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In the vertebrate head, central and peripheral components of the sensory nervous system have different

embryonic origins, the neural plate and sensory placodes. This raises the question of how they develop

in register to form functional sense organs and sensory circuits. Here we show that mutual repression

between the homeobox transcription factors Gbx2 and Otx2 patterns the placode territory by

influencing regional identity and by segregating inner ear and trigeminal progenitors. Activation of

Otx2 targets is necessary for anterior olfactory, lens and trigeminal character, while Gbx2 function is

required for the formation of the posterior otic placode. Thus, like in the neural plate antagonistic

interaction between Otx2 and Gbx2 establishes positional information thus providing a general

mechanism for rostro-caudal patterning of the ectoderm. Our findings support the idea that the Otx/

Gbx boundary has an ancient evolutionary origin to which different modules were recruited to specify

cells of different fates.

& 2012 Elsevier Inc.Open access under CC BY license. 
Introduction

In the vertebrate head, placodes give rise to crucial parts of the
sensory nervous system including the olfactory epithelium, the
lens, the inner ear and the sensory neurons of the cranial ganglia
(Baker and Bronner-Fraser, 2001; Streit, 2007; Schlosser, 2010).
They form at discrete positions outside of the central nervous
system, with which they build complete sense organs and sensory
circuits. How are central and peripheral components aligned?
Here we explore the possibility that a common molecular
mechanism allocates anterior-posterior positional information
across the entire ectoderm.

At neurula stages, placode precursors occupy a unique territory,
the pre-placodal region (PPR), where cells of different placodal
fates are interspersed (Kozlowski et al., 1997; Streit, 2002;
Bhattacharyya et al., 2004; Xu et al., 2008; Pieper et al., 2011);
their anterior-posterior identity is not fully specified (Henry and
Grainger, 1987; Gallagher et al., 1996; Grainger et al., 1997; Baker
et al., 1999; Groves and Bronner-Fraser, 2000; Baker and Bronner-
Fraser, 2000; Bhattacharyya et al., 2004; Bailey et al., 2006;
Bhattacharyya and Bronner-Fraser, 2008). Although some placode
inducing signals have been identified (McCabe and Bronner-Fraser,
.

 license. 
2009; Ladher et al., 2010; Schlosser, 2010), additional cell intrinsic
mechanisms must exist that determine the interpretation of such
signals and mediate PPR subdivision. In the neural tube, mutual
repression between pairs of transcription factors establishes
boundaries to segregate cells of different fates (Broccoli, et al.,
1999; Millet, et al., 1999; Katahira, et al., 2000; Li and Joyner, 2001;
Kobayashi et al., 2000; Nakamura and Watanabe, 2005). One of the
best-studied interactions is that between Otx2 and Gbx2. While
Gbx2 is first detected within the posterior neuroectoderm, Otx2
becomes restricted anteriorly (Simeone et al., 1992, 1993; von
Bubnoff et al., 1996; Tour et al., 2001). Both factors mutually
repress each other to form a sharp border (Millet et al., 1999;
Katahira et al., 2000; Tour et al., 2002a; Glavic et al., 2002) and this
interaction establishes the midbrain-hindbrain boundary (MHB)
(Wassarman et al., 1997; Acampora et al., 1995, 1997, 1998; Rhinn
et al., 1998; Broccoli, et al., 1999; Li et al., 2005). However, in the
absence of Otx2 or Gbx2 function MHB specific genes remain
expressed, but are mislocalized. These observations suggest that
the Otx2/Gbx2 interface is primarily important for positioning the
MHB (Li and Joyner, 2001; Raible and Brand, 2004).

Does a similar mechanism establish regional identity within
the PPR? Some neural plate border derivatives depend on Gbx2
and Otx2 function. Gbx2 is required for neural crest cell formation
and transcripts are also found in the PPR (Li et al., 2009). In mice,
Gbx2 is necessary for otic vesicle morphogenesis after placode
formation (Lin et al., 2005). Anteriorly, Otx2 cooperates with
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Notch signaling to promote lens fate (Ogino et al., 2008), while
loss of Otx2 function in mice results in lens, olfactory and inner
ear defects (Acampora et al., 1995). However, due to the severe
head phenotypes in these mutants it is difficult to assess the
specific requirement of Otx2 in placode formation.

Here, we test the hypothesis that Otx2 and Gbx2 provide a cell
intrinsic mechanism to establish anterior-posterior positional infor-
mation in sensory placode progenitors. We show that they mutually
repress each other to form a boundary between prospective otic and
trigeminal placodes and mediate cell segregation within the PPR.
While Gbx2 is required for otic specification, Otx2 is necessary for
the specification of the olfactory, lens and trigeminal placodes. Thus,
Otx2 and Gbx2 provide a global mechanism for patterning of the
embryonic ectoderm and ensure the coordinated development of
the central and peripheral nervous system in the head.
Fig. 1. Otx2 and Gbx2 form a boundary within the PPR. (A) Expression of Eya2

marks the PPR (bracket). (B)–(D) Double ISH for Otx2 (red) and Gbx2 (blue) at HH7.

Lines indicate the level of sections shown in (C) and (D). (E)–(J) Parasagittal

sections of stage HH5 (E)–(G) and HH7 (H)–(J) chick embryos after Gbx2 ISH (black

(E), (F), (H), (I)) and Otx2 immunostaining (green; (F), (G), (I), (J)); DAPI labels

nuclei ((G), (J); magenta). Arrows in (H)–(J) indicate anterior limit of Gbx2. (K) and

(L) Double ISH in Xenopus for Otx2 ((K), (L); turquoise) and Gbx2 ((L); blue) at stage

12, dorsal to right anterior to the top. Red brackets indicate overlapping expres-

sion. (M) Diagram summarising expression of Otx2 and Gbx2 at stage 12 in

Xenopus; red bracket: PPR. (N) Eya1 at stage 13 labels the PPR (bracket). (O) and

(P) Double ISH for Otx2 ((O), (P); turquoise) and Gbx2 ((P); blue) at stage 13, dorsal

to the right. Black brackets indicate the PPR. (Q) Diagram summarising neural

plate and PPR expression of Otx2 and Gbx2 at stage 13 in Xenopus.
Materials and methods

Embryo techniques

Fertile hens’ eggs (Henry Stewart, UK) were incubated at 38 1C
for 24–30 h until they had reached the appropriate stage
(Hamburger and Hamilton, 1951; HH). Small groups of cells were
labeled with DiI (Streit, 2002); the position of labeled cells along
the anterior-posterior axis was expressed as a percentage of the
distance from the center of Hensen’s node to the anterior tip of
the prechordal plate (hn-pc distance). The medio-lateral position
was determined as a percentage of the distance between the
midline and the edge of the neural plate (Fig. 3(A)). Embryos were
grown in modified New culture (New, 1955; Stern and Ireland.,
1981) until they reached HH12. The fate of labeled cells was
determined by morphology or by colocalization with Pax3 for the
ophthalmic trigeminal placode. To compare the cell fate to the
position of the Gbx2/Otx2 boundary, stage HH7 embryos were
processed for double in situ hybridization (ISH) for Otx2 and Gbx2.
The gene expression boundary was determined and expressed as
a percentage of the hn-pc distance (Fig. 3(A)). Using these
measurements, DiI labels were classified as either within the
Gbx2 or Otx2 domain.

Xenopus embryos were obtained as described previously
(Gomez-Skarmeta et al., 1998) and staged according to
Nieuwkoop and Faber (1967). D1 blastomeres of 8-cell or A3
blastomeres of 32-cell embryos were injected with RNA and
fluorescein or rhodamine dextran (FDX; RDX) or with FDX alone
(Aybar et al., 2003). Plasmids were linearized; RNA transcribed
using SP6 or T7 RNA polymerases, and the GTP cap analog
(Harland and Weintraub, 1985). Purified RNA was resuspended
in DEPC-water and mixed with FDX to label the injected side. Full
length nuclear GFP, nuclear RFP, Otx2 and Gbx2 mRNA, or Gbx2
morpholinos were used (Li et al., 2009). To repress or activate
Gbx2 and Otx2 downstream targets, constructs in which their
homeodomain was fused to the repressor domain of engrailed
(Otx2-EnR and Gbx2-EnR) or the activator E1A were injected;
fusion of these constructs to the glucocorticoid receptor (Otx2-

EnR-GR, Gbx2-EnR-GR; Glavic et al., 2002) allows temporally
controlled activation upon addition of dexamethasone (DEX;
10 mM). Embryos were then grown to the desired stage and
processed for ISH and antibody staining. Embryos with the line-
age tracer outside of the PPR or inside the neural plate were
discarded unless otherwise stated.

In situ hybridization and immunohistochemistry

For ISH, antisense digoxigenin (DIG) or fluorescein labeled RNA
probes were used. Xenopus embryos were prepared, hybridized
and stained as previously described (Harland, 1991), and NBT/
BCIP or BCIP alone were used to reveal the signal. The genes
analyzed were Otx2 (Blitz and Cho, 1995), Gbx2 (von Bubnoff
et al., 1996), Eya1 (David et al., 2001), Pax8 (Heller and Brändli,
1999), Pax2 (Heller and Brändli, 1999), Pax3 (Bang et al., 1997),
Dmrt4 (Huang et al., 2005), Pax6 (Hirsch and Harris, 1997), Runx3
(Park and Saint-Jeannet, 2010) and FoxE3 (Kenyon et al., 1999).
FDX was visualized with an alkaline phosphatase conjugated
anti-fluorescein antibody (AP-anti-FLU; Roche). Whole-mount
ISH in chick (Streit et al., 1997) was performed with DIG



B. Steventon et al. / Developmental Biology 367 (2012) 55–65 57
labeled anti-sense probes for Otx2 (Bally-Cuif et al., 1995) and
fluorescein-labeled probes for Gbx2 (Shamim and Mason, 1998).
For double ISH, embryos were hybridized with both probes
followed by consecutive antibody staining with alkaline phos-
phatase coupled-anti-DIG and anti-fluorescein antibodies (Roche)
using fast red and NBT/BCIP for color development, respectively.
Immunostaining on cryosections was performed (Bailey et al.,
2006) using antibodies against Otx2 (Abcam; 1:50) and Pax3
(Developmental Hybridoma Bank; 1:10) and appropriate second-
ary antibodies (Invitrogen; 1:1000). Sections were imaged on a
Leica TCS SP5 confocal microscope.
Results

Otx2 and Gbx2 form a boundary within the sensory placode territory

In the neural tube Otx2 and Gbx2 expression initially overlaps
but then resolves to form a boundary at the MHB (Simeone et al.,
1993; von Bubnoff et al., 1996; Millet et al., 1999; Tour et al.,
2002a; Glavic et al., 2002). In chick Eya2 expression identifies the
PPR (Fig. 1(A); McLarren et al., 2003; Streit, 2007). While Otx2 and
Gbx2 expression overlap in this territory at HH5 (Fig. 1(E)–(G)),
both domains abut later (Fig. 1(B)–(D), (H)–(J)) with Gbx2
restricted to the posterior PPR. A similar boundary is observed
in the Xenopus PPR (Fig. 1(K)–(P)). At stage 11.5, Otx2 encom-
passes both the anterior neural plate and its border (Fig. 1(K)),
while Gbx2 is present posteriorly but overlapping with Otx2
(Fig. 1(L) and (M); red bracket). At neural plate stages, Eya1
demarcates the PPR (Fig. 1(N); black bracket); Otx2 and Gbx2
expression has resolved into a neural plate domain dorsally and a
PPR domain laterally (Fig. 1(O) and (P); black bracket). In both
regions, Otx2 and Gbx2 expression does not overlap (Fig. 1(Q)).
Thus, like in the neural plate, Gbx2 and Otx2 form a gene
expression boundary within the PPR in Xenopus and chick.

Otx2 and Gbx2 segregate otic and trigeminal fates

Otx2 and Gbx2 have previously been implicated in the main-
tenance of compartment boundaries (Zervas et al., 2004; Sunmonu
et al., 2011). Do they segregate progenitors of different fates in the
PPR? At HH 7 in chick, the Otx2/Gbx2 boundary lies on average at
35% of the distance from Hensen’s node to the anterior tip of the
prechordal plate (Fig. 2(A) and (A’); 3577%; most anterior: 42%,
most posterior: 24.5%) roughly corresponding to the most anterior
location of otic progenitors (Streit, 2002). DiI labeling shows that
cells near the boundary contribute to two placodes: the otic and
the trigeminal. The majority of labels that gave rise to both
placodes are found close to this boundary, with the exception of
two injections at around 20% i.e., within the Gbx2 territory.
Anterior to the boundary cells mainly contribute to the maxillo-
mandibular trigeminal placode (mmV) and to the ophthalmic
Pax3þ (opV) trigeminal territory (Fig. 2(B), (F)–(H)). In contrast,
Fig. 2. The Otx2/Gbx2 boundary separates otic and trigeminal precursors. (A)

Diagram showing HH 7 stage chick embryo: the distance from the center of

Hensen’s node to the anterior tip of prechordal plate (hn-pc) and from the midline

to the edge of the neural plate (ml-np) were set to 100%, respectively. The position

of DiI label was measured and expressed as percentage of each distance. (A0). The

position of the Gbx2/Otx2 boundary was measured using the same landmarks. In

total 9 embryos were measured with the boundary on average at 3577%; most

anterior position measured: 42%, most posterior position: 24.5%. (B) Diagram

combining labels from this study and published fate maps (Streit, 2002; Xu et al.,

2008); gray: labels contributing to the trigeminal placode; blue: labels contribut-

ing to the otic placode. Circles: labels from published fate maps; squares: labels

with dual fate from the current study; stars: labels from the current study. 35%

indicates the average position of the Otx2/Gbx2 boundary (dotted line)7standard

deviation (small arrow); note: mixed trigeminal and otic fates mostly locate near

this boundary. (C) HH7 embryo with DiI labeled cells posterior to the average

position of the Otx2/Gbx2 boundary (white line). (D) and (E) At HH12 their

descendants contribute to the otic placode as shown in whole mount (D) and in

transverse sections (E) and (F). HH7 embryo with DiI label anterior to the average

position of the Otx2/Gbx2 boundary (black line). (G) and (H) At HH11 their

descendants overlap with Pax3 protein (green) in the trigeminal placode. In total,

21 labels were placed into the Otx2þ and 12 into the Gbx2þ domain. (I) Diagram

showing the experimental design: blastomeres were injected at the 64-cell stage

in Xenopus and their position scored at stage 14. Arrows show the orientation of all

embryos. (J)–(L) Neighboring blastomeres were injected with nGFP and nRFP and

grown until stage 14. Descendants from injected cells are intermingled as

indicated by red and green outlines in L (100%, n¼10). (M)–(O) When injected

with nGFP/Otx2 and nRFP/Gbx2 descendants from adjacent blastomeres do not

mix (boundary in 79% of embryos, n¼14). Red and green outlines in O show the

distribution of cells.
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posterior to the Otx2/Gbx2 border, cells mainly localize to the otic
placode (Fig. 2(B)–(D)), but are occasionally found in the mmV
(Fig. 2(B); Xu et al., 2008). However, except the two injections
mentioned above their original location lies well within the most
posterior position of the Otx2/Gbx2 boundary measured suggest-
ing that these cells may indeed arise from the Gbx2 territory. It is
therefore possible that due to differences in individual embryos,
fate maps overestimate cell mixing (see Pieper et al., 2011 for
discussion). In general, our current findings agree with previously
published fate maps (Fig. 2(B); Streit, 2002; Xu et al., 2008). Thus,
although no strict cell fate segregation is observed, the vast
majority of trigeminal precursors come from the Otx2 region, while
otic cells largely arise from Gbx2þ cells suggesting that in the PPR
the Otx2/Gbx2 boundary roughly separates trigeminal and otic
territories.

Can Otx2 and Gbx2 sort cells in the PPR? Using Xenopus we
compared the behavior of control-injected cells with those carry-
ing exogenous Gbx2 and Otx2. Descendents of the A3 blastomere,
which gives rise to placodes, were injected at the 64-cell stage
with mRNA encoding nuclear-GFP and nuclear-RFP alone or in
combination with Otx2 and Gbx2, respectively (Fig. 2(I)). Signifi-
cant overlap between GFP and RFP expressing cells is observed at
stage 14 in controls (Fig. 2(J)–(L)). In contrast, cells in the PPR and
future epidermis overexpressing Gbx2 form a boundary with cells
expressing exogenous Otx2 with only some cells intermingling
(Fig. 2(M)–(O)). Together these results show that Otx2 and Gbx2
control cell sorting and are part of the molecular mechanism that
segregates sensory progenitors to different placodes.

The Otx2/Gbx2 boundary in the PPR forms by a cross-repressive

mechanism

In the neural plate, Otx2 and Gbx2 mutually repress each other
transcriptionally to form a sharp boundary (Millet et al., 1999;
Katahira et al., 2000; Tour et al., 2002a; Glavic et al., 2002). To
confirm this we injected Otx2 or Gbx2 mRNA into the D1
blastomere at the 8-cell stage targeting the neural plate and its
border. As expected Otx2 misexpression shifts the MHB marker
En-1 posteriorly (Fig. 3(A)), whereas misexpression of Gbx2 leads
to an anterior shift (Fig. 3(C); see also: Tour et al., 2002b). In
contrast, when Otx2 or Gbx2 mRNA is targeted to the PPR (A3
blastomere injection at 32-cell stage) changes in neural En-1
expression are rarely observed (Fig. 3(B) and (D)). This approach
therefore allows us to analyze the role of these transcription
factors specifically in placode progenitors, without interfering
with neural patterning.

In the PPR, misexpression of Otx2 mRNA results in a loss of
Gbx2 expression (Fig. 3(E)). To ask whether Otx2 acts as a
transcriptional repressor in this context we used a constitutive
repressor form Otx2-EnR. Like full-length Otx2, misexpression of
Otx2-EnR leads to Gbx2 reduction in the PPR (Fig. 3(F)). Misex-
pression of Gbx2 (Fig. 3(G) and (H)) or the constitutive repressor
Gbx2-EnR (Fig. 3(K) and (L)) reduces Otx2 expression in the PPR,
while Gbx2 morpholino knock-down (Li et al., 2009) expands its
expression (Fig. 3(I) and (J)). Together, these results demonstrate
that in the PPR Otx2 and Gbx2 act as transcriptional repressors
and mutually repress each other suggesting that this interaction
generates the Gbx2/Otx2 expression boundary.

Dual Gbx2 function in otic placode specification

The otic placode forms within the Gbx2þ territory; is Gbx2
required for its specification? Gbx2 knock-down by splice- and
translation-blocking morpholinos prevents the expression of the otic
markers Pax8 and Pax2 (Fig. 4(A) and (B)). When analyzed at later
stages, the size of the otic vesicle in embryos injected with both
morpholinos is severely reduced (Fig. 4(D) – (F)). Although Gbx2 is
normally expressed prior to the pre-placodal marker Eya1 (Li et al.,
2009), Eya1 expression is unaffected in Gbx2 morphants (Fig. 4(C)).
Thus, Gbx2 is required for otic, but not for PPR specification.

Is this function of Gbx2 simply due to its Otx2-repressing
activity or does it also regulate otic-specific genes? To test this we
used the inducible Gbx2-EnR-GR, which constitutively represses
all Gbx2 targets including Otx2 (Fig. 3(K) and (L)). When this
construct is activated at the beginning of gastrulation (stage 10),
the earliest expression of Pax8 (stage 13) and Pax2 (stage 16) is
reduced (Fig. 4(G)–(I)); Pax8 remains absent when embryos are
grown to stage 18 (Fig. 4(J)) similar to Gbx2 morphants. In
contrast, without activation (Fig. 4(K)) no effect is observed. Thus,
even in the absence of Otx2, Gbx2-EnR prevents the expression of
otic genes suggesting that the loss of otic markers in Gbx2
morphants is not solely a consequence of ectopic Otx2 expression.
To assess whether Gbx2 function is required after initial otic
specification, we activated Gbx2-EnR-GR later at neural plate
stages (Fig. 4(L)): otic genes continue to be expressed normally
suggesting that Gbx2 function is not required for the maintenance
of otic fate.

Finally, we tested whether Gbx2 is sufficient to impart otic
character to cells in the anterior PPR. Gbx2 misexpression does not
lead to expansion or ectopic expression of Pax8 (Fig. 4(M)) or Pax2
(Fig. 4(N)), nor does it affect the general PPR marker Eya1 (Fig. 4(O)).
However, ectopic Gbx2 expression does repress anterior cell fates as
demonstrated by the loss of the olfactory marker Dmrt4 (Huang
et al., 2005; Fig. 4(P)) and the lens marker FoxE3 (Fig. 4(Q)). Thus,
while Gbx2 is not sufficient to impart otic identity to non-otic cells,
it plays a dual role during otic specification: it restricts Otx2 (which
otherwise inhibits posterior fate; see below) and provides a positive
input for otic specifiers. However, once induced maintenance of otic
identity is independent of Gbx2 function.
Otx2 is required for trigeminal placode specification

Future trigeminal cells initially lie within the Otx2 domain
(Fig. 2(H) and (B)). Is the activation of Otx2 target genes required
for trigeminal cell specification? Targeting the PPR with RNA
encoding the constitutive repressor form Otx2-EnR leads to a loss
of Runx3 labeling trigeminal/profundal precursors (Park and Saint-
Jeannet, 2010; Fig. 5(A)) at stage 23, while co-injection with full
length Otx2 mRNA restores its expression (Fig. 5(B)). To analyze
whether activation of Otx2 targets is required for the profundal
and trigeminal placode (opV and mmV in amniotes), Runx3
expression was assessed at stage 28 when both can be distin-
guished: after Otx2-EnR injection both placodes are absent
(Fig. 5(C) and (D)). Our results suggest that Otx2 and Gbx2 separate
prospective otic and trigeminal territories (Fig. 2(B)) predicting
that profundal and trigeminal specification should be independent
of Gbx2. Indeed, injection of Gbx2 morpholinos (Fig. 5(E) and (F))
or of Gbx2-EnR (Fig. 5(G) and (H)) does not alter Runx3 expression
to the same extent as Otx2-EnR, and Pax3 expression is normal
after Gbx2 knock down (Supplementary Fig. 1D).

To test when the activation of Otx2 target genes is required for
trigeminal development, we used inducible Otx2-EnR-GR. In the
absence of DEX, profundal Pax3 is normal (Fig. 5(I)); activation at
gastrulation stage (stage 10) reduces Pax3 (Fig. 5(J)), while activation
at stage 14 has no effect (Fig. 5(K)). Otx2 or Otx2E1A (not shown)
expression in the trigeminal territory has no effect on Pax3 expres-
sion (Supplementary Fig. 1A); thus the constitutive repressor form of
Otx2 does not mimic misexpression of wild type Otx2 suggesting
that Otx2 acts as a transcriptional activator in trigeminal precursors.
In addition, ectopic Otx2 expression in the posterior PPR is not
sufficient to expand Pax3 transcripts (Supplementary Fig. 1A). Thus,



Fig. 3. Otx2 and Gbx2 mutually repress each other in the PPR. (A) and (B) Injection of Otx2 mRNA into the D1 blastomere of 8-cell stage embryos (A) shifts En-1 posteriorly

on the injected side (50%. n¼28; FDX: turquoise), while injection into the A3 blastomere of a 32-cell stage embryo has little effect ((B); 5% affected, n¼36). (C) and (D)

Injection of Gbx2 mRNA into the D1 blastomere at 8-cell stage (C) shifts En-1 anteriorly on the injected side (68%; n¼64; FDX: turquoise), while injection into the A3

blastomere at 32-cell stage has no effect ((D); 0% affected, n¼31). Dorsal view, anterior to the top. (E) and (F) Injection of Otx2 (E; 68% affected, n¼31) or Otx2-EnR ((F); 77%

affected, n¼17) into A3 at the 32-cell stage inhibits Gbx2 in the PPR. Compare bracket in the injected (FDX: turquoise) and uninjected side. (G) and (H) Injection of Gbx2

into A3 at the 32-cell stage leads to Otx2 repression (68%; n¼26); compare brackets (G) on the injected ((H): FDX, turquoise) and uninjected side. (I) and (J) Co-injection of

splice and translation blocking Gbx2 morpholinos into A3 at 32-cell stage leads to Otx2 expansion (73%; n¼33); compare brackets (I) on the injected ((J) FDX, turquoise)

and uninjected side. (K) and (L) Injection of Gbx2-EnR into A3 at the 32-cell stage leads to a loss of Otx2 in 62% of embryos (n¼52); compare brackets (K) on the injected ((L)

FDX, turquoise) and uninjected side. (E)–(L) Frontal view, dorsal to the top.
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activation of Otx2 target genes is required early for trigeminal
specification, but not late for the maintenance of trigeminal fate.

An early requirement for Otx2 in lens and olfactory placode

specification

Otx2 transcripts are present in the anterior PPR including in lens
and olfactory precursors and remain expressed once the placodes
have formed. While a role for Otx2 has been demonstrated for late
lens development (Ogino et al., 2008), its early requirement for
either placode has not been investigated. When mRNA encoding
the repressor form Otx2-EnR is injected into the A3 blastomere at
the 32-cell stage the early lens marker Pax6 (Fig. 6(A)) and the
olfactory marker Dmrt4 (Fig. 7(A)) are strongly reduced. The loss of
both markers is rescued by co-injection with full length Otx2
mRNA (Pax6: Fig. 6(B); Dmrt4: Fig. 7(B)). Activation of inducible
Otx2-EnR-GR at the beginning of gastrulation results in a reduction
or loss of both Pax6 (Fig. 6(D)) and Dmrt4 (Fig. 7(D)), while no
effect is observed without DEX (Pax6: Fig. 6(C); Dmrt4: Fig. 7(C)).
Activation of Otx2 target genes is also required later at placode
stages: Otx2-EnR-GR activation at stage 18 results in a complete
absence of Dmrt4 in the olfactory region (Fig. 7(F)) and down-
regulation of FoxE3 in the lens (Ogino et al., 2008; Fig. 6(F)) while
their expression is normal without DEX (FoxE3: Fig. 6(E); Dmrt4:
Fig. 7(E)). Thus, activation of Otx2 target genes is required for early
specification and maintenance of lens and olfactory fates.
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Otx2 alone cannot induce ectopic lenses (Ogino et al., 2008); we
confirm this using the constitutive activator form of Otx2-E1A
(Fig. 6(G)). The same holds true for the olfactory placode: misex-
pression of Otx2 (Supplementary Fig. 1B) or Otx2-E1A does not
expand Dmrt4 expression (Fig. 7(G)). However, when misexpressed
in the posterior placode territory Otx2 mRNA represses otic fates as
indicated by the absence of both Pax8 (Supplementary Fig. 1C) and
Pax2 (Fig. 7(H)) while the general PPR marker Eya1 remains
unaffected (Fig. 7(I)). Thus, while ectopic Otx2 represses posterior
placodes and activation of its targets is required for olfactory and
lens development, alone it cannot impart anterior fate to posterior
the PPR.
Discussion

Otx2 and Gbx2 in global ectodermal patterning

To form a functional nervous system its peripheral and central
components must develop in register. In the head, the olfactory
bulb, the retina and the targets and proximal parts of the sensory
ganglia are derived from the central nervous system, while the
olfactory epithelium, the lens, inner ear and distal cranial ganglia
arise in the non-neural ectoderm from specialized structures, the
sensory placodes. How is anterior-posterior patterning between
both territories integrated? During development sensory placode
precursors originate in the pre-placodal region, where cells of
different fates are initially intermingled (Kozlowski et al., 1997;
Streit, 2002; Bhattacharyya et al., 2004; Xu et al., 2008; Pieper
et al., 2011; for review: Streit, 2007; Schlosser, 2010). Over time,
they acquire distinct rostro-caudal identity leading to the align-
ment with their central counterparts suggesting that a global
patterning mechanism imparts positional information to the
entire ectoderm (see also: Wada et al., 2006; Patthey et al.,
2008). Here we show that the transcription factors Otx2 and
Gbx2 are important components of such a mechanism. In the PPR,
they segregate otic and trigeminal progenitors (this study), while
they establish a compartment boundary at the MHB in the neural
plate and prevent mixing of cells with different fates (Millet et al.,
1999; Katahira et al., 2000; Tour et al., 2002a; Glavic et al., 2002;
Zervas et al., 2004; Sunmonu et al., 2011). In both regions, Otx2
and Gbx2 seem to play a dual role: they repress each other to
endow cells with unique identities and to suppress the alternative
fate (trigeminal vs otic; midbrain vs rhombomere1), while simul-
taneously mediating sorting. Initially, both genes partially overlap
and mutual repression at the transcriptional level is likely to form
a gene expression the boundary. Subsequently, cell sorting
ensures compartmentalization to restrict cells of the same fate
to a contiguous domain. Accordingly, in the brain, Otx2 deficient
cells segregate from wild type neighbors as do cells expressing
exogenous Otx2 in rhombomere (Rhinn et al., 1998; Sunmonu
et al., 2011). Likewise, our results show that Otx2 and Gbx2
expressing cells sort out in the non-neural ectoderm. The degree
of cell mixing in the placode territory is still under debate with
more cell mixing observed in chick than in Xenopus (Streit, 2002;
Bhattacharyya et al., 2004; Xu et al., 2008; Pieper et al., 2011).
Fig. 4. Gbx2 is required for otic specification. (A)–(C) Injection of splice and

translation blocking Gbx2 morpholinos inhibits otic Pax8 (A; 54%, n¼28) and otic

Pax2 ((B); 55%, n¼131; Splice MO: 66% affected, n¼29; ATG MO: 49% affected,

n¼79). There is no effect on Eya1 (0% affected, n¼30. (C): blue). (D)–(F) At stage

25, Pax2 expression is reduced and the otic vesicle is small (asterisk in transverse

section F) after injection of splice and translation blocking Gbx2 morpholinos ((E)

59% affected, n¼66; splice MO: 44% affected, n¼25) when compared to the

uninjected side (D). (G)–(I) Injection of inducible Gbx2-EnR-GR: activation at stage

10 reduces otic Pax8 (arrow) at stage 13 ((H); 49%, n¼43) compared to uninjected

side (G) and Pax2 at stage 16 ((I); arrow; 46% n¼18). (J)–(L) Activation of inducible

Gbx2-EnR-GR at stage 10 (J) reduces Pax8; no change is observed in absence of DEX

((K); 0% affected, n¼17) or when DEX is added at stage 14 ((L) 0% affected,

n¼110). (M)–(O) Gbx2 mRNA does not expand Pax8 ((M); 0% affected, n¼35), Pax2

((N); 0% affected, n¼22), and Eya1 ((O) 0% affected, n¼22). (P), (Q) Overexpression

of Gbx2 reduces Dmrt-4 ((P) 66%, n¼29) and FoxE3 ((Q) 92%, n¼13). Small panels

in (P) and (Q) show higher magnification of the control (top) and injected (bottom)

side. All embryos were injected into the A3 blastomere at the 32-cell stage; inserts

in (A), (B), (G)–(N) high magnification of the otic region. In (C) and (O) turquoise

staining reveals FDX. Crosses indicate the orientation of embryos; a: anterior, l:

left, p: posterior, r: right, d: dorsal, v: ventral.



Fig. 5. Activation of Otx2 target genes is required for trigeminal placode specification. (A), (B) Otx2-EnR inhibits Runx3 at stage 23 ((A); 59%, n¼26; arrowhead: trigeminal

placode on uninjected side). This is rescued by co-injection of Otx2 ((B) inhibition reduced to 17%, n¼36). Inserts show higher magnification of the trigeminal region. (C),

(D) At stage 28 the profundal and trigeminal placodes can be distinguished; both are reduced after Otx2-EnR injection (78%, n¼18). Compare control (C) and injected side

(D). (E), (F) Injection of Gbx2 splice and translation blocking morpholinos ((F) 0% affected, n¼25) does not affect Runx3; compare uninjected (E) and injected side (F). (G),

(H). Injection of Gbx2-EnR does not affect Runx3 ((H); 3% affected, n¼31); compare control (G) and injected side (H). (I)–(K) Activation of Otx2-EnR-GR at stage 10 inhibits

Pax3 the profundal placode ((J) 49%, n¼33); no change is observed without DEX ((I) 5% affected, n¼61; PR: profundal placode) or when added at stage 14 ((K) 5% affected,

n¼42). Magnifications show profundal region (dotted outline) on the uninjected (top) and injected side (bottom; FDX: turquoise). All embryos were injected into the A3

blastomere at the 32-cell stage.
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As fate maps may introduce some error due to variability between
different embryos, ultimately live imaging over long time periods
will be required to resolve this question. Nevertheless, together
with previous studies on neural and neural crest cells
(Wassarman et al., 1997; Acampora et al., 1995, 1997, 1998;
Rhinn et al., 1998; Broccoli, et al., 1999; Li et al., 2005; Li et al.,
2009; Sunmonu et al., 2011) our findings establish cross-regula-
tory interactions between Otx2 and Gbx2 as key components for
global ectodermal patterning. Both factors establish anterior-
posterior identity across the embryonic ectoderm and mediate
cell sorting to segregate cells of different fates.

These observations also suggest that signals that establish
anterior-posterior identity (for review: Wilson and Houart, 2004)
not only pattern the neural plate, but the entire ectoderm with
transcription factors like Otx2 and Gbx2 as a read-out. Among
these Fgfs, Wnts, Retinoic Acid, Nodals and BMPs provide poster-
iorizing factors, while their antagonists protect anterior identity.
Indeed, elevated Wnt activity in zebrafish leads to an expansion of
posterior neural and placodal fates (Kim et al., 2000; Heisenberg
et al., 2001). Wnt signaling also promotes derivatives of the
posterior neural plate border, neural crest cells, and Gbx2, a
direct Wnt target, mediates its activity (Chang, Hemmati-
Brivanlou, 1998; Bang et al., 1999; Villanueva et al., 2002;
Garcı!a-Castro et al., 2002; Bastidas et al., 2004; Basch et al.,
2006; Patthey et al., 2008; Steventon et al., 2009; Li et al., 2009).
In addition to such global patterning mechanisms local signaling
and downstream transcriptional networks subsequently fine tune
allocation of different cell fates.

Patterning the placode territory

In the PPR, the Otx2/Gbx2 boundary roughly separates pro-
spective otic and trigeminal fates suggesting that olfactory, lens
and trigeminal precursors receive different transcriptional inputs
from otic progenitors. The transcriptional regulation of the PPR
marker Six1 supports this idea. Although Six1 is expressed in a
contiguous domain containing all sensory progenitors, different
enhancers control its expression along the anterior-posterior axis



Fig. 6. Activation of Otx2 target genes is required at early and late stages of lens

placode formation. (A), (B) Otx2-EnR inhibits Pax6 in the lens at stage 17 (50%,

n¼26). This is rescued by co-injection of Otx2 ((B); inhibition reduced to 15%,

n¼20). (C)–(F) Activation of Otx2-EnR-GR at stage 10 reduces lens-specific Pax6 at

stage 18 ((D) 52%, n¼25); without DEX Pax6 expression is normal ((C) 0% affected,

n¼23). FoxE3 at stage 25 is normal without DEX ((E) 0% affected, n¼30), while

addition of DEX at stage 18 leads to reduction ((F) 64%, n¼22). (G) Otx2-E1A

activates Otx2 targets but does not affect lens Pax6 (0% affected, n¼25). All

embryos were injected into the A3 blastomere at the 32-cell stage and are shown

in frontal view with dorsal to the top. High magnifications of the lens region are

shown below each panel; dotted lines demarcate placodal Pax6. Turquoise

staining reveals the lineage tracer FDX.

Fig. 7. Activation of Otx2 target genes is required at early and late stages of

olfactory placode formation. (A), (B) Otx2-EnR inhibits the olfactory placode

marker Dmrt4 at stage 21 (59%, n¼29). This is rescued by co-injection of Otx2

((B) inhibition reduced to 12%, n¼33). (C–F) Otx2-EnR-GR injections: in the

absence of DEX Dmrt4 expression is normal ((C) 5% affected, n¼20); when DEX

is added at stage 10 Dmrt4 expression is lost at stage 18 ((D) 59%, n¼44). At stage

25 Dmrt4 is normal in absence of DEX ((E) 8% affected, n¼26), while activation at

stage 18 strongly reduces Dmrt4 ((F); 63%, n¼24). (G) Otx2-E1A has no effect on

Dmrt4 (0% affected, n¼14). (H)–(I) Otx2 mRNA reduces Pax2 ((H) 72%, n¼25), but

does not change Eya1 ((I) 0% affected, n¼44). All embryos were injected into the

A3 blastomere at the 32-cell stage and are shown in frontal view with dorsal to the

top. High magnifications of the olfactory region are shown in small panels; dotted

lines demarcate placodal Dmrt4. Turquoise staining reveals the lineage tracer FDX.
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(Sato et al., 2010). Cells from the anterior Six1 domain contribute
to the olfactory, lens and trigeminal placodes, but not to the otic.
These findings suggest that one of the first subdivisions of the
placode territory occurs between trigeminal and otic precursors
clearly grouping trigeminal precursors together with other ante-
rior placodes unlike an earlier suggestion to group profundal and
trigeminal placodes in Xenopus with posterior progenitors
(Schlosser, 2006). Shortly thereafter, the PPR begins to express
other transcription factors in nested domains to subdivide this
territory further (for review: Schlosser, 2006).
Otx2 and Gbx2 are already expressed at gastrula stages
(Simeone et al., 1992, 1993; von Bubnoff et al., 1996; Tour
et al., 2001) and act early during placode specification. Gbx2 is
required for the onset of otic-specific genes, where it appears to
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act as transcriptional activator: the constitutive repressor Gbx2-
EnR mimics MO-mediated knock-down. This is in contrast to its
earlier role as repressor during boundary formation (see above)
suggesting that the availability of cofactors determines the final
outcome as observed for other homeobox factors (Brugmann
et al., 2004; Anderson et al., 2012). After initial specification, otic
development is Gbx2 independent, although it is later involved in
ear morphogenesis (Lin et al., 2005). The lack of an early ear
phenotype in Gbx2 mutant mice (Lin et al., 2005) is likely due to
functional redundancy with Gbx1. In contrast, Otx2 is necessary
for both formation and maintenance of lens and olfactory identity
(Ogino et al., 2008; this work) consistent with its continued
expression in both placodes. In the trigeminal placode, Otx2 is
downregulated shortly after its specification probably due to
repression by Pax3 (unpublished observations), which also inhi-
bits Pax6 in this territory (Wakamatsu, 2011). Like Gbx2, Otx2
switches from a transcriptional repressor at early stages to an
activator later. In summary, like in the neural plate, in the PPR
Otx2 and Gbx2 are among the earliest factors that subdivide a
contiguous territory along the anterior-posterior axis.

Although Otx2 and Gbx2 are required for early placode
specification, neither factor alone is sufficient to endow cells with
new regional character or to induce ectopic placodes. This appears
to differ considerably from their activity in the neural tube, where
ectopic expression of either factor respecifies anterior-posterior
identity (Glavic et al., 2002; Tour et al., 2002a). However, here
Otx2 and Gbx2 mainly function to position the MHB (Li and
Joyner, 2001; Raible and Brand, 2004), an organizer region that
itself patterns the brain. Thus, changes in regional identity are
likely to be a consequence of MHB induction. Whether a similar
organizing center forms at the Otx2/Gbx2 boundary in the PPR
remains to be established, however, so far our results argue
against this notion. The finding that neither Gbx2 nor Otx2 is
sufficient to induce ectopic placodes suggests that additional
factors cooperate to control the expression of placode-specific
downstream targets. This is indeed the case in the lens, where
Otx2 directly binds to the lens-specific FoxE3 enhancer and
together with intracellular effectors of Notch signaling activates
its transcription (Ogino et al., 2008).

Evolutionary conservation of anterior-posterior patterning by

Otx2 and Gbx2

The development of cranial sensory placodes and neural crest is
considered to be a key step in the evolution of the vertebrate head
(Northcutt and Gans, 1983). Like in vertebrates Gbx and Otx form a
boundary within the Amphioxus ectoderm (Williams and Holland,
1996, 1998; Castro et al., 2006; Benito-Gutiérrez, 2006) raising the
question whether, at an early stage of their evolution, neural crest
and placodes co-opted an already existing gene expression bound-
ary to position themselves along the anterior-posterior axis. Despite
Gbx2/Otx2 apposition in Amphioxus, MHB specific genes such as En,
Wnt1, FGF8/17/18 and Pax2/5/8 are not restricted to this boundary
(Holland et al., 1997, 2000; Meulemans and Bronner-Fraser, 2007),
indicating that MHB organizer genes were recruited to the Otx/Gbx
border in early vertebrates (Castro et al., 2006; Holland and Short,
2008; Holland, 2009). A Gbx/Otx boundary appears to have been
present in the early bilaterian ancestor as Unpg/Gbx and Otd/Otx also
negatively regulate one another to form a boundary that positions
En and Pax2/5/8 in Drosophila (Hirth et al., 2003). In addition, Gbx2
and Otx2 form a boundary in the annelid Platynereis dumerilii that
corresponds to a band of En expression (Arendt et al., 2001;
Steinmetz et al., 2007, 2011). Together these findings raise the
possibility that Otx2 and Gbx2 form an ancient boundary of gene
expression responsible for anterior-posterior patterning of both the
neural plate and neural plate border. However, this boundary has
been utilized differently in each territory: to position an organizing
region at the MHB, and to specify placodal fates in the PPR.
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