
E
fi

I
J
B
M
H
a

b

c

d

e

f

a

A
R
R
A
A

K
S
S
S
N
I

1

c
c
m
t
i
t
a
t
i
o
v
c

q
T

0
d

Carbohydrate Polymers 86 (2011) 1207– 1215

Contents lists available at ScienceDirect

Carbohydrate  Polymers

jo u rn al hom epa ge: www.elsev ier .com/ locate /carbpol

ffects  of  a  sulfated  polysaccharide  isolated  from  the  red  seaweed  Solieria
liformis  on  models  of  nociception  and  inflammation

anna  Wivianne  Fernandes  de  Araújoa,b,  Edfranck  de  Sousa  Oliveira  Vanderleib,
osé Ariévilo  Gurgel  Rodriguesa,b,  Chistiane  Oliveira  Courab, Ana  Luíza  Gomes  Quinderéb,
runo  Pedrosa  Fontesb,  Ismael  Nilo  Lino  de  Queirozb,  Roberta  Jeane  Bezerra  Jorgec,
irna  Marques  Bezerrad,  Antonio  Alfredo  Rodrigues  e  Silvae, Hellíada  Vasconcelos  Chavese,
elena Serra  Azul  Monteiroc,  Regina  Célia  Monteiro  de  Paula f, Norma  Maria  Barros  Benevidesa,b,∗

Northeast Biotechnology Network, Federal University of Ceará, Fortaleza, Ceará, Brazil
Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
Faculty of Medicine, Federal University of Ceará, Sobral, Ceará, Brazil
Faculty of Dentistry, Federal University of Ceará, Sobral, Ceará, Brazil
Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 24 January 2011
eceived  in revised form 14 May  2011
ccepted 7 June 2011
vailable online 14 June 2011

a  b  s  t  r  a  c  t

This  work  reports  the  effects  of  a sulfated  polysaccharide  (SP-Sf),  isolated  from  the seaweed  Solieria
filiformis  and characterized  by  Fourier  transformed  infrared  (FT-IR),  on  nociception  and  inflammation.
Male  Swiss  mice  were  pretreated  with  SP-Sf  30  min  before  receiving  an  injection  of  0.8%  acetic  acid,
1%  formalin  or 30  min  prior  to a thermal  stimulus.  We  observed  that  SP-Sf  (1,  3  or  9  mg/kg)  significantly
reduced  the  number  of  writhes.  SP-Sf  also reduced  the  second  phase  of  the  formalin  test  and  did  not  cause
eywords:
eaweed
ulfated polysaccharides
olieria  filiformis

a  significant  antinociceptive  effect  in the  hot  plate  test,  suggesting  that  its  antinociceptive  action  occurs
through  a peripheral  mechanism.  SP-Sf  (1, 3 or 9 mg/kg)  did  not  show  a significant  anti-inflammatory
effect  in  Wistar  rats  when  administrated  by the  systemic  route  1 h  before  testing  using  carrageenan  or
dextran.  Finally,  SP-Sf  (9 mg/kg)  did not  show  significant  signs  of  toxicity  when  administrated  in  mice.
ociception
nflammation

. Introduction

Tissue injury, invasion of microorganisms or surgical trauma
an all lead to the release of exogenous and endogenous chemi-
al mediators that cause inflammation. The endogenous chemical
ediators released by cells that infiltrate sites of damage include

he eicosanoids and complement components. These factors are
mportant for host defense, but they can also lead to additional
issue damage. The release of inflammatory mediators can be
mplified by the activation and excessive recruitment of neu-
rophils to the site of injury. Neutrophils act to sustain the
nflammatory response by secreting noxious granule contents and

ther chemical mediators (Sehan, Chiang, & Van Dike, 2008). Pre-
ious studies using animal models have investigated the effects of
onditioning nerve injuries on subsequent nociceptive responses
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and inflammation evoked at distant sites (Kurihara, Nonaka, &
Tanabe, 2003).

Marine  organisms can serve as sources for structurally diverse
bioactive compounds with valuable pharmaceutical and biomed-
ical potentials (Jiang et al., 2010; Yasuhara-Bell & Lu, 2010).
Among the substances biosynthesized by algae, polysaccharides
have intriguing potential as novel anti-inflammatory and analgesic
drugs (Cardozo et al., 2007).

Sulfated  polysaccharides are complex macromolecules that can
interact with a wide variety of matrix and cellular proteins due to
their chemical structure, which is rich in polyanions (Arfors & Ley,
1993). In red seaweeds, these compounds exist mainly as galactans
(Fonseca et al., 2008; Shanmugam & Mody, 2000). The enantiomeric
configuration of the �-galactose moiety classifies the various galac-
tans into two  major groups, the carrageenans and the agars (Stortz
& Cerezo, 2000).

Carrageenan is a generic term that refers to a family of linear,

Open access under the Elsevier OA license.
sulfated galactans obtained from certain species of red seaweeds
(Navarro & Stortz, 2005). The three main industrial types are kappa
(�), iota (�) and lambda (�) carrageenan. The � and � forms are
gelling polymers, whereas � is  a non-gelling, thickening agent
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Usov, 1998). The chemical structure of carrageenan from Solieria
liformis (Kützing) P.W. Gabrielson (Gigartinales, Solieraceae) was
reviously characterized with Fourier transformed infrared (FT-IR)
nd NMR  spectroscopic analyses. In general, carrageenans from
. filiformis seem to contain a higher number of different struc-
ural elements. The main structural component of carrageenans is

 3,6-anhydrogalactose 2-sulfate-galactose 4-sulfate (DA2S-G4S)-
ype structure, which is characteristic of gelling carrageenans with

 dominant � repeating structure. Additionally, a resonance typical
f �-carrageenan was detected in S. filiformis, although with a very
ow intensity (Murano, Toffanin, Cecere, Rizzo, & Knutsen, 1997).

Sulfated polysaccharides have diverse biological activities,
ncluding anticoagulant (Pomin & Mourao, 2008), antioxidant
Costa et al., 2010), immunomodulatory (Ahn et al., 2008; Zhou
t al., 2004), antiviral (Yasuhara-Bell & Lu, 2010), anti-inflammatory
Ananthi et al., 2010), antinociceptive (Assreuy et al., 2008; Viana
t al., 2002), antitumor (Lins et al., 2009) and pro-inflammatory
ffects (Assreuy et al., 2008, 2010; Silva et al., 2010).

In  the present study, we isolated a sulfated polysaccharide from
he red seaweed S. filiformis and examined its nociceptive and
nflammatory effects using experimental animal models.

.  Materials and methods

.1.  Animals

Male and female Swiss mice (20–25 g) and Wistar rats
180–240 g) from the Animal Care Unit of the Federal University
f Ceará in Fortaleza, Brazil, were used for all experiments. They
ere housed in a temperature-controlled room with free access to
ater and food on a 12/12 h light/dark cycle. For each experiment,

roups of six animals were segregated and handled separately.
ll procedures and animal treatments were performed at ambient

emperature (20–22 ◦C) and special care was taken to avoid envi-
onmental disturbances that might influence animal responses.
his study was conducted in accordance with the guidelines set
orth by the U.S. Department of Health and Human Services and
ith the approval of the Ethics Committee of the Federal University

f Ceará, Fortaleza, Brazil (CEPA no. 125/07).

.2. Drugs and reagents

The  following drugs and reagents were used: dextran sulfate,
-carrageenan, cetylpyridinium chloride (CPC), 1,9-dimethyl-
ethylene blue (DMB), indomethacin, l-N-nitro-arginine-methyl

ster (l-NAME), DEAE-cellulose, o-dianisidine dihydrochloride, N-
cetyl-N,N,N-trimethylammonium bromide, potassium phosphate
onobasic, potassium phosphate dibasic, hexadecyltrimethylam-
onium bromide (HTAB), cysteine, papain and bovine serum

lbumin purchased from Sigma (St. Louis, MO,  USA); dexametha-
one purchased from Aché, Guarulhos, SP (Brazil); pentoxifylline
urchased from EMS, São Bernardo do Campo, SP (Brazil); meclizine
urchased from APSEN, Santo Amaro, SP (Brazil); morphine sulfate
urchased from Dimorf®, Cristália, Itapira, SP (Brazil); gelatin pur-
hased from Oxoid, Ltd., England; and ethylenediaminetetraacetic
cid  (EDTA), formaldehyde, glacial acetic acid and hydrate chloral
urchased from VETEC Química Farm. LTDA, SP (Brazil). Drugs and
P-Sf were solubilized in 0.9% sterile NaCl (saline). The enzymatic
its used for evaluation of the SP-Sf systemic toxicity were from
ABTEST (Diagnostic Tests – Brazil). All chemicals were of analytical
rade.
.3. Isolation of sulfated polysaccharides (SPs)

S. filiformis was obtained from the Atlantic coast of Brazil
Flecheiras Beach, Trairí-Ceará). After collection, specimens were
Polymers 86 (2011) 1207– 1215

taken to the Carbohydrates and Lectins Laboratory (CarboLec),
Department of Biochemistry and Molecular Biology, Federal Uni-
versity of Ceará, and cleaned of epiphytes, washed with distilled
water and stored at −20 ◦C until further use. A voucher speci-
men (no. 35682) was deposited in the Herbarium Prisco Bezerra in
the Department of Biological Sciences, Federal University of Ceará,
Brazil.

Dried tissue (5 g) was  cut in small pieces; suspended in 250 ml
0.1 M sodium acetate buffer (pH 5.0) containing 510 mg papain,
5 mM EDTA and 5 mM cysteine; and incubated at 60 ◦C for 6 h
according to Farias, Valente, Pereira, and Mourão (2000). The total
sulfated polysaccharide (TSP) obtained from S. filiformis (50 mg)
was dissolved in 25 ml  50 mM sodium acetate buffer (pH 5.0) and
applied to a DEAE-cellulose column (26 cm × 2.0 cm)  equilibrated
with the same solution. The column was  developed by a step-wise
gradient of 0–1.5 M NaCl at 0.25 M intervals in the same solution.
The flow rate of the column was 2.3 ml/min. Fractions of 4.6 ml  each
were collected and analyzed for sulfated polysaccharides using the
metachromatic assay (A525 nm)  with DMB  as described (Farndale,
Buttle, & Barret, 1986) and for the total sugar content using the
phenol–sulfuric acid method (Dubois, Gilles, Hamilton, Rebers, &
Smith, 1956). The TSP and fractions obtained were analyzed by 0.5%
agarose gel electrophoresis (Dietrich & Dietrich, 1976). The biolog-
ical protocols were performed with the fraction that showed the
highest yield, called SP-Sf.

2.4.  Chemical composition

The  total sugar content was  estimated by phenol–sulfuric
acid analysis using d-galactose as the standard (Dubois et al.,
1956). After acid hydrolysis of the soluble polysaccharides in
1 M HCl at 110 ◦C for 5 h, free sulfate was measured with the
gelatin–barium method previously described, using Na2SO4 as the
standard (Dodgson & Price, 1962). The protein content was  mea-
sured using Coomassie Brilliant Blue G-250 method, using bovine
serum albumin (BSA) as the standard (Bradford, 1976).

2.5.  Infrared spectroscopy (FT-IR)

TSP and the F I and F II fractions, eluted with 0.5 and 0.75 M
of NaCl, respectively, were also characterized by infrared spec-
troscopy. The Fourier transform IR (FT-IR) spectra were recorded
with a Shimadzu IR spectrophotometer (model 8300) between 400
and 400 cm−1. The samples were analyzed as a KBr pellet.

2.6. Antinociceptive activity

2.6.1.  Writhing test
The  writhing test was  used to evaluate analgesic activity

(Koster, Anderson, & De Beer, 1959). First, mice received an injec-
tion of either SP-Sf (1, 3 or 9 mg/kg; i.v.) or sterile saline (0.9%,
w/v, NaCl). After 30 min, 0.8% (v/v) of acetic acid was  injected
intra-peritoneally (10 ml/kg). The number of writhes (abdominal
muscle contractions and hind paw extensions) occurring between
0 and 30 min  after acetic acid injection was  recorded. Morphine
(5 mg/kg; s.c.), a non-selective opioid agonist and indomethacin
(5 mg/kg; s.c.), a non-specific inhibitor of cyclooxygenase, the
enzyme responsible for prostaglandin synthesis (Hull, Gardner, &
Hawcroft, 2003), were used as controls.

2.6.2. Formalin test
The  formalin test, which causes a local tissue injury to the paw,
has been previously used as a model for tonic pain and localized
inflammatory pain (Hunskaar & Hole, 1987). Mice were injected
with either SP-Sf (1, 3 or 9 mg/kg; i.v.) or sterile saline (0.9%, w/v,
NaCl). After 30 min, 1% aqueous formalin (20 �l) was injected into
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he right hind paw. The amount of time that the animal spent licking
he injected paw was measured during the first 5 min  (Phase 1,
orresponding to the direct chemical stimulation of nociceptors)
nd 20–25 min  after formalin injection (Phase 2, inflammatory).
orphine (5 mg/kg; s.c.) or indomethacin (5 mg/kg; s.c.) was used

s controls.

.6.3. Hot plate test
The  hot plate test was performed according to Eddy and

eimbach (1953). Each mouse was placed onto the heated plate
51 ± 1 ◦C) two times, with a 30-min inter-trial interval. The first
rial familiarized the animal with the test procedure and the second
erved as the control reaction time (licking the paw or jump-
ng). Animals showing a reaction time greater than 10 s were not
ncluded in subsequent analyses. Immediately after the second trial
control reaction time), mice were divided into groups of six. Mice
hen received an injection of sterile saline (0.9%, w/v, NaCl), SP-
f (1, 3 or 9 mg/kg; i.v.), morphine (5 mg/kg; s.c.) or indomethacin
5 mg/kg; s.c.) and reaction times were measured at time zero (0
ime) and 30, 60 and 90 min  after drug administration. A cut-off
ime of 40 s was used to avoid paw lesions.

.7.  Anti-inflammatory activity

.7.1. Carrageenan-induced rat paw edema
One hour before injection with carrageenan (s.c. into the right

aw; 500 �g/paw; 100 �l), rats were pretreated with SP-Sf at doses
f 1, 3 or 9 mg/kg (0.1 ml/100 g body weight; s.c.). In a control exper-
ment, dexamethasone (1 mg/kg; s.c.), a synthetic glucocorticoid

ith potent anti-inflammatory and immunosuppressant proper-
ies (Assreuy et al., 2008), was administered 1 h before carrageenan
Winter, Risley, & Nuss, 1962). Control animals received the same
olume of sterile saline (0.9%, w/v, NaCl). Paw volume was mea-
ured immediately before (zero time) the stimulus and at selected
ime intervals (1, 2, 3 and 4 h) using a plethysmometer (Panlab,
pain). The results are expressed as the variation in paw volume
ml), calculated as the difference from the basal volume (zero time).

.7.2. Dextran-induced rat paw edema
Dextran (400 �g/paw; 100 �l), a classical osmotic agent (Lo,

lmeida, & Beaven, 1982), was injected s.c. into the right paws of
ats. Animals were pretreated with SP-Sf at doses of 1, 3 or 9 mg/kg
0.1 ml/100 g body weight; s.c.) 1 h before stimuli. Control animals
eceived the same volume of sterile saline (0.9%, w/v, NaCl).

Paw  volume was measured immediately before the stimulus
zero time) and at selected time intervals following the stimulus
0.5, 1, 2, 3 and 4 h) using a plethysmometer (Panlab, Spain).

.8. Determination of myeloperoxidase activity

Myeloperoxidase (MPO) is an enzyme found primarily in
zurophilic granules within neutrophils and has been used exten-
ively as a biochemical marker of granulocyte infiltration in various
issues. Neutrophil accumulation in paw tissue was measured
sing an MPO  activity assay as previously described (Bradley,
hristensen, & Rothstein, 1982). Briefly, 50–70 mg  of paw tissue
as homogenized in potassium phosphate buffer containing 0.5%
TAB (1 ml  buffer per 50 mg  of tissue). The homogenate was  then

entrifuged at 40,000 × g for 7 min  at 4 ◦C. MPO  activity was deter-
ined by measuring the change in absorbance at 450 nm using

-dianisidine dihydrochloride and 1% hydrogen peroxide. One unit
f MPO  activity was defined as the activity required to convert

 �mol  of hydrogen peroxide to water in 1 min  at 22 ◦C. Results
re reported as MPO  units/mg of tissue.
olymers 86 (2011) 1207– 1215 1209

2.9.  Pharmacological modulation of SP-Sf edematogenic activity

SP-Sf  was  injected (9 mg/kg; 100 �l; s.c.) into the right paws
of rats 30 min  or 1 h after treatment with one of the follow-
ing compounds: indomethacin (5 mg/kg; s.c.; 1 h); dexamethasone
(1 mg/kg; s.c.; 1 h); l-NAME, a non-specific inhibitor of nitric oxide
synthase activity and nitric oxide (NO) production (30 mg/kg;
i.p.; 30 min) (Assreuy et al., 2009); pentoxifylline, an inhibitor of
interleukin (IL-1) and tumor necrosis factor-� (TNF-�) production
(90 mg/kg; s.c.; 1 h) (Cunha et al., 2000); or meclizine, an inhibitor of
histamine H1 receptors (40 mg/kg; s.c.; 1 h) (Figueiredo et al., 2009).
Control animals received equal volume injections of SP-Sf (9 mg/kg)
or sterile saline (0.9%, w/v, NaCl). Edema was measured at 0.5, 1, 2,
3, 4 and 5 h after stimulus (SP-Sf) using a plethysmometer (Panlab,
Spain).

2.10. Subchronic toxicity of SP-Sf

Body mass loss, organ weight alteration and the blood levels
of the biochemical parameters alanine amino transferase (AST),
aspartate amino transferase (ALT) and urea were evaluated after
once-daily subchronic treatment of SP-Sf (9 mg/kg; i.p.) or sterile
saline (0.9%, w/v, NaCl) for fourteen consecutive days. After treat-
ment, mice were weighed and peripheral blood was collected for
biochemical analysis (determined by enzymatic and colorimetric
tests – LABTEST). After sacrificing the animal, the liver, kidney and
heart were removed and weighed. Possible ulcerative lesions or
hemorrhaging were quantified and macroscopically measured.

2.10.1.  Histological analysis
After sacrifice, the liver, heart and right kidney were fixed with

formalin. The material was  then dehydrated using ethanol and pro-
cessed for embedding in paraffin. The resulting blocks were sliced
into 5-�m thick sections, stained with hematoxylin–eosin (HE) and
observed under a light microscope.

2.11. Statistical analysis

The  data are presented as the mean ± standard error (s.e.m.) for
six animals per group. Variance analysis (ANOVA) was  performed
using Bonferroni’s test and Student’s t-test for unpaired values.
Values of P < 0.05 were considered to be statistically significant.

3. Results

3.1. Isolation of sulfated polysaccharides

S. filiformis had a high TSP yield (19.14%), a high content of both
total sugar (29.21%) and free sulfate (27.75%) and trace amounts
of protein. Two  different fractions of SP (F I and F II, eluted with
0.5 and 0.75 M of NaCl, respectively) were obtained from the
DEAE-cellulose column and their metachromatic properties were
monitored with DMB  and by total sugar content (Fig. 1A). The
fractions showed yields, total sugar and free sulfate contents of
6.80%, 30.09% and 12.69% (F I), respectively, and 4.80%, 23.92% and
22.35% (F II), respectively. No protein content was detected. The SPs
obtained were analyzed by 0.5% agarose gel electrophoresis and
had different charge densities. Each purified fraction was visible as
a single band, whereas TSP appeared as two distinct bands on the
gel (Fig. 1B). Because F I provided a higher yield than F II, biological
experiments were performed with F I (SP-Sf).
3.2. FT-IR spectroscopy

The  FT-IR spectra of TSP as well as F I and F II are shown in
Fig. 2. Typical absorption bands corresponding to carrageenans
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Fig. 1. (A) Separation of SP-Sf by DEAE-cellulose. Fractions were collected and checked by metachromasia using 1,9-dimethylmethylene blue (�—�). The total sugar was
determined according to phenol–sulfuric acid method (�—�). Arrows represent the NaCl concentration (↓). (B) Agarose gel electrophoresis of isolated SP-Sf. Total sulfated
polysaccharides  (TSP), and fractions F I (0.5 M)  and F II (0.75 M)  within the gel were stained with 0.1% toluidine blue.
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Fig. 2. Infra red spectra (400–1200 cm−1) of S. filiformis. (A) T

ere identified. For TSP, the FT-IR spectra showed absorption
ands at 931, 902, 848 and 806 cm−1, indicating the presence of
,6-anhydrogalactose, �-d-galactose-6-carbon, �-d-galactose-4-
ulfate and 3,6-anhydrogalactose-2-sulfate, respectively (Fig. 2A).
nterestingly, band absorbance from F I showed the presence
f 3,6-anhydrogalactose at 932 cm−1, �-d-galactose-6-carbon at
96 cm−1 and galactose-4-sulfate at 845 cm−1, characteristic of �-
arrageenan. However, in F II, 3,6-anhydrogalactose at 932 and
05 cm−1 and galactose-4-sulfate at 852 cm−1, which are charac-
eristics of �-carrageenan, were also observed (Fig. 2B). Also, all of
hese spectra display an absorbance at approximately 1250 cm−1,
onfirming the presence of ester sulfate groups (data not shown).

.3.  Antinociceptive activity

Pretreatment  with SP-Sf (1, 3 or 9 mg/kg; i.v.) injected 30 min
rior to acetic acid inhibited the writhing response of mice in

 dose-dependent manner (40.60%, 56.60% and 70.20% for 1, 3
nd 9 mg/kg, respectively). For this experiment, animals pretreated
ith either morphine or indomethacin (5 mg/kg; s.c.) were used

s positive controls. Morphine inhibited 96% of writhing responses
nd indomethacin pretreatment resulted in 54% inhibition (Fig. 3A).

Intraplantar injection of a 1% formalin solution in mice induced a
ociceptive response, characterized by an increase in licking time.
o reduction of licking time was observed during the first phase

neurogenic) with any of the tested doses of SP-Sf (Fig. 3B). How-

ver, SP-Sf (1, 3 or 9 mg/kg; i.v.) injected 30 min  prior to formalin
aused a dose-dependent inhibition of the formalin response dur-
ng the second phase (inflammatory) of 67.20%, 83.60% and 86.40%,
espectively. Similarly, morphine (5 mg/kg; s.c.) and indomethacin
ulfated polysaccharides (TSP). (B) Fractions SP-Sf (FI and FII).

(5  mg/kg; s.c.) inhibited the second phase by 90% and 51.60%,
respectively (Fig. 3B).

In the hot plate test, neither SP-Sf (1, 3 or 9 mg/kg; i.v.) nor
indomethacin (5 mg/kg; s.c.) induced a significant antinociceptive
effect on reaction time during 90 min of observation. Morphine
(5 mg/kg; s.c.), which was  used as a positive control, induced anal-
gesia, as shown by the delays in reaction time of 36.30 ± 0.80
and 32.10 ± 1.90 s at the 30 and 60 min  time points, respectively
(Fig. 3C).

3.4.  Anti-inflammatory activity

Carrageenan (500 �g/paw; s.c.) caused intense paw edema,
which reached a maximum level at 3 h (0.68 ± 0.03 ml). SP-Sf
(1 mg/kg) significantly reduced the occurrence of edema 1 h after
carrageenan administration by 46%. In contrast, a higher dose of SP-
Sf (9 mg/kg) increased edema from 0.60 ± 0.06 ml to 0.83 ± 0.06 ml.
Pre-treatment of animals with dexamethasone inhibited edema
by 66.60% (Fig. 4A). In addition, SP-Sf (1, 3 or 9 mg/kg) caused a
marked neutrophil accumulation in the paw, as demonstrated by
MPO  activity. Pre-treatment with dexamethasone also inhibited
MPO activity (Fig. 4B).

Dextran (400 �g/paw; s.c.) also induced a significant increase in
vascular permeability, with the maximum level occurring 30 min

(0.70 ± 0.06 ml)  after treatment. Administration of SP-Sf (1 mg/kg;
s.c.) 1 h before dextran reduced the increase in vascular permeabil-
ity by 38.57%, but pre-treatments with higher doses of SP-Sf (3 or
9 mg/kg; s.c.) did not alter dextran-induced edema (Fig. 5).
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Fig. 3. Effect of SP-Sf in nociceptive models. Mice received i.v. sterile saline or SP-Sf (1, 3 and 9 mg/kg). Morphine (5 mg/kg) or indomethacin (5 mg/kg) was given s.c. 30 min
before stimuli. Data are expressed as mean ± s.e.m. of six animals for each group (ANOVA; Bonferroni’s test). (A) Effect of SP-Sf on the writhing response induced by acetic
acid  in mice. *Significant difference from the sterile saline group (P < 0.05), and #no significant difference between SP-Sf treated animals (9 mg/kg) and the morphine group
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P  > 0.05). (B) Effect of SP-Sf on the formalin test in mice. The time spent licking w
hase) after 1% formalin injection in mice. *Significant difference from the saline gr
ifference from the saline group (P < 0.05), and #significant difference between SP-S

.5. Modulation of the SP-Sf edematogenic effect

Due to the observed potentiating effect of SP-Sf on paw edema
nduced by classical inflammatory stimuli, we next examined

hether SP-Sf exhibits edematogenic properties.
Local s.c. injection of SP-Sf (1, 3 or 9 mg/kg) into the paw induced

ntense paw edema at all doses tested, with maximal edema after
he injection of the highest dose of SP-Sf (9 mg/kg). Injections of
ower doses of SP-Sf (1 or 3 mg/kg) also induced edema (data not
hown).

Intense paw edema was observed 2 h after local s.c. injections of
P-Sf at a dose of 9 mg/kg (0.83 ± 0.04 ml). This edematogenic effect
as inhibited in animals pre-treated with indomethacin (5 mg/kg;

.c.), dexamethasone (1 mg/kg; s.c.) or l-NAME (30 mg/kg; i.p.) by
0.96, 46.98 and 32.53%, respectively; this effect was also inhibited

n animal pretreated with pentoxifylline (90 mg/kg; s.c.) by 64.28
nd 46.98% at 60 min  and 120 min, respectively. However, adminis-
ration of meclizine (40 mg/kg; s.c.) before administration of SP-Sf
id not alter its edematogenic effect (Table 1).

.6. Subchronic toxicity

Repeated  injections of SP-Sf (9 mg/kg; i.p.) over fourteen consec-
tive days did not produce any signs of toxicity in mice. The overall

ody mass and the wet weights of the liver, kidney and heart were
ormal. Serum levels of the enzymatic markers of hepatic function,
LT and AST, did not differ from respective controls. The reduction

n levels of blood urea did not indicate toxicity (Table 2).
ermined during the first 5 min  (1st phase) and during the period 20–25 min (2nd
 < 0.05). (C) Effect of SP-Sf on reaction times to thermal stimuli in mice. *Significant
g/kg) and indomethacin treatment (P < 0.05).

3.6.1. Histopathology and morphological changes
Histopathological analyses of heart tissue removed from ani-

mals treated with SP-Sf (9 mg/kg) did not reveal damage to cardiac
tissue. In the liver, cellular tumefaction and a slight subcapsular
infiltration of mononuclear cells were observed. However, necro-
sis and interstitial fibrosis were not observed. In addition, the
kidney presented slight degeneration in tubular and subcapsular
areas; however, this degeneration was  considered reversible and
no changes in the renal capsule were observed (Fig. 6).

4.  Discussion

There is a great deal of interest in identifying new natural com-
pounds for a wide variety of pharmaceutical applications (Campo,
Kawano, Silva Junior, & Carvalho, 2009; Yasuhara-Bell & Lu, 2010).
In our study, F I, which was eluted with 0.5 M of NaCl (SP-Sf), had the
highest total sugar content. Curiously, the physicochemical char-
acteristics of SP-Sf observed in this study were distinct from those
previously described (Assreuy et al., 2010). These data suggest that
differential climatic conditions or alterations in the life cycle of
seaweed species influence the biosynthesis of different molecules
(Marinho-Soriano & Bourret, 2003). As expected, in the FT-IR spec-
tra, we also observed that the TSP from S. filiformis contains both �-
and �-carrageenans. The occurrence of these polysaccharides is in
accordance with Murano et al. (1997). However, the separation of
TSP by DEAE-cellulose columns into F I (SP-Sf) and F II revealed �-
and �-carrageenans, respectively, upon FT-IR analysis. In fact, the

previous determination of sulfate content and the charge density
presented by agarose gel electrophoresis of these fractions suggest
the presence of polysaccharides. According to Campo et al. (2009),
the differences between �- and �-carrageenans are due to the num-
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Fig. 4. (A) Effect of SP-Sf on paw edema induced by carrageenan in rats. Before
receiving  an injection of carrageenan (500 �g/paw; s.c.), animals received either
SP-Sf  (1, 3 and 9 mg/kg) or dexamethasone (1 mg/kg) via s.c. injections. Another
group  received only sterile saline without carrageenan. Data are expressed as
means ± s.e.m. of six rats for each group (ANOVA; Bonferroni’s test). *Significant
difference  from the carrageenan group (P < 0.05). (B) Activity of myeloperoxidase
(MPO)  in the supernatant of homogenates of paw sections injected with car-
rageenan,  SP-Sf (1, 3 and 9 mg/kg), dexamethasone or sterile saline (s.c.), expressed
as  units of MPO activity per mg  of tissue. Data are expressed as means ± s.e.m. of six
rats for each group. *Significant difference from the carrageenan group (P < 0.05).

Fig. 5. Effect of SP-Sf on paw edema induced by dextran in rats. Before receiving
an  injection of dextran (400 �g/paw; s.c.), groups of animals received SP-Sf (1, 3
and 9 mg/kg). Another group received only sterile saline without dextran. Data are
expressed as means ± s.e.m. of six rats for each group (ANOVA; Bonferroni’s test).

Table 1
Induction of paw edema by local injection of SP-Sf (9 mg/kg; 100 �l; s.c.). Prior to SP-Sf tre
(1 mg/kg; s.c.; 1 h); l-NAME (30 mg/kg; i.p.; 30 min); pentoxifylline (90 mg/kg; s.c.; 1 h); o
or  sterile saline. Data are expressed as means ± s.e.m. of six rats for each group (ANOVA; 

Experimental groups Paw  edema (ml)

30 min  1 h 2 h 

Saline 0.06 ± 0.02* 0.06 ± 0.02 0.0
SP-Sf (9 mg/kg) 0.49 ± 0.03 0.56 ± 0.07 0.83
Indomethacin  + SP-Sf 0.59 ± 0.03 0.48 ± 0.02 0.49
Dexamethasone  + SP-Sf 0.46 ± 0.03 0.37 ± 0.04 0.44
l-NAME  + SP-Sf 0.55 ± 0.03 0.36 ± 0.07 0.56
Pentoxifylline  + SP-Sf 0.34 ± 0.03 0.20 ± 0.06* 0.44
Meclizine  + SP-Sf 0.38 ± 0.04 0.45 ± 0.07 0.80

* Significant difference from the SP-Sf (9 mg/kg) group (P < 0.05).

Table  2
Systemic effects of SP-Sf (9 mg/kg) in mice. Animals were weighed and injected once d
animals were weighed, the blood samples were collected for biochemical dosage (AST, AL
are  reported as mean ± s.e.m. Student t-test for unpaired values.

Parameters Treatment (9 mg/kg; i.p.)

Female 

Saline SP-Sf 

Body mass (g) before 22.83 ± 0.47 22.83
Body  mass (g) after 25.67 ± 0.61 26.67
Liver  (g)/body mass 5.26 ± 0.18 5.17
Kidney  (g)/body mass 0.63 ± 0.02 0.66
Heart  (g)/body mass 0.67 ± 0.01 0.53
Urea  (mg/dl) 45.81 ± 0.05 32.83
AST  (U/l) 43.25  ± 13.90 70.61
ALT  (U/l) 19.31 ± 1.23 22.67
Pre-treatments with higher doses of SP-Sf (3 or 9 mg/kg, s.c.) did not alter dextran-
induced edema. *Significant difference from the dextran group and **significant
difference  from the SP-Sf (1 mg/kg) group (P < 0.05).

ber and position of sulfate ester groups in the chemical structures.
Overall, the different techniques used to obtain these polymers may
also be responsible for the observed changes (Assreuy et al., 2008;
Chotigeat, Tongsupa, Supamataya, & Phongdara, 2004).

In  recent years, the medical potential of carrageenans has
attracted the attention of researchers. In this study, we demon-
strated that SP-Sf produces antinociceptive effects in mice. The
writhing reaction, a stretching response in mice, has been used to
evaluate the analgesic activity of non-steroidal anti-inflammatory
drugs (Matsumoto et al., 1998). The inflammatory pain accompa-
nying the writhing that occurs in response to i.p. injection of acetic

acid is associated with the release of inflammatory mediators, such
as bradykinin, substance P, prostaglandins and several cytokines,
including IL-1�, TNF-� and IL-8 (Ribeiro et al., 2000). In this study,
SP-Sf exhibited an antinociceptive effect in this model, suggest-

atment, mice were injected with indomethacin (5 mg/kg; s.c.; 1 h); dexamethasone
r meclizine (40 mg/kg; s.c.; 1 h). Control animals received the same volume of SP-Sf
Bonferroni’s test).

3 h 4 h 5 h

0 ± 0.00 0.00 ± 0.00* 0.00 ± 0.00* 0.00 ± 0.00*

 ± 0.04 0.59 ± 0.07 0.64 ± 0.08 0.54 ± 0.06
 ± 0.04* 0.60 ± 0.07 0.62 ± 0.08 0.52 ± 0.06
 ± 0.04* 0.42 ± 0.05 0.54 ± 0.07 0.36 ± 0.04
 ± 0.03* 0.63 ± 0.06 0.72 ± 0.06 0.75 ± 0.13
 ± 0.04* 0.50 ± 0.04 0.55 ± 0.05 0.49 ± 0.05
 ± 0.05 0.66 ± 0.05 0.67 ± 0.05 0.58 ± 0.08

aily with SP-Sf over fourteen consecutive days. After fourteen days of treatment,
T and urea), mice were sacrificed, and the wet weight of organs determined. Values

Male

Saline SP-Sf

 ± 0.30 24.00 ± 0.85 23.50 ± 0.42
 ± 0.33 31.83 ± 1.01 31.00 ± 0.54

 ± 0.17 5.46 ± 0.14 5.45 ± 0.26
 ± 0.00 0.76 ± 0.03 0.82 ± 0.03
 ± 0.05 0.57 ± 0.04 0.49 ± 0.03

 ± 2.20 58.13 ± 0.12 36.90 ± 2.64
 ± 8.15 48.41 ± 14.44 68.06 ± 4.75
 ± 1.96 15.06 ± 1.06 18.21 ± 1.99
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Fig. 6. Histopathological evaluation of mice organs after subchronic treatment with SP-Sf (9 mg/kg) for 14 days. Saline group: heart (A), liver (D), kidney (G). SP-Sf group:
heart (B and C), liver (E and F), kidney (H and I). Organs were recovered and fixed with paraformaldehyde and stained with hematoxylin and eosin. Black circles indicate
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H  and I). The red circle in (H) indicates the renal capsule without changes. The tissue
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ng that action of SP-Sf on the ligands of these mediators and/or
irect action on the nerve terminals are also possible. A similar
ffect has been observed in studies of sulfated galactans isolated
rom the red seaweeds Champia feldmannii (Assreuy et al., 2008)
nd Bryothamnion seaforthii (Viana et al., 2002).

The formalin test is a widely used model of persistent pain and
s a mainstay for the development of novel agents for the treat-

ent of postoperative pain (Shields, Cavanaugh, Lee, Anderson, &
asbaum, 2010). The test occurs in two phases. The first phase is
haracterized by neurogenic pain caused by the direct chemical
timulation of nociceptors. The second phase is characterized by
nflammatory pain triggered by a combination of stimuli, including
nflammation of the peripheral tissues and mechanisms of central
ensitization (Tjølsen, Berge, Hunskaar, Rosland, & Hole, 1992). This
econd phase results from the action of inflammatory mediators in
eripheral tissues, such as prostaglandins, serotonin, histamine and
radykinin. Moreover, it is characterized by functional changes in
eurons of the spinal dorsal horn that promote long-term facilita-
ion of synaptic transmission at the spinal level (Franç a et al., 2001;
liveira, Sousa, & Almeida, 2008). In the formalin test, SP-Sf showed

 greater inhibition in the second phase than in the first phase,
uggesting that its antinociceptive effect is related to inflammatory
ain. To distinguish between central and peripheral antinocicep-

ive action, we performed the hot plate test. In this test, opioid
gents exert their analgesic effects via supra-spinal and spinal
eceptors (Nemirovsky, Chen, Zelma, & Jurna, 2001; Yalcin, Charlet,
reund-Mercier, Barrot, & Poisbeau, 2009). In this study, morphine
ver (F) as well as slight degeneration in tubular and subcapsular areas in the kidney
ns were observed under a microscope at 400×. (For interpretation of the references

caused  a significant increase in reaction time, but SP-Sf produced
no significant antinociceptive effects. These results suggest that the
antinociceptive action of SP-Sf occurs via a peripheral mechanism.

Because of the well-established link between the develop-
ment of pain and inflammatory processes, we investigated the
anti-inflammatory activity of SP-Sf in the paw edema model. In
this test, injected SP-Sf (3 and 9 mg/kg; s.c.) failed to inhibit the
edema evoked by carrageenan. These data agree with prior liter-
ature attributing anti-inflammatory effects to sulfated fucans but
not to sulfated galactans (Assreuy et al., 2008, 2010; Campo et al.,
2009; Silva et al., 2010). However, after 1 h, the lowest dose of SP-Sf
(1 mg/kg) inhibited the edema induced by carrageenan. Increased
doses of SP-Sf probably failed to inhibit edema because the max-
imum inhibition of neutrophil migration by SP-Sf was reached
with the lowest dose (1 mg/kg). This effect corresponded with neu-
trophil influx and confirmed using MPO  activity assays. Edema
and inflammation induced by carrageenan can be characterized in
three distinct phases. The first phase involves the release of his-
tamine and serotonin. The second phase consists of the release
of cytokines and prostaglandins are involved in the final phase
(Lo et al., 1982). We  demonstrated that SP-Sf (3 or 9 mg/kg; s.c.)
did not inhibit the edema evoked by dextran, similar to its effects
in the carrageenan-induced rat paw edema model. It has been

demonstrated that the sulfated polysaccharides from red seaweed
C. feldmannii do not inhibit the edema caused by dextran (Assreuy
et al., 2008). However, SP-Sf (1 mg/kg) at 30 min inhibited edema
following dextran challenge. These results suggest that the anti-
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dematogenic response of SP-Sf in low doses is due to inflammatory
vents involving osmotic edema and may  involve histamine, sero-
onin and bradykinin (Lo et al., 1982).

To better understand the differing edematogenic effects of var-
ous doses of SP-Sf, we examined its role as an inflammatory
timulator using a local route of administration. Subcutaneous
njections of SP-Sf, especially at the highest dose, evoked intense
aw edema that was significantly maintained until the fourth hour
f development. To determine the mechanism of action of SP-Sf-
nduced edema, we injected SP-Sf (9 mg/kg) in combination with a
eries of anti-inflammatory drugs.

The paw edema caused by the highest dose of SP-Sf (9 mg/kg)
nvolved cyclooxygenase enzymes, prostaglandins, NO and the pri-

ary cytokines IL-1 and TNF-�. Previous studies have revealed that
he paw edema elicited by C. feldmannii evoked a pro-inflammatory
esponse. This response was shown not to result from possible
ndotoxin contamination and was instead suggested to depend
pon the release of primary cytokines, prostaglandins and his-
amines (Assreuy et al., 2008). Edema formation is a response to
timuli involving various inflammatory mediators and results in
ncreased vascular permeability and/or blood flow (Williams &
eck, 1977).

The  inflammatory reaction induced by sulfated polysaccharides
rom the red seaweed S. filiformis could be a defense mechanism
f the immune system (Assreuy et al., 2010). This hypothesis is
onsistent with the observation that polysaccharides from sulfated
alactans exhibit an immunostimulant activity (Bondu, Deslanches,
abre, Berthou, & Guangli, 2010; Lins et al., 2009).

To evaluate the safety of SP-Sf administration, this study also
valuated the integrity of the heart, liver and kidneys in mice
njected with SP-Sf. Biochemical analyses revealed no changes in
he enzymatic activity of transaminases in the serum of treated

ice. Histopathological analyses of liver revealed only slight
hanges, suggesting normal liver function in these animals. Serum
osages of urea and histopathological analysis of kidneys, which
ere used as parameters of renal function, were also slightly

hanged. Despite the fact that the serum dosage of urea did not
how toxicity, the histopathological analysis of kidneys revealed
dema and infiltration of lymphocytes, with preservation of the
nterstitial tissues, suggesting a possible reversibility of these

orphological changes. The preservation of interstitial tissues in
xperimental animals was previously demonstrated in sulfated
olysaccharides isolated from the red seaweed C. feldmannii (Lins
t al., 2009). Previous toxicological studies have also reported that
ulfated polysaccharides are well tolerated in experimental animals
Assreuy et al., 2008; Siqueira et al., 2010).

. Conclusion

In this study, we demonstrate the efficacy of sulfated polysac-
harides from the red seaweed S. filiformis in experimental models
f nociception. Although the exact molecular mechanisms of SP-Sf
ctivity remain unknown, our data demonstrate that the antinoci-
eptive effects of SP-Sf occur via a peripheral mechanism. However,
he edematogenic effects of SP-Sf suggest the involvement of
rostaglandins, NO and primary cytokines (IL-1 and TNF-�). Fur-
hermore, SP-Sf at effective doses did not show visible signs of
oxicity. Taken together, these data suggest that this sulfated
olysaccharide may  be a key tool by which to study the inflam-
atory processes associated with nociception.
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