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Abstract

Let f,g be two commuting holomorphic self-maps of the unit disc. Iff andg agree at
the common Wolff point up to a certain order of derivatives (no more than 3 if the Wolff
point is on the unit circle), thenf ≡ g.  2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

The non-constant holomorphic map from the unit disc∆ of C into C given by

z �→ exp

(
−
(
i
z+ 1

z− 1

)1/3
)

is C∞ up to the boundary and it has all derivatives at 1 equal to zero. In
particular, then there exist holomorphic mappings from the unit disc which extend
smoothly to the boundary and which coincide up to any order at a given point
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of the boundary but which are not identically equal. The problem of finding
suitable additional conditions (both of geometrical and analytical flavour) for a
holomorphic map to be constant if it behaves like a constant at a boundary point
has been studied by several authors (e.g., Bell and Lempert [1], Alinhac et al. [2],
Alexander [3,4], Huang and Krantz [5]). Their methods, however, do not give
conditions under which two holomorphic maps (not necessarily identically zero)
must be identical if they coincide at a boundary point up to any order. Recently,
Burns and Krantz [6] and the two last quoted authors [7] gave conditions on
derivatives at a boundary point for a holomorphic self-map of the unit disc to
be identically equal to the identity. In particular, they stated that a holomorphic
self-map of∆ is the identity map if it coincides with the identity up to the third
order of expansion at a boundary point.

In these notes we prove that two commuting holomorphic self-maps of∆

which have the same expansions up to the third order at their common (boundary)
Wolff pointare in fact identically equal. We will see that the order three is nec-
essary only in a particular case (which contains the case studied by Burns and
Krantz).

By Schwarz lemma (and its boundary versions) a holomorphic self-map (not an
elliptic automorphism nor the identity)f of ∆ has a simple dynamical behavior;
i.e., the sequence of iterates off , {f k}, converges (in any topology in Hol(∆,∆))

to a unique point, called theWolff pointof f . The Wolff point off is the fixed
point of f if f has one in∆, otherwise it belongs to∂∆. From the end of the
nineteenth century it has been known that if the Wolff point off is in ∆ then
almost all the information are contained in the first derivative off at that point.
In a certain way that is true also for boundary Wolff points. Moreover, thanks to
the so-called Behan–Shields theorem, two commuting holomorphic self-maps of
∆ have the same Wolff point unless they are hyperbolic automorphisms. Then it
seems to be natural to study identity principles for commuting holomorphic maps
at their common Wolff point (for the sake of completeness we will also deal with
the cases of interior fixed points and of automorphisms).

The techniques essentially used are based on the possibility of buildingrepre-
sentative fractional linear modelsfor holomorphic self-maps of∆. Namely, given
f ∈ Hol(∆,∆), there exists a “change of coordinates” in a neighborhood of the
Wolff point of f such that after this conjugationf looks like an automorphism
of the right half-plane. The construction of such a model is due, in several steps
and with different degrees of generality, to Valiron [8], Pommerenke [9], Pom-
merenke and Baker [10], Cowen [11] and Bourdon and Shapiro [12]. In order to
handle the fractional linear models in the case of a boundary Wolff point, one of
the main problems is that the “intertwining map” (i.e., the change of coordinates)
has no regularitya priori at the Wolff point off . To get the necessary regularity
in order to transfer the information on the derivatives off to the automorphism,
we need some regularity off at its Wolff point. It turns out that the regularity
requested onf at its Wolff point increases according to how muchf is “near”
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to the identity. Another problem we have to deal with is the representativeness
of the model. Notwithstanding the model does always exist, sometimes it is not
well representative, in the sense that the dynamical behavior of the automorphism
is completely different from that off . For instance, iff (1)= 1, f ′(1) = 1 and
f ′′(1)= 0 then the automorphism associated tof tends to its Wolff point faster
thanf . To overcome this difficulty we build another model, which is no more
global and linear (we call itpartial fractional linear model) but which is repre-
sentative in the sense of the dynamical behavior. Once we have these models, we
can transfer the information on the derivatives off to the parameters defining the
associated automorphism. Now every holomorphic mapping which has the same
model off with the same automorphism is identically equal tof . Since map-
pings which commute withf and agree with it up to a certain order (depending
on the model) have this property, we are then able to prove the identity principle.

The paper is organized as follows. In Section 2 we introduce some notations
we will use through out the paper and, after some basic preliminary results, we
state our main result (Theorem 2.4). The remaining sections are more or less
devoted to the proof of that result. In particular, in Section 3 we deal with the
case of interior fixed points. In Section 4 we discuss some tools for handling the
fixed point free case (boundary derivatives, fractional linear models and pseudo-
iteration semigroups). Section 5 concerns about the case of automorphisms. In
Section 6 we deal with the case of hyperbolic non-automorphism mappings (i.e.,
mappings with derivative< 1 at their Wolff points). Sections 7 and 8 are devoted
to the case of parabolic non-automorphism mappings, i.e., maps with derivative
1 at their Wolff points. In Section 9 we discuss the representativeness of models,
stressing out that our previous construction can be regarded as a new fractional
linear model for the parabolic case.

The first quoted author would like to warmly thank Prof. J.H. Shapiro for some
fruitful conversations.

2. Notations and statement of the main result

In this section we state our main result. Before that we need to recall some
facts on holomorphic self-maps of∆ and to introduce some notations.

Givenr ∈ R, we denote the shifted half-plane byHr
def= {w ∈ C: Re(w) > r};

in particular,H
def= H0. We recall that theCayley transformationC(z)

def= (1+ z)/

(1− z) is a biholomorphism between∆ andH which maps 1 to∞. We will
denote themth derivative off at z0 ∈∆ by f (m)(z0), themth iterate off by f m

(wheref m def= f ◦ f m−1 andf 1 def= f ) and themth power off by [f ]m.
We recall that every automorphismγ of ∆ is of the form

γ (z)= eiθ
z− a

1− az
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with a ∈ ∆ andθ ∈ R. Notice thatγ extends analytically to a homeomorphism
of ∆. It is easy to see that everyγ ∈ Aut(∆) different from the identity map
id∆ has at most two fixed points in∆. More precisely,γ is calledelliptic if it
has a (unique) fixed point in∆, parabolic if it has a unique fixed point on∂∆,
hyperbolicif it has two distinct fixed point on∂∆. It can be shown (see, e.g., [13])
that if γ is a hyperbolic automorphism with fixed pointsτ1, τ2 ∈ ∂∆ thenγ ′(τ1),
γ ′(τ2) are two positive real numbers, different from 1 such that their product is 1.
If γ is a parabolic automorphism with fixed pointτ ∈ ∂∆ thenγ ′(τ )= 1.

Theorem 2.1 (Schwarz–Wolff).Let f ∈ Hol(∆,∆) \ {id∆}. Supposef is not an
elliptic automorphism of∆. Then there exists a unique pointτ ∈ ∆ such that
the sequence{f k} converges toτ uniformly on compact subsets of∆. Moreover,
τ ∈∆ if and only it is the(only) fixed point off .

Definition 2.2. If f ∈ Hol(∆,∆) \ {id∆} is not an elliptic automorphism of∆,
we callWolff pointof f the pointτ introduced by the previous theorem. Iff is
an elliptic automorphism of∆ then we call the Wolff point off the unique fixed
point off .

It can be shown that iff ∈ Hol(∆,∆) has Wolff point τ ∈ ∂∆ then
limr→1− f

′(rτ ) is a strictly positive real number less than or equal to 1. Recall
now the following (see [14,15]):

Theorem 2.3 (Behan–Shields).Letf,g ∈Hol(∆,∆)\{id∆}. If f ◦g = g ◦f then
f andg have the same Wolff point unlessf,g are two hyperbolic automorphisms
of∆ with the same fixed points.

If f ∈Hol(∆,∆) andτ ∈ ∂∆, we use the notationf ∈ Ck(τ) if f (j) extends
continuously to∆

⋃{τ } for j = 1, . . . , k. In other words,f has an expansion of
the form

f (z)= f (τ)+ f ′(τ )(z− τ )+ · · · + 1

k!f
(k)(τ )(z− τ )k + Γ (z),

for z ∈ ∆, whereΓ (z) = o(|z − τ |k). Moreover, we say thatf ∈ Ck+ε(τ ) if
f ∈Ck(τ) andΓ (z)=O(|z− τ |k+ε).

Now we can state our main result:

Theorem 2.4. Letf,g ∈Hol(∆,∆) be such thatf ◦ g = g ◦ f .

(1) If there existz0 ∈∆ andk > 0 natural number such thatf (z0)= g(z0)= z0,
f (m)(z0) = g(m)(z0) = 0 for 1 � m < k and f (k)(z0) = g(k)(z0) �= 0 then
f ≡ g.

(2) If g is a hyperbolic automorphism of∆ with a fixed pointτ ∈ ∂∆ and
limr→1− f

′(rτ )= g′(τ ) thenf ≡ g.
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(3) If g is a parabolic automorphism of∆ with the fixed pointτ ∈ ∂∆ and
limr→1− f ′(rτ )= g′(τ ), limr→1− f ′′(rτ )= g′′(τ ) thenf ≡ g.

(4) If g ≡ id∆ and there existsτ ∈ ∂∆ such that limr→1− f (rτ ) = τ ,
limr→1− f ′(rτ ) = 1, limr→1− f ′′(rτ ) = 0 and limr→1− f ′′′(rτ ) = 0 then
f ≡ id∆.

(5) If f,g /∈ Aut(∆) have Wolff point τ ∈ ∂∆ and limr→1− f ′(rτ ) =
limr→1− g

′(rτ ) < 1 thenf ≡ g.
(6) If f,g /∈ Aut(∆) have Wolff pointτ ∈ ∂∆, f ∈ C3+ε(τ ), g ∈ C2(τ ) and

f ′(τ )= g′(τ )= 1, f ′′(τ )= g′′(τ ) �= 0 thenf ≡ g.
(7) If f,g /∈ Aut(∆) have Wolff pointτ ∈ ∂∆, f ∈ C5+ε(τ ), g ∈ C4(τ ) and

f ′(τ )= g′(τ )= 1, f ′′(τ )= g′′(τ )= 0, f ′′′(τ )= g′′′(τ ) thenf ≡ g.

Remark 2.5. The above theorem deals with all possible cases. The statement (4),
which is a slightly improved version of the Burns–Krantz theorem (see [6]), fol-
lows also from (7), but we stated it separately to make clear that there are no more
cases left.

3. The fixed point case

Let f andg be two commuting holomorphic self-maps of∆. If there is a point
z0 in ∆ such thatf (z0)= z0 then

g(z0)= g(f (z0))= f (g(z0)).

Hence eitherg(z0)= z0 or f has two distinct fixed points in∆ and by Schwarz’
lemmaf ≡ id∆.

The aim of this section is to prove the first part (more or less already known)
of Theorem 2.4:

Proposition 3.1. Let f,g ∈ Hol(∆,∆) be such thatf ◦ g = g ◦ f . If there exist
z0 ∈ ∆ and k > 0 natural number such thatf (z0) = g(z0) = z0, f (m)(z0) =
g(m)(z0)= 0 for 1 �m< k andf (k)(z0)= g(k)(z0) �= 0 thenf ≡ g.

Proof. Up to conjugatingf and g by a suitable automorphism of∆, we can
assume thatz0 = 0 without loss of generality. The Schwarz lemma states that
|f ′(0)|� 1; more precisely,|f ′(0)| = 1 if and only if f (z)= f ′(0) · z. Assume
first that|f ′(0)| = 1. Sinceg′(0)= f ′(0) theng(z)= f ′(0) · z andf ≡ g.

Suppose now 0< |f ′(0)| < 1. Then, by Königs linearization theorem (see,
e.g., [11] or [16]), there exists a holomorphic change of coordinatesσf ∈
Hol(∆,C) such thatσf (0)= 0 and

σf (f (z))= f ′(0) · σf (z) ∀z ∈∆.
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Furthermore, ifσ̃f is another such a change of coordinates thenσ̃f = λ · σf with
λ �= 0. Sincef ◦ g = g ◦ f then

σf
(
g(f (z))

)= σf
(
f (g(z))

)= f ′(0) · σf (g(z)) ∀z ∈∆.

Moreover,σf (g(0)) = σf (0) = 0. Therefore, sinceg′(0) �= 0, σ̃f
def= σf ◦ g is a

holomorphic change of coordinates such thatσ̃f (0)= 0 and

σ̃f (f (z))= f ′(0) · σ̃f (z) ∀z ∈∆;
hence

σf ◦ g = σ̃f = λ · σf .
By taking the derivatives of both sides we get

σ ′f (g(z)) · g′(z)= λ · σ ′f (z) ∀z ∈∆,

and sinceg(0)= 0 andσ ′f (0) �= 0 we conclude thatg′(0)= λ, or, in other words,
that

σ̃f = σf ◦ g = g′(0) · σf .
Therefore, sinceg′(0) = f ′(0), because of the invertibility ofσf near 0, we
actually obtain thatg ≡ f in ∆.

Suppose now that there existsk > 1 such thatf (m)(0)= g(m)(0)= 0 form< k

andf (k)(0)= g(k)(0) �= 0. Then, due to Böttcher theorem (see [17] or [16]), there
exists a local change of coordinatesσf in a neighborhood of 0 such thatσf (0)= 0
and

σf (f (z))= [σf (z)]k. (3.1)

Sincef ◦g = g ◦f then, again by Böttcher theorem, there existn positive integer
andω complex number withωk−1= 1 such that

σf (g(z))= ω · [σf (z)]n (3.2)

in some neighborhood of 0 (see Theorem 3.1 in [17]). We can assume thatn� k,
otherwise we swapf andg. By taking thekth derivative of (3.2) at 0, keeping in
mind thatσf (0)= 0 andg(m)(0)= 0 form< k, we find

g(k)(0) · σ ′f (0)= ω · n · · · · · (n− k + 1) · [σf (0)]n−k · σ ′f (0). (3.3)

Since the left-hand side term is not 0, it follows thatn = k. Moreover, since
g(k)(0)= f (k)(0), from (3.1) and (3.3) we haveω = 1. Therefore from the local
invertibility of σf we getf ≡ g. ✷
Remark 3.2. The two mapsz �→ [z]m, z �→ [z]n, form �= n natural numbers, have
expansions which coincide up to the min{m,n} order at 0 but they are different.
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4. Preliminaries for fixed point free case

Givenτ ∈ ∂∆ andR > 0, thehorocycleE(τ,R) of centerτ and (hyperbolic)
radiusR is the disc in∆ of (Euclidean) radiusR/(R + 1) tangent to∂∆ in τ

which is defined as

E(τ,R)
def=
{
z ∈∆:

|τ − z|2
1− |z|2 <R

}
,

with the convention thatE(τ,+∞)=∆.
For f ∈ Hol(∆,∆) andτ1, τ2 ∈ ∂∆, we defineβf (τ1, τ2) to be the following

strictly positive real number (possibly+∞):

βf (τ1, τ2)
def= sup

z∈∆

{ |τ2− f (z)|2
1− |f (z)|2

/ |τ1− z|2
1− |z|2

}
.

The numberβf (τ1, τ2) says how horocycles centered atτ1 behave under the
action off ; i.e., by definition, for anyR > 0

f (E(τ1,R))⊂ E(τ2, βf (τ1, τ2)R). (4.1)

For f ∈ Hol(∆,C), l ∈ C ∪ {∞} is thenon-tangential limitof f at τ ∈ ∂∆
if f (z) tends tol asz tends toτ in ∆ within an angular sector of vertexτ and
opening less thanπ . We summarize this definition by writing

K-lim
z→τ

f (z)= l.

By Lindelöf principle (see, e.g., [13]) iff ∈ Hol(∆,∆) has radial limit l at
τ ∈ ∂∆, thenf actually has non-tangential limitl at τ .

We recall the following fundamental theorem (see, e.g., [18] or [13]):

Theorem 4.1 (Julia–Wolff–Carathéodory).Let f ∈ Hol(∆,∆) and τ1, τ2 ∈ ∂∆.
Then

K-lim
z→σ

τ2− f (z)

τ1− z
= τ2τ1βf (τ1, τ2).

If βf (τ1, τ2) is finite, then

K-lim
z→τ1

f (z)= τ2 and K-lim
z→τ1

f ′(z)= τ2τ1βf (τ1, τ2).

In the sequel we will also use the following lemma (for a simple proof see,
e.g., [13] or [11]):

Lemma 4.2 (Noshiro).If U is a convex open subset ofC andf is a holomorphic
map onU such thatRe(f ′(z)) > 0 for all z ∈U , thenf is univalent onU .

Now we introduce the fractional linear models and their relationships with
commuting holomorphic maps.



458 F. Bracci et al. / J. Math. Anal. Appl. 270 (2002) 451–473

Definition 4.3. A setV ⊂ ∆ is said to befundamentalfor f ∈ Hol(∆,∆) if V
is connected, simply connected,f (V ) ⊆ V and for allK compact subsets of∆
there exists a natural numbern (depending onK) such thatf n(K)⊂ V .

Definition 4.4. A triple (Ω,σ,Φ) is a fractional linear modelfor f ∈Hol(∆,∆)

if

(i) Ω =H orΩ =C;
(ii) σ ∈Hol(∆,Ω);
(iii) Φ(w)= αw+ β with α,β ∈C;
(iv) there existsV ⊂∆ fundamental forf such thatσ |V is univalent andσ(V )

is fundamental forΦ;
(v) σ ◦ f =Φ ◦ σ ; i.e., the following diagram commutes

∆
f

σ

∆

σ

Ω
Φ

Ω

The fractional linear model is saidunivalentif V =∆.

Notice that a fractional linear model forf ∈Hol(∆,∆) is univalent if and only
if f is univalent on∆. Now we recall the following theorem on the existence of a
fractional linear model (see [8–11]):

Theorem 4.5 (Valiron, Baker, Pommerenke, Cowen).If f ∈Hol(∆,∆) has Wolff
pointτ ∈ ∂∆, then there exists a fractional linear model(Ω,σ,Φ) for f .

Remark 4.6. Let f ∈ Hol(∆,∆) and let(Ω,σ,Φ) be a fractional linear model
for f . Our definition of fractional linear models does not guarantee thatΦ is an
automorphismof Ω . For instance (transferring everything inH by means of the
Cayley transformation), the mapf (w)=w + a with a real positive number has
obviously the fractional linear model(H, idH ,f ), butf is not an automorphism
of H . However, it also has the model(C, j,Φ), where j :H ↪→ C is the
immersion andΦ(w)=w+a is an automorphism ofC. In general, embeddingH
in C if necessary, we can always find a fractional linear model forf in whichΦ is
an automorphism ofΩ . In this case we have the following uniqueness statement
due to Cowen (see [11]). If(Ω̃, σ̃ , Φ̃) is another fractional linear model forf ,
such thatΦ̃ is an automorphism of̃Ω , thenΩ = Ω̃ , and moreover there exists a
Möbius transformationϕ such thatϕ(Ω)=Ω , Φ̃ = ϕ ◦Φ ◦ ϕ−1 andσ̃ = ϕ ◦ σ .
In what follows we will not use this fact.

A first step to relate the expansions off andΦ at their Wolff points is the
following (see [11]):
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Theorem 4.7 (Cowen).Letf ∈Hol(∆,∆)\Aut(∆) have Wolff pointτ ∈ ∂∆. Let
(Ω,σ,Φ) be a fractional linear model forf . If f ∈ C1(τ ) or if for somez0 ∈∆
the sequence{f k(z0)} converges toτ non-tangentially, then

K-lim
z→τ

f ′(z)=Φ ′(σ (τ )).

We recall now (see [12, Theorem 4.12]):

Theorem 4.8 (Bourdon–Shapiro).Letf ∈Hol(∆,∆) be such thatf ∈ C3+ε(1).
Let f (1) = 1, f ′(1) = 1 and f ′′(1) = a �= 0. Supposef is univalent on∆,
continuous up to∂∆ andf (∆ \ {1})⊂∆. Then there exists a univalent fractional
linear model(Ω,σ,Φ) for f withΦ(w)=w+ a. Moreover,

lim
w→∞

σ(C−1(w))

w
= 1,

whereC :∆→H is the Cayley transformation which maps1 to∞.

Remark 4.9. Strictly speaking, in [12] it is not proven that the model given by
Theorem 4.12 is a fractional linear model according to our definition, since it is
not shown thatσ(∆) is fundamental for the automorphismΦ. However, using
the estimates on the shape ofσ(∆) given there, it is possible to see thatσ(∆) is
fundamental forΦ. Here we give a sketch of how to do that. Transfer everything
to the half-planeH . Then Theorem 4.12 in [12] gives us the following expression:

σ(w)=w+ h(w), (4.2)

whereh is holomorphic onH and limw→∞ h(w)/w = 0. Then

lim
y→±∞ Im(σ (iy))=±∞ and lim

y→±∞
Re(σ (iy))

Im(σ (iy))
= 0,

which preventsσ(H) to have oblique asymptotes. When Re(a) > 0 this implies
that σ(H) is fundamental forΦ in C. In the case Re(a) = 0, assuminga = αi

with α > 0, Theorem 4.12 in [12] gives us, forw in the upper half part ofH , the
following representation:

σ(w)=w+ i
b

α
log(1+w)+B(w), (4.3)

whereb � 0 andB is a bounded continuous function onH ∪ {∞}, holomorphic
in H (if α < 0 there is a similar expression in the lower part ofH , and then one
can proceed similarly). A straightforward calculation gives

Re(σ (iy))=− b

α
arg(1+ iy)+Re(B(iy)).

Then limy→+∞Re(σ (iy)) =M for M ∈ R. We can supposeM = 0, up to sub-
tract M from σ . If infw∈H Re(σ (w)) < 0, then there would existy0 ∈ R such
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that Re(σ (iy0)) < 0. But σ(H) is invariant for the translationw → w + iα

then limn→+∞Re(σ (i(nα + y0))) < 0. Therefore infw∈H Re(σ (w)) = 0. So
σ(H)⊂H andσ(H) has∂H as vertical asymptote. Henceσ(H) is fundamental
for Φ in H .

Definition 4.10. Let f,g ∈ Hol(∆,∆) and let(Ω,σ,Φ) be a fractional linear
model for f . We say thatg belongs to thepseudo-iteration semigroup off
(shortlyg ∈ PIS(f )), if there exists a Möbius transformationΨ such thatΨ ◦Φ =
Φ ◦Ψ andσ ◦ g = Ψ ◦ σ .

Remark 4.11. If f �= id∆ andg ∈ PIS(f ), from our definition of fractional linear
model, thenΨ is actually an affine transformation since it commutes with the
affine transformationΦ.

Remark 4.12. If g ∈ PIS(f ) then(Ω,σ,Ψ ) is generally not a fractional linear
model for g. An example is as follows. Consider the conformal mapσ from
H to {z ∈ C: Re(z) > 0, Im(z) > 0}. Let Φ(z) := z + i, Ψ (z) := z + 1 and
f (w) := σ−1◦Φ ◦σ(w), g(w) := σ−1◦Ψ ◦σ(w). Then it is clear that(H,σ,Φ)

is a univalent fractional linear model forf , f andg commute,g ∈ PIS(f ) but
(H,σ,Ψ ) is not a fractional linear model forg sinceσ(H) is not fundamental
for Ψ .

The pseudo-iteration semigroup and commuting holomorphic self-maps of∆

are related by the following:

Theorem 4.13 (Cowen).Letf,g ∈Hol(∆,∆) with common Wolff pointτ ∈ ∂∆.
If f ◦ g = g ◦ f thenf,g ∈ PIS(f ◦ g). Moreover, if limr→1f

′(rτ ) < 1 then
g ∈ PIS(f ).

For our purpose we need also the following:

Proposition 4.14. Letf,g ∈Hol(∆,∆) be such thatf ∈ C3+ε(1) andg ∈ C2(1).
Let f (1) = g(1) = 1, f ′(1) = g′(1) = 1 and f ′′(1) = g′′(1) = a �= 0. Suppose
f,g are univalent on∆, continuous up to∂∆ and map∆ \ {1} into ∆. Suppose
f ◦ g = g ◦ f . Theng ∈ PIS(f ).

Proof. Transfer everything toH . Let (Ω,σ,Φ) be the fractional linear model for
f given by Theorem 4.8. The mapΨ :Ω→Ω given by

Ψ :w �→Φ−n ◦ σ ◦ g ◦ σ−1 ◦Φn(w),

wheren is big enough in order to assureΦn(w) ∈ σ(∆), is well defined (see
[17, p. 689]). Then the conditiong ∈ PIS(f ) is equivalent toΨ ∈ Aut(C). Since
Φ,σ,g are univalent so isΨ . We are left to show thatΨ is surjective. This
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follows easily whenever we prove thatσ(g(H)) is fundamental forΨ in H . Since
g ∈ C2(∞), theng(w)=w+ a + Γ (w) with Γ (w)→ 0 asw→∞. Using this
expression and arguing as we did in Remark 4.9 it is easy to see thatσ(g(H)) is
fundamental forΦ. ✷
Remark 4.15. In the previous proposition it is possible to release some hypothesis
on the regularity off andg assuming, for instance, thatf n(0) converges to 1
non-tangentially. However, we are not interested in such results here.

5. The automorphism case

In this section we are going to prove the cases (2), (3) and (4) of Theorem 2.4.
We start with the following result, interesting for its own (see also [7]):

Theorem 5.1. Let f ∈ Hol(∆,∆) and let5 : [0,1[ → ∆ be a continuous curve
that tends toτ ∈ ∂∆ non-tangentially. If

lim
t→1−

f (5(t))− 5(t)

(5(t)− τ )3
= l (5.1)

for somel ∈ C thenτ2l is a non-positive real number andf is the identity map
if and only if l = 0. Moreover, iff ∈ C3(τ ) thenf (τ)= τ , f ′(τ )= 1, f ′′(τ )= 0
andf ′′′(τ )= 6l if and only if Eq.(5.1)holds.

Proof. If f ≡ id∆ then obviouslyl = 0. Assume now thatf is not the identity
map. We define the holomorphic map

h(z)
def= −ϕ−1(ϕ(f (z))− ϕ(z)

)
,

whereϕ(z) = (τ + z)/(τ − z) is a biholomorphism of∆ onto the right half-
planeH . Now, from Eq. (5.1)

lim
t→1−

τ − f (5(t))

τ − 5(t)
= 1+ lim

t→1−
5(t)− f (5(t))

τ − 5(t)
= 1. (5.2)

Theorem 4.1 then implies that K-limz→τ f (z) = τ and K-limz→τ f
′(z) = 1.

Moreover, from Eq. (4.1) we have

Re
(
ϕ(f (z))

)= 1− |f (z)|2
|τ − f (z)|2 � 1− |z|2

|τ − z|2 =Re(ϕ(z)) ∀z ∈∆. (5.3)

Thenh maps∆ into∆. By the maximum principle, if there is a pointz0 ∈∆ such
thath(z0) ∈ ∂∆ thenh is identically equal to a constant. Since

h(z)=−ϕ−1
(

2τ
f (z)− z

(z− τ )2

τ − z

τ − f (z)

)
∀z ∈∆
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then, from (5.1), the limit ofh asz→ τ along5 is−ϕ−1(0)= τ (notice that the
term (τ − z)/(τ − f (z)) tends to 1 by Theorem 4.1). Thereforeh ≡ τ ; that is,
f is the identity. This contradicts our assumption, soh ∈Hol(∆,∆).

After some easy calculations we find that, for anyz ∈∆,

τ − h(z)

τ − z
=

−4τ2f (z)−z
(z−τ )3

τ−f (z)
τ−z + 2τ f (z)−z

(z−τ )2
.

Passing to the limits asz→ τ along5 in both sides of the above equation, by (5.1)
and (5.2), by applying Theorem 4.1 to the maph, we obtain

βh(τ, τ )=−4τ2l.

Then

τ2l =−1

4
βh(τ, τ ) < 0.

The last statement follows directly from the previous arguments.✷
Proposition 5.2. Letf ∈Hol(∆,∆) andg ∈ Aut(∆) be such thatf ◦ g = g ◦ f .

(i) If g is a hyperbolic automorphism with a fixed pointτ ∈ ∂∆ and
limr→1− f

′(rτ )= g′(τ ) thenf ≡ g.
(ii) If g is a parabolic automorphism with the fixed pointτ ∈ ∂∆ and

limr→1− f
′(rτ )= g′(τ ), limr→1− f

′′(rτ )= g′′(τ ) thenf ≡ g.
(iii) If g ≡ id∆ and there existsτ ∈ ∂∆ such that limr→1− f (rτ ) = τ ,

limr→1− f ′(rτ )= 1, limr→1− f ′′(rτ )= 0, limr→1− f ′′′(rτ )= 0 thenf ≡ g.

Remark 5.3. There is a theorem due to Heins (see [19]) which states that in the
hypothesis of case (i)f is actually a hyperbolic automorphism: we will give a
new simpler proof of it based on Theorem 2.3. For the case (ii), notice that since
f commutes withg then actually limr→1− f

′(rτ )= 1 (see [17]). The case (iii) is
a slightly improved version of Burns–Krantz theorem (see [6]).

Proof of Proposition 5.2. We can assume thatτ = 1 up to conjugation in
Aut(∆). First letg be a hyperbolic automorphism. We can suppose 1 to be the
Wolff point of g (otherwise 1 is the Wolff point ofg−1). Now, sincef ◦g = g ◦f
we have

f ◦ g−1= g−1 ◦ g ◦ f ◦ g−1= g−1 ◦ f.
Thenf commutes withg andg−1. By Theorem 2.3 it follows thatf is a hyper-
bolic automorphism with the same fixed points ofg. Thenf ◦g−1 is a hyperbolic
automorphism (for it has two fixed points on∂∆) such that(f ◦ g−1)′(1) = 1;
i.e.,f ◦ g−1= id∆.
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If g is a parabolic automorphism then by Theorem 2.3,f has Wolff point 1.
Transfer everything in the right half-planeH by means of the Cayley transforma-
tionC. Theng̃ = C ◦ g ◦C−1 ∈ Aut(H) and

g̃(w)=w+ ib ∀w ∈H, with ib= g′′(1).

Let f̃ = C ◦ f ◦ C−1. Notice that, since limr→1− f ′(r) = g′(1) = 1, for r real

near to 1, if we setwr
def= (1+ r)/(1− r), then

f̃ (wr)=wr + f ′′(1)+ · · · ,
wheref ′′(1) def= limr→1− f

′′(r).
Moreover, by Theorem 4.1

Re
(
f̃ (w)

)
� Re(w) ∀w ∈H,

and the holomorphic maph(w)
def= f̃ (w)−w mapsH in H . If there isw0 ∈ H

such thath(w0) = ic ∈ ∂H then, by the maximum principle,h is identically
constant. Therefore,̃f (w) = w + ic that isf is a parabolic automorphism too.
In this case, sinceib = g′′(1) = f ′′(1) = ic then f ≡ g. Assume now that
h(H) ⊂ H . Let Γ be the group generated by the translationg̃. ThenH/Γ is
biholomorphic to∆ \ {0} and the covering mapπ :H →∆ \ {0} is

π(w)= exp

(
−2πw

|b|
)
.

Since alsof̃ and g̃ commute, thenh ◦ g̃ = h. So it is well defined the map
h̃ :∆ \ {0}→H such thath= h̃ ◦ π and for allw ∈H

f̃ (w)−w= h(w)= h̃

(
exp

(
−2πw

|b|
))

.

Now h̃ is holomorphic andH is biholomorphic to the bounded domain∆ then
the singularity ofh̃ in 0 can be eliminated and actuallyh̃ is holomorphic in∆.
Then

f ′′(1)= lim
r→1−

(
f̃ (wr)−wr

)= lim
r→1−

h̃

(
exp

(
−2πwr

|b|
))
= h̃(0) ∈H.

Hence we have the contradictionib= g′′(1)= f ′′(1) ∈H .
If g is the identity then, by applying Theorem 5.1, we have also thatf ≡ g. ✷

Remark 5.4. Notice that iff ∈ Hol(∆,∆) andg ∈ Aut(∆) agree at a point on
∂∆ up to the third order then we can apply Theorem 5.1 to the mapf ◦ g−1 and
we find thatf ≡ g without assuming thatf andg commute. On the other hand,
the following two holomorphic self-maps ofH coincide up to theN th order at
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their common Wolff point∞, but they are not identical:

f (w)=w+N + 1+ 1

1+w
+ · · · + 1

(1+w)N
,

g(w)= f (w)+ 1

2(1+w)N+1
.

Of course, they do not commute.

6. The hyperbolic case

In this section we prove the case (5) of Theorem 2.4.

Proposition 6.1. Let f,g ∈ Hol(∆,∆) \ Aut(∆). If f ◦ g = g ◦ f and
limr→1− f

′(rτ )= limr→1− g
′(rτ ) < 1 at their common Wolff pointτ ∈ ∂∆ then

f ≡ g.

Proof. Let (Ω,σ,Φ) be a fractional linear model forf and letṼ be the funda-
mental set forf given by the very definition of linear fractional model. As ex-
plained in Proposition 3.1 of [11], we can chooseṼ in such a way that it contains
small sectors of vertexτ . By Theorem 4.13,g is in the pseudo-iteration semigroup
of f , that is there exists a Möbius transformationΨ such thatΨ ◦Φ =Φ ◦Ψ and
σ ◦ g = Ψ ◦ σ .

Since K-limz→τ g
′(z) < 1 then for any compact subsetK of ∆ the sequence

of iterates{gk(K)} converges toτ non-tangentially (see Lemma 2.2 in [11]), and
therefore we can repeat the Cowen construction (see [11, p. 77] and [17, p. 690])
in order to get a fundamental setV for g such thatV contains small sectors,
V ⊂ Ṽ andg is univalent onV . Moreover, again in Proposition 3.1 of [11], it
is shown thatσ(V ) is a fundamental set forΨ and hence(Ω,σ,Ψ ) is actually
a fractional linear model forg. Now, by definition,Φ(w) = αw + β for some
α,β ∈ C. By applying Theorem 4.7 to bothΨ andΦ, sinceΨ commutes with
Φ and limr→1− f

′(rτ )= limr→1− g
′(rτ ) < 1 we find thatΨ ≡ Φ. This implies

that

σ ◦ f = σ ◦ g. (6.1)

Now, sinceV is fundamental forg then given a compact setK ⊂ f (V ) with non-
empty interior, the sequence of iterates{gn(K)} is eventually contained inV .
Since

g(f (V ))= f (g(V ))⊆ f (V ),

then we get∅ �= gn(K)⊂ V ∩f (V ) for somen > 0. Therefore there exists a non-
empty open setU ⊂ V such thatf (U)⊂ V . Hence, sinceσ is injective onU and
Eq. (6.1) holds inU thenf ≡ g. ✷
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7. The parabolic case: Part I

In this section we prove case (6) of Theorem 2.4.

Remark 7.1. Let f,g ∈ Hol(∆,∆) \ Aut(∆) be two commuting maps. Iff has
its Wolff point τ ∈ ∂∆ with f ′(τ )= 1 then we know thatτ is the Wolff point also
for g andg′(τ ) = 1. We can assume thatτ = 1 up to conjugation in Aut(∆). If
f,g ∈ C1(∆∪ {1}) then, by Lemma 4.2, there is a neighborhoodU of 1 such that
bothf andg are injective inU ∩∆. LetR > 0 be such thatE(1,R)⊂U . Since
f (E(1,R)) ⊂ E(1,R), and the same forg, then up to restricting the domain to
E(1,R), conjugatingf andg by the linear transformation

5(w)= R

R+ 1
w+ 1

R + 1
,

which maps∆ ontoE(1,R) fixing 1, we can assumef andg to be univalent,
C1(∆) and, by the Schwarz lemma, to send∆ \ {1} in ∆. Notice that, iff is
regular enough, such a conjugation acts on thenth derivative off (andg) at 1 as
a multiplication by(R/(R + 1))n−1, which is strictly positive.

Proposition 7.2. Let f,g ∈ Hol(∆,∆) \ Aut(∆) be such thatf ∈ C3+ε(1), g ∈
C2(1). Suppose thatf (1) = g(1) = 1, f ′(1) = g′(1) = 1 andf ′′(1) = g′′(1)=
a �= 0. If f ◦ g = g ◦ f thenf ≡ g.

Proof. As in Remark 7.1 we can supposef,g univalent on∆, f,g continuous
up to ∂∆ and f,g :∆ \ {1} �→ ∆. Moreover up to conjugation by the Cayley
transformationC we can transfer our considerations onH . Let (Ω,σ,Φ) be a
univalent linear fractional model forf given by Theorem 4.8:

H
f

σ

H

σ

Ω
Φ

Ω

whereΦ(w)=w+ a and

lim
w→∞

σ(w)

w
= 1. (7.1)

By Proposition 4.14g ∈ PIS(f ). Then there exists a Möbius transformationΨ
such thatΨ ◦Φ =Φ ◦Ψ and the following diagram commutes:

H
g

σ

H

σ

Ω
Ψ

Ω
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SinceΦ(w)=w+ a then it is easy to verify thatΨ (w)=w+ b with b ∈C and
b �= 0 (sinceg �= id∆). Then the proposition will hold whenever we prove that
b= a, for g = σ−1 ◦Ψ ◦ σ .

Since, asn→∞,

gn(w)

n
= w+ na +∑n−1

j=0Γ (gj (w))

n
→ a,

then

σ(gn(w))

gn(w)
= σ(w)+ nb

gn(w)
→ b

a
.

Therefore, by (7.1), we find thata = b andf ≡ g. ✷
Remark 7.3. The previous proposition implies that ifg ∈ Hol(∆,∆) is C2(1),
g(1) = 1, g′(1) = 1 andg′′(1) �= 0, theng earns regularityCk(1) whenever we
are able to produce another holomorphic self-mapf of ∆, f ∈ Ck(1) (k > 3),
such thatf commutes withg andf ′′(1)= g′′(1).

8. The parabolic case: Part II

In this section we prove case (7) of Theorem 2.4; that is:

Proposition 8.1. Let f,g ∈ Hol(∆,∆) \ Aut(∆) be such thatf ∈ C5+ε(1),
g ∈C4(1). Suppose thatf (1)= g(1)= 1, f ′(1)= g′(1)= 1, f ′′(1)= g′′(1)= 0
andf ′′′(1)= g′′′(1). If f ◦ g = g ◦ f thenf ≡ g.

We start proving that iff ∈ C5+ε(1) then there exists an invariant subset of the
unit disc∆ on whichf is conjugated to a suitable translation of the half-plane.
For r � 0, let

Tr(z)
def= 1

(z− 1)2
− r ∀z ∈∆.

Notice thatTr is a biholomorphism from∆ to Tr(∆)⊃H1/4−r .

Lemma 8.2. Letf ∈Hol(∆,∆) \ {id∆} be such that

f (z)= z+
5∑

k=3

ak(z− 1)k +O
(|z− 1|5+ε)

for some0 < ε < 1. Then there existsr0 > 1/4 such that, for allr � r0 f re-
stricted to the setT −1

r (H) ⊂ ∆ is conjugated, byTr to a mapF which is con-
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tinuous onH , holomorphic inH and such thatF(H)⊂H . Moreover,F has an
expansion of the form

F(w)=w+ b0+ b1

(w+ r)1/2
+ b2

(w+ r)
+O

(
1

(w+ r)1+ε/2

)
, (8.1)

with b0=−2a3 > 0, b1=−2a4 andb2= 3a2
3 − 2a5.

Proof. If f is not the identity thena3 is a real negative number (see Theorem 5.1
for τ = 1). The transformationT0(z)= (z− 1)−2 is a biholomorphism from∆ to
the domainD = T0(∆) with inverseT −1

0 (u)= u−1/2+ 1 for u ∈D.

Conjugatingf by T0 we have the mapf̃
def= T0 ◦ f ◦ T −1

0 ∈ Hol(D,D) with
the following expansion:

f̃ (u)= u
(
1+ a3u

−1+ a4u
−3/2+ a5u

−2+O
(
u−(2+ε/2)

))−2

= u
(
1+ 2a3u

−1+ 2a4u
−3/2+ (a2

3 + 2a5
)
u−2+O

(
u−(2+ε/2)

))−1

= u
(
1− 2a3u

−1− 2a4u
−3/2+ (3a2

3− 2a5
)
u−2+O

(
u−(2+ε/2)

))
= u− 2a3− 2a4u

−1/2+ (3a2
3 − 2a5

)
u−1+O

(
u−(1+ε/2)

)
.

Notice that the domainD contains the half-planeH1/4. Let 0< δ <−2a3. Hence
there existsr0 > 1/4 such that|f̃ (u)−u+2a3|< δ for all Re(u)� r0. Therefore,
if Re(u)� r, for all r � r0 we have

Re
(
f̃ (u)

)
� Re(u− 2a3)−

∣∣f̃ (u)− u+ 2a3
∣∣> Re(u)− 2a3− δ > r;

that is, the half-planeHr ⊂D is invariant forf̃ . ThenF
def= Tr ◦ f ◦ T −1

r has the
requested properties.✷

We will use the fundamental orbital estimates (see [12, p. 70]):

Lemma 8.3 (Bourdon–Shapiro).Let F be a map continuous onH and holo-
morphic inH and such thatF(H)⊂H . If it has the representation

F(w)=w+ b0+ h(w),

whereb0 is a non-zero complex number withRe(b0)� 0 and limw→∞ h(w)= 0,
then there existc1, c2 andR positive numbers such that

c1(|w| + n)� |Fn(w)|� c2(|w| + n)

for all n� 0 and for allw ∈HR.

Now we build a “fractional linear model” for maps of the form (8.1):
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Theorem 8.4. For w ∈H let

F(w)=w+ b0+ b1

(w+ r)1/2
+ b2

(w+ r)
+Γ (w+ r)

be such thatRe(b0) > 0 withΓ (w)=O(1/|w|1+ε). Then there exists an injective
mapν holomorphic inHR for someR > 0 such that for allw ∈HR

ν(w)=w+ h(w)

with

lim
w→∞

h(w)

w
= 0 and ν(F (w))= ν(w)+ b0.

Moreover,ν(HR) is fundamental forw �→w+ b0.

Proof. For eachw ∈H and for alln� 0, let

w(n)
def= Fn(w)+ r,

∆w(n)
def= w(n+ 1)−w(n)= b0+ b1

w(n)1/2
+ b2

w(n)
+Γ (w(n)),

νn(w)
def= w(n)−w0(n),

∆νn(w)
def= ν(n+ 1)− ν(n)=∆w(n)−∆w0(n).

Therefore

νn(w)= ν0(w)+
n−1∑
j=0

∆νj (w)

=w−w0+ b1

n−1∑
j=0

[
1

w(j)1/2
− 1

w0(j)1/2

]

+ b2

n−1∑
j=0

[
1

w(j)
− 1

w0(j)

]
+

n−1∑
j=0

[
Γ (w(j))− Γ (w0(j))

]
. (8.2)

By Lemma 8.3 forw ∈HR, since Re(F n(w))� 0,

|w(n)|� 1√
2

(|Fn(w)| + r
)
� 1√

2

(
c1(|w| + n)+ r

)
,

|w(n)|� |Fn(w)| + r � c2(|w| + n)+ r. (8.3)

Therefore for allw,w0 ∈HR∣∣∣∣ 1

w(j)1/2
− 1

w0(j)1/2

∣∣∣∣� 2 4
√

2

(c1j + r)1/2
and∣∣∣∣ 1

w(j)
− 1

w0(j)

∣∣∣∣� 2
√

2

c1j + r
. (8.4)
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We can assumeR to be large enough so that|Γ (w)|�M/|w|1+ε for all w ∈HR

for someM > 0. Then∣∣Γ (w(j))− Γ (w0(j))
∣∣� 2M

(c1j + r)1+ε
. (8.5)

Moreover, by (8.4) and (8.5), there isM1 > 0 such that

|∆νj(w)|� M1

(c1j + r)1/2
. (8.6)

The general term of the second sum in (8.2) is

1

w(j)
− 1

w0(j)
=− νj (w)

w(j)w0(j)
=−ν0(w)+∑n−1

k=0∆νk(w)

w(j)w0(j)
,

and, using (8.5) and (8.6), there areM2,M3 > 0 such that∣∣∣∣ 1

w(j)
− 1

w0(j)

∣∣∣∣� 1

(c1j + r)(c1(j + |w|)+ r)

×
(
|w| + |w0| +

j−1∑
k=0

M1

(c1k + r)1/2

)

� |w| +M2

(c1j + r)(c1(j + |w|)+ r)
+ M3

(c1j + r)3/2
. (8.7)

The general term of the first sum in (8.2) is

1

w(j)1/2
− 1

w0(j)1/2
=− νj (w)

w(j)1/2w0(j)1/2
· 1

w(j)1/2+w0(j)1/2
.

Now if w = ρeiθ ∈H then cos(θ) > 0 and

Re(w1/2)=√ρ cos

(
θ

2

)
=√ρ

√
1+ cos(θ)

2
�
√
ρ cos(θ)=Re(w)1/2.

If Re(b0) > 0, by Theorem 4.1 there isc > 0 such that

Re(F (w)−w)� c,

and therefore iterating we have

Re(F n(w))� cn+Re(w).

We can assumec1 � c. Then∣∣w(j)1/2+w0(j)
1/2
∣∣� Re

(
w(j)1/2+w0(j)

1/2)
� Re(w(j))1/2+Re(w0(j))

1/2 � 2(c1j + r)1/2,

and, by (8.3) and (8.4), there isM4 > 0 such that
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w(j)1/2
− 1

w0(j)1/2

∣∣∣∣� 1

2(c1j + r)(c1(j + |w|)+ r)1/2

×
(
|w| + |w0| + |b1|

j−1∑
k=0

∣∣∣∣ 1

w(k)1/2
− 1

w0(k)1/2

∣∣∣∣
+

j−1∑
k=0

M4

c1k + r

)
. (8.8)

Moreover, for someM5,M6,M7,M8 > 0∣∣∣∣ 1

w(j)1/2
− 1

w0(j)1/2

∣∣∣∣� |w| +M5+M6(c1j + r)1/2+M7 log(c1j + r)

2(c1j + r)3/2

� |w| +M5

2(c1j + r)3/2
+ M8

c1j + r
,

and there areM9,M10,M11> 0 such that∣∣∣∣ 1

w(j)1/2
− 1

w0(j)1/2

∣∣∣∣� 1

2(c1j + r)(c1(j + |w|)+ r)1/2

(
|w| + |w0|

+ |b1|
j−1∑
k=0

|w| +M5

2(c1k+ r)3/2
+

j−1∑
k=0

M4+ |b1|M8

c1k + r

)

� M9|w| +M10

(c1j + r)(c1(j + |w|)+ r)1/2

+ M11 log(c1j + r)

(c1j + r)3/2
. (8.9)

The estimates (8.5), (8.7) and (8.9) together with (8.2) imply the uniform conver-
gence of{νn} on compacts subsets ofHR to an injective (by Hurwitz theorem)
mapν holomorphic inHR with the following representation:

ν(w)=w+ h(w) with lim
w→∞

h(w)

w
= 0.

In fact, notice that the bounds in (8.5), (8.7) and (8.9) depend onw in such a way
that, dividing them byw, they are infinitesimal whenw tends to∞. Moreover,

νn(F (w))= Fn+1(w)− Fn(w0)= νn+1(w)+ Fn+1(w0)− Fn(w0)

= νn+1(w)+ b0+O

(
1

|Fn(w0)|1/2
)
,

and taking the limit forn→∞, by Proposition 8.3 and the convergence ofνn just
proved we find

ν(F (w))= ν(w)+ b0.
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As in Remark 4.9, we can show that the setν(HR) is fundamental for the transla-
tionw→w+ b0 because

Re(b0) > 0 and lim
y→+∞

Re(ν(R + iy))

Im(ν(R + iy))
= 0. ✷

Proof of Proposition 8.1. By Remark 7.1 we can assumef,g univalent on∆,
continuous up to∂∆ and mapping∆ \ {1} into ∆. By Lemma 8.2, usingTr for
somer > 0, we can conjugatef restricted toT −1

r (H) to a holomorphic mapF
whose expansion inH is

F(w)=w+ b0+ b1

(w+ r)1/2
+ b2

(w+ r)
+O

(
1

(w+ r)1+ε/2

)
with b0 > 0. Moreover, sinceg′′′(1)= f ′′′(1)=−3b0, we can taker so large that
g(T −1

r (H)) ⊂ T −1
r (H) andg restricted to the setT −1

r (H) is conjugated by the
mapTr to a holomorphic mapG whose expansion inH is

G(w)=w+ b0+O

(
1

(w+ r)1/2

)
.

Now, proceeding as in Proposition 7.2 but using Theorem 8.4 forF andG, instead
of Theorem 4.8, we find thatF andG coincide. Thereforef ≡ g. ✷

9. Representativeness of models

Let f ∈Hol(H,H)∩C2(∞) have the following expansion:

f (w)=w+ a + Γ (w),

wherea = f ′′(∞) �= 0, andΓ (w)→ 0 asw→∞. Let (Ω,σ,Φ) be a fractional
linear model forf . From Theorem 4.7 it follows thatΦ(w) = w + β for some
β �= 0. Let us study the ratio

|σ(f n(w))|
|f n(w)|

for a fixed w ∈ H . Since Φ ◦ σ = σ ◦ f then σ(f n(w)) = Φn(σ(w)) =
σ(w) + βn. Therefore|σ(f n(w))|/|f n(w)| can be compared to|βn|/|f n(w)|
for n big enough. But now

f n(w)

βn
= 1

βn

[
f n−1(w)+ a + Γ

(
f n−1(w)

)]
= 1

βn

[
w+ an+

n−1∑
j=0

Γ
(
f j (w)

)]
,
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and then, sincef n(w)→∞ asn→∞, we find that

lim
n→∞

|σ(f n(w))|
|f n(w)| = β

a
.

Hence the model is reallyrepresentativeof the behavior of the distribution of
orbits off in H ; i.e.,f approaches to its Wolff point∞ as fast asΦ does. Using
the representativeness of the model we are able to prove:

Proposition 9.1. Let f,g ∈ Hol(H,H) \ Aut(H). Letf,g ∈ C3+ε(∞). Suppose
that f ◦ g = g ◦ f ,∞ is the Wolff point off , f ′(∞) = 1 andf ′′(∞) = a �= 0.
Then∞ is the Wolff ofg, g′(∞)= 1 andg′′(∞) �= 0.

Proof. By Theorem 2.3,g has Wolff point∞. In [11] it is proved thatg′(∞)= 1.
So we need only to prove thatg′′(1) �= 0. Suppose not. As in Remark 7.1, we
can assumef andg univalent onH . Let h= f ◦ g. Note thath ∈ C3+ε(∞) and
h′′(∞)= a. Then by Theorem 4.13 it follows thatg ∈ PIS(h). Hence, if(Ω,σ,Φ)

is the univalent fractional linear model forh given by Theorem 4.8, there exists a
Möbius transformationΨ such thatΨ commutes withΦ andσ ◦g = Ψ ◦σ . Now,
sinceΦ(w)=w+ a andΨ commutes withΦ it follows thatΨ (w)=w+ b for
someb ∈C, b �= 0 (sinceg �= idH ). As before we find

lim
n→∞

|σ(gn(1))|
|gn(1)| =∞.

But this contradicts the fact that, by Theorem 4.8,

lim
n→∞

σ(gn(1))

gn(1)
= 1. ✷

Notice that even ifa = 0 (andf �= idH ) then there always exists a fractional
linear model(Ω,σ,Φ). But in this case, after repeating the above arguments we
find that

lim
n→∞

|σ(f n(w))|
|f n(w)| =∞;

i.e., the iterates ofΦ tend to∞ faster than those off . However, iff ∈ C5+ε(∞)

we produced a “representative (partial) fractional linear model.” Indeed, with the

notations of Lemma 8.2 and Theorem 8.4, letσ
def= ν ◦Tr ◦C−1. Then(H,σ,w �→

w + b0) is a fractional linear model forf |
C(T−1

r (HR))
. It is representative since

σ(f n(z)) tends to∞ as fast asf n(z) does.
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