t > 0.

The Caputo fractional derivative is considered here because it allows traditional initial and boundary conditions to be
included in the formulation of the problem [52]. In this paper, we consider the one-dimensional linear inhomogeneous
fractional partial differential equations in fluid mechanics, where the unknown function u(x, t) is assumed to be a causal
function of time, i.e., vanishing for t < 0. The fractional derivative is taken in Caputo sense as follows:
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Definition 2.4. For m to be the smallest integer that exceeds α, the Caputo time-fractional derivative operator of order
α > 0 is defined as

Dαt u(x, t) =
∂αu(x, t)
∂tα

=


1

Γ (m− α)

∫ t

0
(t − τ)m−α−1

∂mu(x, τ )
∂τm

dτ , form− 1 < α < m

∂mu(x, t)
∂tm

, for α = m ∈ N.
(2.2)

For more information on the mathematical properties of fractional derivatives and integrals one can consult the
mentioned references.

3. Variational iteration method

The principles of the variational iterationmethod and its applicability for various kinds of differential equations are given
in [18–38]. In [3], Ji-Huan He showed that the variational iteration method is also valid for fractional differential equations.
He applied the method to obtain analytical solution for the fractional differential equation

∂αu
∂tα
= f (x, t), u(a) = b, 1 < α < 2. (3.1)

In this section, following the discussion presented in [3], we extend the application of the variational iteration method
to solve the time fractional differential equation:

∂α

∂tα
u(x, t) = R[x]u(x, t)+ q(x, t), t > 0, x ∈ R, (3.2)

where R[x] is a differential operator in x, subject to the initial and boundary conditions

u(x, 0) = f (x), 0 < α ≤ 1,
u(x, t)→ 0 as |x| → ∞, t > 0,

(3.3)

and

u(x, 0) = f (x),
∂u(x, 0)
∂t

= g(x), 1 < α ≤ 2,

u(x, t)→ 0 as |x| → ∞, t > 0,
(3.4)

where f (x), g(x), and q(x, t) all are continuous functions and α, m − 1 < α ≤ m, is a parameter describing the order
of the time-fractional derivative in the Caputo sense. According to the variational iteration method, we can construct the
correction functional for Eq. (3.2) as:

uk+1(x, t) = uk(x, t)+ J
β
t

[
λ
( ∂α
∂tα
uk(x, t)− R[x]ũk(x, t)− q(x, t)

)]
,

= uk(x, t)+
1

Γ (β)

∫ t

0
(t − τ)β−1λ(τ)

( ∂α
∂tα
uk(x, τ )− R[x]ũk(x, τ )− q(x, τ )

)
dτ , (3.5)

where Jβt is the Riemann–Liouville fractional integral operator of order β = α − floor(α), that is β = α + 1 − m, with
respect to the variable t and λ is a general Lagrangemultiplier, which can be identified optimally via variational theory [29].
To identify approximately Lagrange multiplier, some approximation must be made. The correction functional (3.5) can be
approximately expressed as follows

uk+1(x, t) = uk(x, t)+
∫ t

0

[
λ(τ)

( ∂m
∂tm
uk(x, τ )− R[x]ũk(x, τ )− q(x, τ )

)]
dτ . (3.6)

Here we apply restricted variations to the nonlinear term R[x]u, in this case we can easily determine the multiplier.
Making the above functional stationary, noticing that δũk = 0,

δuk+1(x, t) = δuk(x, t)+ δ
∫ t

0
λ(τ)

( ∂m
∂τm

uk(x, τ )− q(x, τ )
)
dτ , (3.7)

yields the following Lagrange multipliers

λ = −1, form = 1, (3.8)
λ = τ − t, form = 2. (3.9)
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Therefore, for m = 1 (0 < α ≤ 1), we substitute λ = −1 into the functional (3.5) to obtain the following iteration
formula:

uk+1(x, t) = uk(x, t)− Jαt
[ ∂α
∂tα
uk(x, t)− R[x]uk(x, t)− q(x, t)

]
. (3.10)

Form = 2 (1 < α ≤ 2), we substitute λ = τ − t into the functional (3.5) to get

uk+1(x, t) = uk(x, t)+
1

Γ (α − 1)

∫ t

0
(t − τ)α−2(τ − t)

( ∂α
∂tα
uk(x, τ )− R[x]uk(x, τ )− q(x, τ )

)
dτ ,

= uk(x, t)−
α − 1
Γ (α)

∫ t

0
(t − τ)α−1

( ∂α
∂tα
uk(x, τ )− R[x]uk(x, τ )− q(x, τ )

)
dτ . (3.11)

So, we obtain the following iteration formula:

uk+1(x, t) = uk(x, t)− (α − 1)Jαt
[ ∂α
∂tα
uk(x, t)− R[x]uk(x, t)− q(x, t)

]
. (3.12)

The initial approximation (trial function) u0 can be freely chosen if it satisfies the initial and boundary conditions of the
problem. However the success of the method depends on the proper selection of the initial approximation u0. Finally, we
approximate the solution u(x, t) = limk→∞ uk(x, t) by the Nth term uN(x, t).

4. Decomposition method

The principles of the decomposition method and its applicability for various kinds of differential equations are given
in [13–17] and the references cited therein. In this section we implement the decomposition method to solve Eq. (3.2). The
decomposition method requires that the nonlinear fractional differential Eq. (3.2) be expressed in terms of operator from as

∂α

∂tα
u(x, t) = L[x]u(x, t)+ N[x]u(x, t)+ q(x, t), t > 0, x ∈ R, (4.1)

where L[x] is a linear operator in x and N[x] is a nonlinear operator in x. The method is based on applying the operator Jαt ,
the inverse of the operator Dαt , to both sides of Eq. (4.1) to obtain

u(x, t) =
m−1∑
k=0

∂ku
∂tk

(x, 0+)
tk

k!
+ Jαt (L[x]u(x, t)+ N[x]u(x, t)+ q(x, t)). (4.2)

The Adomian decomposition method [13,14] suggests the solution u(x, t) be decomposed into the infinite series of
components

u(x, t) =
∞∑
n=0

un(x, t), (4.3)

and the nonlinear function in Eq. (4.2) is decomposed as follows:

Nu =
∞∑
n=0

An, (4.4)

where An are the so-called Adomian polynomials. Substituting the decomposition series (4.3) and (4.4) into both sides of
(4.2) gives

∞∑
n=0

un(x, t) =
m−1∑
k=0

∂ku
∂tk

(x, 0+)
tk

k!
+ Jαt

(
R[x]

∞∑
n=0

un(x, t)+
∞∑
n=0

An + q(x, t)

)
. (4.5)

Following the decomposition method, we introduce the recursive relation as

u0(x, t) =
m−1∑
k=0

∂ku
∂tk

(x, 0+)
tk

k!
+ Jαt (q(x, t)),

uj+1(x, t) = Jαt (L[x]uj(x, t)+ Aj), j ≥ 0.

(4.6)

The Adomian polynomial An can be calculated for all forms of nonlinearity according to specific algorithms constructed
by Adomian [15]. The general form of formula for An Adomian polynomials is

An =
1
n!

[
dn

dλn
N

(
n∑
k=0

λkuk

)]
λ=0

. (4.7)
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This formula is easy to compute byusingMathematica software or bywriting a computer code to get asmanypolynomials
as we need in the calculation of the numerical as well as explicit solutions. It is worth noting that if the zeroth component
u0 is defined then the remaining components uj, j ≥ 1, can be completely determined such that each term is determined
by using the previous terms, and the series solution is thus entirely determined. Finally, we approximate the solution u(x, t)
by the truncated series

φN(x, t) =
N−1∑
j=0

uj(x, t) and lim
N→∞

φN(x, t) = u(x, t). (4.8)

However, the inclusion of boundary conditions in fractional differential equations introduces additional difficulties.
The Adomian decomposition method can handle these difficulties by using the time-fractional operator Dαt and the initial
conditions only. The method provides the solution in the form of a rapidly convergent series that may lead to the exact
solution in the case of linear differential equations and to an efficient numerical solution with high accuracy for nonlinear
equations. The convergence of the decomposition series has been investigated by several authors [53,54].

5. Applications: Linear equations

To incorporate our discussion above, three linear fractional PDEs will be studied. The decomposition method and the
variational iteration method are used to construct the exact solutions of the problems.

Example 5.1. Consider the following one-dimensional linear inhomogeneous fractional wave equation

∂αu
∂tα
+
∂u
∂x
=

t1−α

Γ (2− α)
sin(x)+ t cos(x), t > 0, x ∈ R, 0 < α ≤ 1, (5.1)

subject to the initial condition

u(x, 0) = 0. (5.2)

Following the discussion presented in the decomposition method section, we can obtain the recurrence relation

u0(x, t) = u(x, 0)+ Jα
( t1−α

Γ (2− α)
sin(x)+ t cos(x)

)
= t sin(x)+

tα+1

Γ (α + 2)
cos(x),

uj+1(x, t) = −Jα
( ∂
∂x
uj(x, t)

)
, j ≥ 0.

(5.3)

In view of (5.3), the first few components are derived as follows:

u0(x, t) = t sin(x)+
tα+1

Γ (α + 2)
cos(x),

u1(x, t) = −Jα
( ∂
∂x
u0(x, t)

)
= −

tα+1

Γ (α + 2)
cos(x)+

t2α+1

Γ (2α + 2)
sin(x),

u2(x, t) = −Jα
( ∂
∂x
u1(x, t)

)
= −

t2α+1

Γ (2α + 2)
sin(x)−

t3α+1

Γ (3α + 2)
cos(x),

...

and so on, in this manner the rest of components of the decomposition series can be obtained.
The solution in series form is given by

u(x, t) = t sin(x)+
tα+1

Γ (α + 2)
cos(x)−

tα+1

Γ (α + 2)
cos(x)+

t2α+1

Γ (2α + 2)
sin(x)

−
t2α+1

Γ (2α + 2)
sin(x)−

t3α+1

Γ (3α + 2)
cos(x)+ · · · . (5.4)

It is easily observed that the self-canceling ‘‘noise’’ terms appear between various components. Canceling the noise terms
and keeping the non-noise terms in (5.4) yields the exact solution of (5.1) given by

u(x, t) = t sin(x), (5.5)

which is easily verified. It is worth noting that other noise terms between other components of (5.4) will be canceled, as the
sixth terms, and the sum of these ‘‘noise’’ terms will vanish in the limit. This formally justified in [14].
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According to the variational iteration method and to Eq. (3.10), the iteration formula for Eq. (5.1) is given by

uk+1(x, t) = uk(x, t)− Jαt
[ ∂α
∂tα
uk(x, t)+

∂

∂x
uk(x, t)−

t1−α

Γ (2− α)
sin(x)− t cos(x)

]
. (5.6)

By the above variational iteration formula, if we begin with u0 = 0, we can obtain the following approximations

u1(x, t) = t sin(x)+
tα+1

Γ (α + 2)
cos(x),

u2(x, t) = t sin(x)+
tα+1

Γ (α + 2)
cos(x)−

tα+1

Γ (α + 2)
cos(x)+

t2α+1

Γ (2α + 2)
sin(x),

u3(x, t) = t sin(x)+
tα+1

Γ (α + 2)
cos(x)−

tα+1

Γ (α + 2)
cos(x)+

t2α+1

Γ (2α + 2)
sin(x)

−
t2α+1

Γ (2α + 2)
sin(x)−

t3α+1

Γ (3α + 2)
cos(x),

...

Canceling the noise terms and keeping the non-noise terms yield the exact solution of Eq. (5.1). If we begin with
u0 = t sin(x) then the exact solution follows immediately by using two iterations.

Example 5.2. In this example we consider the one-dimensional linear inhomogeneous fractional Burgers equation given by

∂αu
∂tα
+
∂u
∂x
−
∂2u
∂x2
=

2t2−α

Γ (3− α)
+ 2x− 2, t > 0, x ∈ R, 0 < α ≤ 1, (5.7)

subject to the initial condition

u(x, 0) = x2. (5.8)

Proceeding as before we obtain the recurrence relation

u0(x, t) = u(x, 0)+ Jα
( 2t2−α

Γ (3− α)
+ 2x− 2

)
,

uj+1(x, t) = −Jα(L1xuj(x, t)− L2xuj(x, t)), j ≥ 0,
(5.9)

where L1x = ∂
∂x and L2x =

∂2

∂x2
, so that the first few components are

u0(x, t) = x2 + t2 +
tα

Γ (α + 1)
(2x− 2),

u1(x, t) = −Jα(L1xu0(x, t)− L2xu0(x, t)) = −
tα

Γ (α + 1)
(2x− 2)− 2

t2α

Γ (2α + 1)
,

u2(x, t) = −Jα(L1xu1(x, t)− L2xu1(x, t)) = 2
t2α

Γ (2α + 1)
,

u3(x, t) = −Jα(L1xu2(x, t)− L2xu2(x, t)) = 0,

and as a result uj(x, t) = 0, j ≥ 3. The exact solution is therefore given by

u(x, t) = x2 + t2. (5.10)

According to the variational iteration method and to Eq. (3.10), the iteration formula for Eq. (5.7) is given by

uk+1(x, t) = uk(x, t)− Jαt
[ ∂α
∂tα
uk(x, t)+

∂

∂x
uk(x, t)−

∂2

∂x2
uk(x, t)−

2t2−α

Γ (3− α)
− 2x+ 2

]
. (5.11)

By the above variational iteration formula, if we begin with u0 = x2, we can obtain the following approximations

u1(x, t) = x2 + t2,
...

un(x, t) = x2 + t2.

The exact solution u(x, t) = x2 + t2 follows immediately. The success of obtaining the exact solution by using two
iterations is a result of the proper selection of initial guess u0.
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Example 5.3. We consider the one-dimensional linear inhomogeneous fractional Klein–Gordon equation

∂αu
∂tα
−
∂2u
∂x2
+ u = 6x3t + (x3 − 6x)t3, t > 0, x ∈ R, 1 < α ≤ 2, (5.12)

subject to the initial conditions

u(x, 0) = 0, ut(x, 0) = 0. (5.13)

Following the discussion presented above, we obtain the recurrence relation

u0(x, t) = u(x, 0)+ tut(x, 0)+ Jα(6x3t + (x3 − 6x)t3),
uj+1(x, t) = Jα(L2xuj(x, t)− uj(x, t)), j ≥ 0.

(5.14)

In view of (5.14), the first few components are derived as follows:

u0(x, t) = 6x3
tα+1

Γ (α + 2)
+ (x3 − 6x)

6tα+3

Γ (α + 4)
,

u1(x, t) = Jα(L2xu0(x, t)− u0(x, t)) = 36x
t2α+1

Γ (2α + 2)
− 36x

t2α+3

Γ (2α + 4)

− 6x3
t2α+1

Γ (2α + 2)
− (x3 − 6x)

6t2α+3

Γ (2α + 4)
,

...

and so on, in this manner the rest of components of the decomposition series can be obtained. Substituting the above
components into (4.3), we obtain the solution in a series form

u(x, t) = 6x3
tα+1

Γ (α + 2)
+ (x3 − 6x)

6tα+3

Γ (α + 4)
+ 36x

t2α+1

Γ (2α + 2)
− 36x

t2α+3

Γ (2α + 4)

− 6x3
t2α+1

Γ (2α + 2)
− (x3 − 6x)

6t2α+3

Γ (2α + 4)
+ · · · . (5.15)

According to the variational iteration method and to Eq. (3.12), the iteration formula for Eq. (5.12) is given by

uk+1(x, t) = uk(x, t)− (α − 1)Jαt
[∂αu
∂tα
−
∂2u
∂x2
+ u− 6x3t − (x3 − 6x)t3

]
. (5.16)

By the above variational iteration formula, if we begin with u0 = 0, we can obtain the following approximations

u1(x, t) = (α − 1)
[
6x3

tα+1

Γ (α + 2)
+ (x3 − 6x)

6tα+3

Γ (α + 4)

]
,

u2(x, t) = 6x3
tα+1

Γ (α + 2)
+ 6(x3 − 6x)

tα+3

Γ (α + 4)

− (α − 1)2
[
6(x3 − 6x)

t2α+1

Γ (2α + 2)
+ 6(x3 − 12x)

t2α+3

Γ (2α + 4)

]
+ · · · . (5.17)

From (5.15) and (5.17), the decomposition method and the variational iteration method give the same solution for the
classical Klein–Gordon Eq. (5.12) (when α = 2) which is given by

u(x, t) = x3t3 + (x3 − 6x)
6t5

Γ (6)
+ 36x

t5

Γ (6)
− 36x

6t7

Γ (8)
− 6x3

t5

Γ (6)
− (x3 − 6x)

6t7

Γ (8)
+ · · · . (5.18)

Canceling the noise terms and keeping the non-noise terms in (5.18) yield the exact solution of (5.12), for the special case
α = 2,

u(x, t) = x3t3, (5.19)

which is easily verified.
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6. Applications: Nonlinear equations

For nonlinear equations in general, there exists nomethod that yields the exact solution and therefore only approximate
solutions can be derived. In this section, we use the variational iteration method and the decomposition method to provide
approximate solutions for two kinds of nonlinear time-fractional partial differential equations.

Example 6.4. We consider the time-fractional KdV equation

∂αu
∂tα
+ 6u

∂u
∂x
+
∂3u
∂x3
= 0, t > 0, x ∈ R, 0 < α ≤ 1, (6.1)

subject to the initial condition

u(x, 0) =
1
2
sech2

(1
2
x
)
. (6.2)

The exact solution, for the special case α = 1, is given by

u(x, t) =
1
2
sech2

(1
2
(x− t)

)
. (6.3)

The time-fractional KdV Eq. (6.1) is solved in [11] using the decomposition method. The solution in series form is found
as

u(x, t) = f0(x)+ f1(x)
tα

Γ (α + 1)
+ f2(x)

t2α

Γ (2α + 1)
+ f3(x)

t3α

Γ (3α + 1)
, (6.4)

where

f0(x) =
1
2
sech2

(1
2
x
)
,

f1(x) = −6f0f ′0 − f
′′′

0 ,

f2(x) = −6f1f ′0 − 6f0f
′

1 − f
′′′

1 ,

f3(x) = −6f2f ′0 −
6Γ (2α + 1)f1f ′1
Γ (α + 1)2

− 6f0f ′2 − f
′′′

2 .

According to the variational iterationmethod and to Eq. (3.10), the iteration formula for the time-fractional KdV Eq. (6.1)
is given by

uk+1(x, t) = uk(x, t)− Jαt
[∂αuk
∂tα
+ 6uk

∂uk
∂x
+
∂3uk
∂x3

]
. (6.5)

By the above variational iteration formula, if we begin with u0 = 1
2 sech

2
(
1
2x
)
, we can obtain the following

approximations

u1(x, t) = f0(x),

u2(x, t) = f0(x)+ f1(x)
tα

Γ (α + 1)
,

u3(x, t) = f0(x)+ f1(x)
tα

Γ (α + 1)
+ f2(x)

t2α

Γ (2α + 1)
− 6f1f ′1

Γ (2α + 1)t3α

Γ (α + 1)2Γ (3α + 1)
.

...

Now, the fourth-order term approximate solution for Eq. (6.1) obtained using the variational iterationmethod is given in
Eq. (6.4), which is the same solution obtained using the decomposition method. Therefore, both methods provide the same
approximate solution for the time-fractional KdV equation.

Example 6.5. In this example we consider the time-fractional Boussinesq-like equation

Dαt u+ (u
2)xx − (u2)xxxx = 0, t > 0, x ∈ R, (6.6)

where 1 < α ≤ 2, subject to the initial conditions

u(x, 0) =
4
3
sinh2

(1
4
x
)
, ut(x, 0) = −

1
3
sinh

(1
2
x
)
. (6.7)
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The decomposition method admits the use of the recurrence relation

u0(x, t) =
4
3
sinh2

(1
4
x
)
+
1
3
sinh

(1
2
x
)
t,

uj+1(x, t) = −Jα
(
(Aj)xx − (Aj)xxxx

)
, j ≥ 0

(6.8)

where Aj’s are the Adomian polynomials of the nonlinearity u2, which are given by

A0(x, t) = u20,
A1(x, t) = 2u0u1,
A2(x, t) = 2u0u2 + u21,
A3(x, t) = 2u0u3 + 2u1u2,
A4(x, t) = 2u0u4 + 2u1u3 + u22.

Solving (6.8) recursively, as a result we obtain the following fourth-order term approximate solution for the time-
fractional Boussinesq-like Eq. (6.6)

u(x, t) =
4
3
sinh2

(1
4
x
)
−
1
3
sinh

(1
2
x
)
t +

1
2.3
cosh

(1
2
x
) tα

Γ (α + 1)

−
1
22.3

sinh
(1
2
x
) tα+1

Γ (α + 2)
+
1
23.3

cosh
(1
2
x
) t2α

Γ (2α + 1)
−
1
24.3

sinh
(1
2
x
) t2α+1

Γ (2α + 2)

+
1
25.3

cosh
(1
2
x
) t3α

Γ (3α + 1)
−
1
26.3

sinh
(1
2
x
) t3α+1

Γ (3α + 2)
. (6.9)

According to the variational iteration method and to Eq. (3.12), the iteration formula for the time-fractional Boussinesq-
like Eq. (6.6) is given by

uk+1(x, t) = uk(x, t)− (α − 1)Jαt
[∂αuk
∂tα
+
∂2u
∂x2
u2k −

∂4

∂x4
u2k
]
. (6.10)

By the above variational iteration formula, if we begin with u0 = 4
3 sinh

2
(
1
4x
)
−
1
3 sinh

(
1
2x
)
t , we obtain the following

fourth-order term approximate solution for the time-fractional Boussinesq-like Eq. (6.6)

u(x, t) =
4
3
sinh2

(1
4
x
)
−
1
3
sinh

(1
2
x
)
t + (α − 1)

[ 1
2.3
cosh

(1
2
x
) tα

Γ (α + 1)
−
1
22.3

sinh
(1
2
x
) tα+1

Γ (α + 2)

]
+ (α − 1)2

[ 1
23.3

cosh
(1
2
x
) t2α

Γ (2α + 1)
−
1
24.3

sinh
(1
2
x
) t2α+1

Γ (2α + 2)

]
+ (α − 1)3

[ 1
25.3

cosh
(1
2
x
) t3α

Γ (3α + 1)
−
1
26.3

sinh
(1
2
x
) t3α+1

Γ (3α + 2)

]
. (6.11)

It is interesting to point out that for the case of α = 2, the approximate solution

u(x, t) =
2
3

[
cosh

(1
2
x
)(
1+

1
22
t2

2!
+
1
24
t4

4!
+ · · ·

)
− 1

]
−
2
3
sinh

(1
2
x
)[1
2
t +

1
23
t3

3!
+
1
25
t5

5!
+ · · ·

]
,

follows immediately upon replacing α by 2 in the decomposition solution (6.9) or the variational iteration solution (6.11),
which converges to the exact solution of the Boussinesq-like Eq. (6.6), when α = 2,

u(x, t) =
4
3
sinh2

(1
4
(x− t)

)
. (6.12)

7. Conclusions

Variational iteration method has been known as a powerful tool for solving many functional equations such as ordinary,
partial differential equations, integral equations and so many other equations. In this article, we have presented a general
framework of the variational iterationmethod for the analytical treatment of fractional partial differential equations in fluid
mechanics. The present work shows the validity and great potential of the variational iteration method for solving linear
and nonlinear fractional partial differential equations. All of the examples show that the results of the variational iteration
method are in excellent agreement with those obtained by the Adomian decomposition method. The basic idea described
in this paper is expected to be further employed to solve other similar nonlinear problems in fractional calculus.
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