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Abstract

Let f, g be two commuting holomorphic self-maps of the unit discf ldndg agree at
the common Wolff point up to a certain order of derivatives (no more than 3 if the Wolff
point is on the unit circle), theii = g. 0 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

The non-constant holomorphic map from the unit disof C into C given by

( +1)\3
Z > exp| —(i )
z—1
is C*° up to the boundary and it has all derivatives at 1 equal to zero. In

particular, then there exist holomorphic mappings from the unit disc which extend
smoothly to the boundary and which coincide up to any order at a given point
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of the boundary but which are not identically equal. The problem of finding
suitable additional conditions (both of geometrical and analytical flavour) for a
holomorphic map to be constant if it behaves like a constant at a boundary point
has been studied by several authors (e.g., Bell and Lempert [1], Alinhac et al. [2],
Alexander [3,4], Huang and Krantz [5]). Their methods, however, do not give
conditions under which two holomorphic maps (not necessarily identically zero)
must be identical if they coincide at a boundary point up to any order. Recently,
Burns and Krantz [6] and the two last quoted authors [7] gave conditions on
derivatives at a boundary point for a holomorphic self-map of the unit disc to
be identically equal to the identity. In particular, they stated that a holomorphic
self-map ofA is the identity map if it coincides with the identity up to the third
order of expansion at a boundary point.

In these notes we prove that two commuting holomorphic self-map4 of
which have the same expansions up to the third order at their common (boundary)
Wolff pointare in fact identically equal. We will see that the order three is nec-
essary only in a particular case (which contains the case studied by Burns and
Krantz).

By Schwarz lemma (and its boundary versions) a holomorphic self-map (notan
elliptic automorphism nor the identityj of A has a simple dynamical behavior;
i.e., the sequence of iterates Bf{ ¥}, converges (in any topology in Hal, A))
to a unique point, called thé/olff pointof f. The Wolff point of f is the fixed
point of f if f has one inA, otherwise it belongs té A. From the end of the
nineteenth century it has been known that if the Wolff pointfols in A then
almost all the information are contained in the first derivativef cdt that point.

In a certain way that is true also for boundary Wolff points. Moreover, thanks to
the so-called Behan—Shields theorem, two commuting holomorphic self-maps of
A have the same Wolff point unless they are hyperbolic automorphisms. Then it
seems to be natural to study identity principles for commuting holomorphic maps
at their common Wolff point (for the sake of completeness we will also deal with
the cases of interior fixed points and of automorphisms).

The techniques essentially used are based on the possibility of buidgires
sentative fractional linear modefsr holomorphic self-maps of. Namely, given
f € Hol(A, A), there exists a “change of coordinates” in a neighborhood of the
Wolff point of f such that after this conjugatiofi looks like an automorphism
of the right half-plane. The construction of such a model is due, in several steps
and with different degrees of generality, to Valiron [8], Pommerenke [9], Pom-
merenke and Baker [10], Cowen [11] and Bourdon and Shapiro [12]. In order to
handle the fractional linear models in the case of a boundary Wolff point, one of
the main problems is that the “intertwining map” (i.e., the change of coordinates)
has no regularitya priori at the Wolff point of f. To get the necessary regularity
in order to transfer the information on the derivativesfoto the automorphism,
we need some regularity gf at its Wolff point. It turns out that the regularity
requested ory at its Wolff point increases according to how mug¢hs “near”
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to the identity. Another problem we have to deal with is the representativeness
of the model. Notwithstanding the model does always exist, sometimes it is not
well representative, in the sense that the dynamical behavior of the automorphism
is completely different from that of . For instance, iff (1) =1, /(1) =1 and
f”(1) =0 then the automorphism associatedftéends to its Wolff point faster
than f. To overcome this difficulty we build another model, which is no more
global and linear (we call ipartial fractional linear modél but which is repre-
sentative in the sense of the dynamical behavior. Once we have these models, we
can transfer the information on the derivativesfaio the parameters defining the
associated automorphism. Now every holomorphic mapping which has the same
model of f with the same automorphism is identically equalftoSince map-
pings which commute witlf and agree with it up to a certain order (depending
on the model) have this property, we are then able to prove the identity principle.

The paper is organized as follows. In Section 2 we introduce some notations
we will use through out the paper and, after some basic preliminary results, we
state our main result (Theorem 2.4). The remaining sections are more or less
devoted to the proof of that result. In particular, in Section 3 we deal with the
case of interior fixed points. In Section 4 we discuss some tools for handling the
fixed point free case (boundary derivatives, fractional linear models and pseudo-
iteration semigroups). Section 5 concerns about the case of automorphisms. In
Section 6 we deal with the case of hyperbolic non-automorphism mappings (i.e.,
mappings with derivative: 1 at their Wolff points). Sections 7 and 8 are devoted
to the case of parabolic non-automorphism mappings, i.e., maps with derivative
1 at their Wolff points. In Section 9 we discuss the representativeness of models,
stressing out that our previous construction can be regarded as a new fractional
linear model for the parabolic case.

The first quoted author would like to warmly thank Prof. J.H. Shapiro for some
fruitful conversations.

2. Notationsand statement of the main result

In this section we state our main result. Before that we need to recall some
facts on holomorphic self-maps df and to introduce some notations.

Givenr € R, we denote the shifted half-plane B d:ef{w e C: Re(w) > r};

in particular,H def Hp. We recall that th€€ayley transformatiort (z) d:e}c(l +2)/
(1 —z) is a biholomorphism betweeA and H which maps 1 taco. We will
denote thenth derivative of f atzp € A by £ (z0), themth iterate of f by ™
(where /™ €' r o =1 and 1 %' £y and themth power of £ by [ £1".

We recall that every automorphisynof A is of the form

Z—a

e
y(@)=e 17
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with a € A andf € R. Notice thaty extends analytically to a homeomorphism
of A. Itis easy to see that eveny € Aut(A) different from the identity map
id4 has at most two fixed points in. More precisely, is calledelliptic if it

has a (unique) fixed point ia, parabolicif it has a unique fixed point o8 A,
hyperbolicif it has two distinct fixed point o A. It can be shown (see, e.g., [13])
that if y is a hyperbolic automorphism with fixed points 72 € 9 A theny’ (1),
y'(12) are two positive real numbers, different from 1 such that their productis 1.
If y is a parabolic automorphism with fixed point 9 A theny’(r) = 1.

Theorem 2.1 (Schwarz—Wolff) Let f € Hol(A, A) \ {idA}. Supposef is not an
elliptic automorphism ofA. Then there exists a unique pointe A such that
the sequencéf¥} converges ta uniformly on compact subsets af Moreover,
7 € A if and only it is the(only) fixed point off.

Definition 2.2. If f € Hol(A, A) \ {ida} is not an elliptic automorphism of,
we callWolff pointof f the pointzr introduced by the previous theorem.jifis
an elliptic automorphism oft then we call the Wolff point off the unique fixed
point of f.

It can be shown that iff € Hol(A, A) has Wolff pointz € 3A then
lim,_ .- f'(r7) is a strictly positive real number less than or equal to 1. Recall
now the following (see [14,15]):

Theorem 2.3 (Behan—Shields).et f, g € Hol(A, A)\{ida}.If fog=go f then
f andg have the same Wolff point unlegsg are two hyperbolic automorphisms
of A with the same fixed points.

If £ eHol(A, A) andt € dA, we use the notatiorf € C¥(7) if () extends
continuously toA | J{z} for j =1, ..., k. In other words,f has an expansion of
the form

fQO=f@O+f@OC-0)++ k—l,f‘k)(t)(z - f+ (),

for z € A, whereI'(z) = o(|z — 7|¥). Moreover, we say thay € CK¢(z) if
feCkr)andlI'(z) = O(|z — t|F+9).
Now we can state our main result:

Theorem 2.4. Let f, g € Hol(A, A) be suchthatf og=go f.

(1) Ifthere existzg € A andk > 0 natural number such that (zo) = g(z0) = zo,
£ (z0) = g™ (z0) = 0 for 1< m < k and f® (z9) = g®(z0) # 0 then
f=s.

(2) If g is a hyperbolic automorphism of with a fixed pointr € 44 and
lim,_1- f'(rr)=g'(r) thenf =g.
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(3) If g is a parabolic automorphism oft with the fixed pointr € 9A and
lim, 1~ f'rr) =g/ (), lim, 1~ f"(rr) =g"(v) thenf =g.

(4) If g =ids and there existst € 3A such thatlim,_ - f(rt) = T,
lim,_ - f'rr) = 1, lim,_1- f"(rt) =0 and lim,_,1- f(rt) = 0 then
f=idy.

(5) If f,g ¢ Aut(A) have Wolff pointt € A and lim,_ - f'(r7) =
lim,._ - ¢'(rt) <1lthenf =g.

(6) If f,g ¢ Aut(A) have Wolff pointr € A, f € C3t< (1), g € C%(x) and
f=¢@®=1 f'(v)=g"(r)#0thenf =g.

(7) If f,g ¢ Aut(A) have Wolff pointr € 94, f € C%¢(z), g € C*(r) and
ffO=¢@=1 f"(t)=g"(r)=0, f"(r)=g" () thenf = g.

Remark 2.5. The above theorem deals with all possible cases. The statement (4),
which is a slightly improved version of the Burns—Krantz theorem (see [6]), fol-
lows also from (7), but we stated it separately to make clear that there are no more
cases left.

3. Thefixed point case

Let f andg be two commuting holomorphic self-mapsf If there is a point
zo in A such thatf (zg) = zo then

g(z0) = g(f(z0)) = f(g(z0)).

Hence eitheg(zp) = zo or f has two distinct fixed points ind and by Schwarz’
lemmaf =ida.

The aim of this section is to prove the first part (more or less already known)
of Theorem 2.4:

Proposition 3.1. Let f, g € Hol(A, A) be such thatf o g = g o f. If there exist
z0 € A and k > 0 natural number such thaf (z0) = g(z0) = zo, f" (z0) =
g™ (z0) =0for 1<m <k and f®(z0) = g¥(z0) # O then f =.

Proof. Up to conjugatingf and g by a suitable automorphism af, we can
assume thatp = 0 without loss of generality. The Schwarz lemma states that
| f/(0)| < 1; more precisely, f/(0)| = 1 if and only if f(z) = f'(0) - z. Assume
first that| /(0)| = 1. Sinceg’(0) = f/(0) theng(z) = f/(0)-zand f = g.

Suppose now & | f/(0)| < 1. Then, by Konigs linearization theorem (see,
e.g., [11] or [16]), there exists a holomorphic change of coordinates
Hol(A, C) such thatr;(0) =0 and

or(f(2)=f'(0)-0r(x) VzeA.
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Furthermore, i5 ¢ is another such a change of coordinates ge= A - o5 with
A #0.Sincefog=go fthen

or(g(f@)) =07 (f(g())=f'(0)-0r(g(z)) VzeA.

Moreover,or(g(0)) = o7(0) = 0. Therefore, sincg’(0) #0, 6 d:efO'f ogisa
holomorphic change of coordinates such #at0) = 0 and

Gr(f(@)=f'0)-67(z) VzeA;

hence
opog=6r=xr-ay.

By taking the derivatives of both sides we get
0y(8(2) g (@=1-0p(z) VzeA,

and sinceg(0) =0 ando} (0) #£ 0 we conclude thag’(0) = A, or, in other words,
that

Gr=0r0g=g(0)o0y.

Therefore, sincg’(0) = f'(0), because of the invertibility ob, near 0, we
actually obtain thag = f in A.

Suppose now that there exigts- 1 such thatf " (0) = g™ (0) = 0 form < k
and £ % (0) = g®(0) # 0. Then, due to Béttcher theorem (see [17] or [16]), there
exists a local change of coordinatesin a neighborhood of 0 such that (0) = 0
and

or(f(@) =los@)1" (3.1)

Sincef o g = g o f then, again by Bottcher theorem, there exigbsitive integer
andw complex number witlw*—1 = 1 such that

0r(g(@) =w-lof()]" (3.2)

in some neighborhood of 0 (see Theorem 3.1 in [17]). We can assume théat
otherwise we swap andg. By taking thekth derivative of (3.2) at 0, keeping in
mind thato s (0) = 0 andg™ (0) = 0 for m < k, we find

g0 0fO=w-n--(n—k+1)[0(0)]" " 0}(0). (3.3)

Since the left-hand side term is not 0, it follows that k. Moreover, since
g% ) = r%(0), from (3.1) and (3.3) we hawe = 1. Therefore from the local
invertibility of oy we getf =g. O

Remark 3.2. The two mapg — [z]", z +— [z]", for m # n natural numbers, have
expansions which coincide up to the riin n} order at 0 but they are different.
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4. Preliminariesfor fixed point free case

Givent € 9A andR > 0, thehorocycleE (z, R) of centerr and (hyperbolic)
radiusR is the disc inA of (Euclidean) radiuR/(R + 1) tangent tod A in
which is defined as

def It —z|? }
E(t,R) = {z€ A: <Ry:,
@ R { 1—1z/2
with the convention thak (z, +o0) = A.
For f e Hol(A, A) andty, 2 € 0A, we defingB (11, 72) to be the following

strictly positive real number (possibhyoco):
def [ |12 — f(z)|2/|r1—z|2}
) =Su .
Prlesm) zef{ 1-1f@F /) 1- 1P
The numbergs(t1, 2) says how horocycles centered at behave under the
action of f; i.e., by definition, for anyR > 0
f(E(t1, R)) C E(t2, Bf(T1, T2)R). (4.1)

For f e Hol(A, C), I € C U {00} is thenon-tangential limitof f att € 0A
if f(z) tends tol asz tends tor in A within an angular sector of vertexand
opening less than. We summarize this definition by writing

i )=

By Lindeldf principle (see, e.g., [13]) iff € Hol(A, A) has radial limit/ at
T € 04, thenf actually has non-tangential limitat .
We recall the following fundamental theorem (see, e.g., [18] or [13]):

Theorem 4.1 (Julia—Wolff-Carathéodory).et f € Hol(A, A) and 11, 12 € 9 A.
Then

K-lim L AC) =101 Bf (11, T2).
=0 71— 2

If B (1, T2) is finite, then

K-lim f(z) =7, and K-lim (@) = 0Ty (1, 12).
—>T1 —>T1

In the sequel we will also use the following lemma (for a simple proof see,
e.g., [13] or [11]):

Lemma 4.2 (Noshiro).If U is a convex open subset@fand f is a holomorphic
map onU such thatRe(f’(z)) > 0for all z € U, thenf is univalent onU.

Now we introduce the fractional linear models and their relationships with
commuting holomorphic maps.
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Definition 4.3. A setV C A is said to befundamentafor f € Hol(A, A) if V
is connected, simply connectefl(V) C V and for allK compact subsets ot
there exists a natural numbefdepending orK) such thatf"(K) Cc V.

Definition 4.4. A triple (£2, o, @) is afractional linear modefor f € Hol(A, A)
if

() 2=Hor=C¢C;
(i) o eHol(A, £2);
(i) @(w)=aw+ Bwitha, g C;
(iv) there existsV c A fundamental forf such thair |y is univalent andr (V)
is fundamental forp;
(V) 0o f=®oo0;i.e.,the following diagram commutes

f

A——=A

|k

2L—0
The fractional linear model is saithivalentif V = A.

Notice that a fractional linear model fgir € Hol(A, A) is univalent if and only
if fis univalent onA. Now we recall the following theorem on the existence of a
fractional linear model (see [8-11]):

Theorem 4.5 (Valiron, Baker, Pommerenke, Cowelf).f € Hol(A, A) has Wolff
pointt € A, then there exists a fractional linear mode?, o, @) for f.

Remark 4.6. Let f € Hol(A, A) and let($2, o, @) be a fractional linear model
for f. Our definition of fractional linear models does not guarantee¢hit an
automorphismof £2. For instance (transferring everything #h by means of the
Cayley transformation), the mafXw) = w + a with a real positive number has
obviously the fractional linear modéH, idy, f), but f is not an automorphism
of H. However, it also has the modélC, j, ®), where j: H — C is the
immersion andp (w) = w +a is an automorphism d. In general, embedding

in C if necessary, we can always find a fractional linear modeffor which @ is
an automorphism of2. In this case we have the following uniqueness statement
due to Cowen (see [11]). 2, & qb) is another fractional linear model fof,
such thatd is an automorphism of?, thens2 = §2, and moreover there exists a
Maébius transformatiog such thatp(2) =2, d =go P op Lands =¢poo.

In what follows we will not use this fact.

A first step to relate the expansions pfand @ at their Wolff points is the
following (see [11]):



F. Bracci et al. / J. Math. Anal. Appl. 270 (2002) 451-473 459

Theorem 4.7 (Cowen).Let f € Hol(A, A) \ Aut(A) have Wolff point € 9 A. Let
(£2, 0, @) be a fractional linear model for. If f € C1(z) or if for somezg € A
the sequencef*(z0)} converges ta non-tangentially, then

K-lim f'(z) = @' (o (7)).
—>T
We recall now (see [12, Theorem 4.12]):

Theorem 4.8 (Bourdon—Shapiro).et f € Hol(A, A) be such thaf € C3+€(1).
Let f(1) =1, f/(1)) =1 and f"(1) = a # 0. Supposef is univalent onA,
continuous up t@ A and f(A\ {1}) C A. Then there exists a univalent fractional
linear model($2, o, @) for f with @ (w) = w + a. Moreover,
-1
im W) _

w— 00 w

whereC : A — H is the Cayley transformation which map$o oco.

15

Remark 4.9. Strictly speaking, in [12] it is not proven that the model given by
Theorem 4.12 is a fractional linear model according to our definition, since it is
not shown that (A) is fundamental for the automorphisgn. However, using

the estimates on the shapecafA) given there, it is possible to see thatA) is
fundamental fod. Here we give a sketch of how to do that. Transfer everything
to the half-planed . Then Theorem 4.12 in [12] gives us the following expression:

o(w) =w + h(w), (4.2)
whereh is holomorphic orH and lim,_—, o #(w)/w = 0. Then
m Re(o (iy)) _0

y—=zoo Im(a (iy))

)

lim Im(o(iy)) ==+oc0 and
y—=+o00

which prevents (H) to have oblique asymptotes. When(Re> 0 this implies
thato (H) is fundamental ford in C. In the case R@) = 0, assuming: = ai

with « > 0, Theorem 4.12 in [12] gives us, far in the upper half part off, the
following representation:

o(w) =w+iglog(l+ w) + B(w), (4.3)

whereb > 0 andB is a bounded continuous function @hU {oo}, holomorphic
in H (if @ < 0 there is a similar expression in the lower partbf and then one
can proceed similarly). A straightforward calculation gives

b
Re(o(iy)) = —— argl+iy) + Re(B(iy)).

Then lim,_, ;o Re(o (iy)) = M for M € R. We can suppos&f = 0, up to sub-
tract M from o. If inf,cy Re(o(w)) < 0, then there would existg € R such
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that Rdo (iyg)) < 0. But o (H) is invariant for the translationw — w + i«

then lim,— 100 Re(o (i (na + yg))) < 0. Therefore infecy Re(o(w)) = 0. So
o(H) C H ando (H) hasdH as vertical asymptote. Hened H) is fundamental
for® in H.

Definition 4.10. Let f, g € Hol(A, A) and let(§2, 0, @) be a fractional linear
model for f. We say thatg belongs to thepseudo-iteration semigroup of
(shortlyg € PIS(f)), if there exists a M6bius transformatignsuch thatv o @ =
Po¥andoog=Voo.

Remark 4.11. If f #ids andg € PIS(f), from our definition of fractional linear
model, then? is actually an affine transformation since it commutes with the
affine transformatior® .

Remark 4.12. If g € PIS(f) then(£2, 0, ¥) is generally not a fractional linear
model for g. An example is as follows. Consider the conformal magrom
H1to{zeC: Re(z) >0, Im(z) >0}. Let ®(z) :==z+1i, ¥(zx):=z+1 and
fw):=0"lod®oo(w), g(w):=c LoWoo(w). Thenitis clear thatH, o, ®)

is a univalent fractional linear model fgf, f andg commute,g € PIS(f) but
(H,o,¥) is not a fractional linear model fog sinces (H) is not fundamental
for .

The pseudo-iteration semigroup and commuting holomorphic self-mags of
are related by the following:

Theorem 4.13 (Cowen).Let f, g € Hol(A, A) with common Wolff point € 9 A.
If fog=go fthenf, g e PIS(f og). Moreover, iflim,_1 f/(rt) < 1 then
g € PIS(f).

For our purpose we need also the following:

Proposition 4.14. Let f, g € Hol(A, A) be such thaif € C3t€(1) andg € C2(1).
Let f(H=gD) =1, /=g @D =1and f"(1) = g"(1) = a # 0. Suppose
£, g are univalent onA, continuous up td A and mapA \ {1} into A. Suppose
fog=go f.Theng € PIS(f).

Proof. Transfer everythingtdi. Let (£2, o, @) be the fractional linear model for
f given by Theorem 4.8. The map: 2 — £2 given by
Viwr @ "ocogoo tod(w),

wheren is big enough in order to assu®’(w) € o(A4), is well defined (see
[17, p. 689]). Then the conditiog € PIS(f) is equivalent to¥ € Aut(C). Since
@, 0, g are univalent so is¥. We are left to show tha¥ is surjective. This
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follows easily whenever we prove thatg (H)) is fundamental fow in H. Since
g € C?(00), theng(w) = w + a + I'(w) with I'(w) — 0 asw — oo. Using this
expression and arguing as we did in Remark 4.9 it is easy to see ¢(h@atl)) is
fundamental fo. O

Remark 4.15. In the previous proposition it is possible to release some hypothesis
on the regularity off andg assuming, for instance, thgt'(0) converges to 1
non-tangentially. However, we are not interested in such results here.

5. Theautomorphism case

In this section we are going to prove the cases (2), (3) and (4) of Theorem 2.4.
We start with the following result, interesting for its own (see also [7]):

Theorem 5.1. Let f € Hol(A, A) and letp:[0, 1] — A be a continuous curve

that tends tar € 9 A non-tangentially. If
—»1- (o(t) —1)3

for somel € C thent?/ is a non-positive real number anfl is the identity map

if and only if/ = 0. Moreover, if f € C3(r) thenf(r) =, f'(x) =1, f’(r) =0

and /"(r) = 6l if and only if Eq.(5.1) holds.

(5.1)

Proof. If f =id, then obviouslyl = 0. Assume now thaf is not the identity
map. We define the holomorphic map

W@ E - o(f ) —9(2).
where ¢(z) = (t +z)/(r — z) is a biholomorphism ofA onto the right half-
planeH. Now, from Eq. (5.1)

lim T - fle®) =1+ lim o) — fle) -1 (5.2)
t—>1- T —o(t) =1~ T —o(t)

Theorem 4.1 then implies that K-lim; f(z) =t and K-lim,—; f'(z) = 1.
Moreover, from Eq. (4.1) we have

1— 21—z

Thenh mapsA into A. By the maximum principle, if there is a poirng € A such
thath(zp) € 0 A thenh is identically equal to a constant. Since

f@—-z t—z2
z—1)2%1— f(2)

Re(p(f(2)) =

h(z) = —g01<2r ) Vze A
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then, from (5.1), the limit ot asz — t alonge is —¢~1(0) = t (notice that the
term (t —z)/(t — f(2)) tends to 1 by Theorem 4.1). Therefdre= t; that is,
f is the identity. This contradicts our assumptionsiseoHol(A, A).

After some easy calculations we find that, for any A,

2 f(@)—z

T—hx) TS
_ T t—f(2) f@—-z"
T—2 = + 2t )2

Passing to the limits as— 1 alongp in both sides of the above equation, by (5.1)
and (5.2), by applying Theorem 4.1 to the migpve obtain

Bu(t,t) = —477.
Then

1
r%:—zﬂh(r, 7) <0.

The last statement follows directly from the previous arguments.
Proposition 5.2. Let f € Hol(A, A) andg € Aut(A) be suchthatf og=go f.

(i) If g is a hyperbolic automorphism with a fixed poimte A and
lim,_ - f/(rt)=g'(r) thenf =g.
(i) If g is a parabolic automorphism with the fixed pointe A and
limrﬁlf f/(l"l') = g/(t), limr%l’ f//(}"l') = g//(l') thenf =8
(i) If g =idy and there existst € A such thatlim,_ - f(r7) = 7,
lim, - f'rr) =1,lim,_ - f’(rt) =0,lim,_ 1- f”(rt)=0thenf = g.

Remark 5.3. There is a theorem due to Heins (see [19]) which states that in the
hypothesis of case (if is actually a hyperbolic automorphism: we will give a
new simpler proof of it based on Theorem 2.3. For the case (ii), notice that since
f commutes withg then actually lim_, 1~ f'(r7) = 1 (see [17]). The case (iii) is

a slightly improved version of Burns—Krantz theorem (see [6]).

Proof of Proposition 5.2. We can assume that = 1 up to conjugation in
Aut(A). First letg be a hyperbolic automorphism. We can suppose 1 to be the
Wolff point of g (otherwise 1 is the Wolff point 0§ ~1). Now, sincef o g = go f

we have

fogt=glogofogt=g""o .
Then f commutes withg andg 1. By Theorem 2.3 it follows thaf is a hyper-
bolic automorphism with the same fixed pointsofThen f o g~ 1 is a hyperbolic
automorphism (for it has two fixed points @m) such that(f o g~ 1) (1) = 1;
i.e., fog t=ida.
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If g is a parabolic automorphism then by Theorem Z.3as Wolff point 1.
Transfer everything in the right half-plake by means of the Cayley transforma-
tion C. Theng =C o go C~1 € Aut(H) and

gw)y=w+ib YweH, withib=g"(1).

Let f: C o f o C~1. Notice that, since ligL,1- f/(r) = g'(1) = 1, for r real

near to 1, if we seto, & (1 + r)/(1 — r), then

fw)=w, + Q) +---,

where /(1) EMim, 1~ 17 ().

Moreover, by Theorem 4.1
Re(f(w)) > Re(w) Vw e H,

and the holomorphic majp(w) def f(w) —w mapsH in H. If there iswg € H
such thath(wo) = ic € dH then, by the maximum principle; is identically
constant. Thereforef (w) = w + ic that is f is a parabolic automorphism too.
In this case, sincéb = g”(1) = f"(1) = ic then f = g. Assume now that
h(H) C H. Let I be the group generated by the translatiornThen H/I" is
biholomorphic toA \ {0} and the coveringmap : H — A\ {0} is

27w
w(w) = exp(—W)

Since alsof and g commute, them o g = h. So it is well defined the map
h:A\ {0} — H suchthat: =h om and for allw € H

Fw) —w = h(w) =l~z<exp<—%>>,

Now # is holomorphic and{ is biholomorphic to the bounded domaihthen
the singularity ofh in 0 can be eliminated and actualtyis holomorphic inA.
Then

() = Iin}_(f(wr) —w,) = lim ﬁ(exp(—znwr>> =h(0) € H.

r—1- |b|

Hence we have the contradictioh=g”" (1) = f”(1) € H.
If g is the identity then, by applying Theorem 5.1, we have alsofhatg. O

Remark 5.4. Notice that if f € Hol(A, A) andg € Aut(A) agree at a point on
d A up to the third order then we can apply Theorem 5.1 to the shag ! and
we find thatf = ¢ without assuming thaf andg commute. On the other hand,
the following two holomorphic self-maps df coincide up to thevth order at
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their common Wolff pointo, but they are not identical:
1
= N+1l+— 4o p——
f@)=w+N+1+—+ Ty
1
2(1 4 w)N+1-
Of course, they do not commute.

g(w) = f(w)+

6. The hyperbolic case
In this section we prove the case (5) of Theorem 2.4.

Proposition 6.1. Let f,g € Hol(A, A) \ Aut(A). If fog=go f and
lim,_ - f'(rt) =lim,_ 1- g'(rt) < 1 at their common Wolff point € 3 A then
f=gs.

Proof. Let (£2, 0, @) be a fractional linear model fof and letV be the funda-
mental set forf given by the very definition of linear fractional model. As ex-
plained in Proposition 3.1 of [11], we can chodéén such a way that it contains
small sectors of vertex. By Theorem 4.13; is in the pseudo-iteration semigroup
of f, thatis there exists a Mébius transformatibrsuch thatv o @ = @ o ¥ and
cog=Voo.

Since K-lim,_,; g’(z) < 1 then for any compact subskt of A the sequence
of iterates{gX (K )} converges ta non-tangentially (see Lemma 2.2 in [11]), and
therefore we can repeat the Cowen construction (see [11, p. 77] and [17, p. 690])
in order to get a fundamental s&t for g such thatV contains small sectors,
VeV andg is univalent onV. Moreover, again in Proposition 3.1 of [11], it
is shown that (V) is a fundamental set foF and hencg$2, o, ¥) is actually
a fractional linear model fog. Now, by definition,® (w) = aw + B for some
a, B € C. By applying Theorem 4.7 to bot#y and ®, since¥ commutes with
@ and lim._,1- f'(rt) =lim,_ 1- g'(rt) < 1 we find that¥ = @. This implies
that

cof=0o0g. (6.1)

Now, sinceV is fundamental fog then given a compact sé&t c f (V) with non-
empty interior, the sequence of iteratigd (K)} is eventually contained irv.
Since

gUf(V) = f(V) < f(V),

thenwe get) # ¢" (K) c VN f(V) forsomen > 0. Therefore there exists a non-
empty open selV C V such thatf (U) C V. Hence, since is injective onU and
Eqg. (6.1) holds iU thenf =g. O
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7. The parabolic case: Part |
In this section we prove case (6) of Theorem 2.4.

Remark 7.1. Let f, g € Hol(A, A) \ Aut(A) be two commuting maps. If has
its Wolff point 7 € A with f’(z) = 1 then we know that is the Wolff point also
for g andg’(r) = 1. We can assume that= 1 up to conjugation in Autd). If
f,g € CL(AU({1}) then, by Lemma 4.2, there is a neighborh@bdf 1 such that
both f andg are injective inU N A. Let R > 0 be such thaE (1, R) C U. Since
f(E(1, R)) C E(1, R), and the same fog, then up to restricting the domain to
E(1, R), conjugatingf andg by the linear transformation

1
= o+
R+1 R+1
which mapsA onto E(1, R) fixing 1, we can assum¢ andg to be univalent,
C1(A) and, by the Schwarz lemma, to sead\ {1} in A. Notice that, if f is

regular enough, such a conjugation acts orvitiederivative of f (andg) at 1 as
a multiplication by(R/(R + 1))*~1, which is strictly positive.

o(w) = +

Proposition 7.2. Let f, g € Hol(A, A) \ Aut(A) be such thatf € C3t€(1), g €
C?(1). Suppose thaf (1) =g(H) =1, /(D =g D) =1and f"(1) =g"(1) =
a#0.1f fog=go fthenf=g.

Proof. As in Remark 7.1 we can suppogeg univalent onA, f, g continuous
up todA and f,g: A\ {1} = A. Moreover up to conjugation by the Cayley
transformationC we can transfer our considerations éin Let (£2, 0, @) be a
univalent linear fractional model fof given by Theorem 4.8:

lim 22 = 1. (7.1)

By Proposition 4.14 € PIS(f). Then there exists a M&bius transformatién
such thatr o @ = @ o ¥ and the following diagram commutes:

H—>H

—4-0
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Since® (w) = w + a then it is easy to verify that (w) = w + b with b € C and
b # 0 (sinceg # id,). Then the proposition will hold whenever we prove that
b:a,forg:ailoll/oo.

Since, as1 — oo,

g'(w)  wna+ Y15 (gl w) -

a,
n n
then
o(g"(w)) ow)+nb b
= - —.
g"(w) g"(w) a

Therefore, by (7.1), we find that=bandf =¢. O

Remark 7.3. The previous proposition implies that gfe Hol(A, A) is C?(1),
g()=1,¢ (1) =1 andg”(1) # 0, theng earns regularityC* (1) whenever we
are able to produce another holomorphic self-nfapf A, f € C¥(1) (k > 3),
such thatf commutes withg and f”(1) = g”(1).

8. Theparabolic case: Part 11
In this section we prove case (7) of Theorem 2.4; that is:

Proposition 8.1. Let f, g € Hol(A, A) \ Aut(A) be such thatf e C3t€(1),
geC*1).Supposethaf(H) =g =1, /D =g D=1 f"(1)=¢"1)=0
and (1) =g"(Q).If fog=go fthenf=g.

We start proving that iff € C>t€(1) then there exists an invariant subset of the
unit disc A on which f is conjugated to a suitable translation of the half-plane.
Forr >0, let

T, (Z) d=ef r VzeA.

1
(z —1)?
Notice that7; is a biholomorphism from to 7, (A) D Hy/a—,.

Lemma8.2. Let f € Hol(A, A) \ {ida} be such that

5
f@ =24 az—D"+0(lz - 11°*)
k=3

for some0 < ¢ < 1. Then there existgy > 1/4 such that, for allr > rg f re-
stricted to the seTr‘l(H) C A is conjugated, byl to a mapF which is con-
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tinuous onH, holomorphic inH and such that (H) c H. Moreover,F has an
expansion of the form

F(w)=w+ b+

by b2 1
(w+r)Y/? * (w+r) * 0<(w +r)1+€/2)’ 8.1)

with bg = —2a3 > 0, by = —2a4 andb, = 3a3 — 2as.
Proof. If f is notthe identity thems is a real negative number (see Theorem 5.1

for = 1). The transformatiofio(z) = (z — 1) 2 is a biholomorphism fromi to
the domainD = To(A) with inverseT, *(u) = u~/2 41 foru € D.

Conjugatingf by To we have the mag % Too f o Tyt € Hol(D, D) with
the following expansion:
u(l+ asu t +au=? +asu"’+ 0 (1,1*(2“/2)))72
u(l + 2asu~t + 2aau~3/% + (a% + 2a5)u72 + 0(u7(2+€/2)))71
=u(1 - 2azu™ — 2aqu™¥? + (3a3 — 2as)u~% + O (u~?T</?))
—u — 2a3 — 2aqu" % + (3a§ — 2a5)u71 + O(Lf(lﬂ/z)).

f)

Notice that the domai® contains the half-plan#1/4. Let 0< § < —2a3. Hence
there existso > 1/4 such that f (1) — u + 2a3| < & for all Re(u) > ro. Therefore,
if Re(u) > r, for all r > rg we have

Re(f () > Re(u — 2az) — | f (u) — u + 2az| > Re(u) — 2a3 — § > r;

that is, the half-planéf, c D is invariant for f. ThenF dZEfT, ofo T,—1 has the
requested properties.O

We will use the fundamental orbital estimates (see [12, p. 70]):

Lemma 8.3 (Bourdon—Shapiro)Let /' be a map continuous oAl and holo-
morphic inH and such that'(H) C H. If it has the representation

F(w)=w + bo+ h(w),

wherebg is a non-zero complex number wite(bg) > 0 andlimy,— o 2(w) =0,
then there exist1, c2 and R positive numbers such that

cilwl+n) < |F"(w)| < ca(|w] +n)

forall n > 0and for allw € Hg.

Now we build a “fractional linear model” for maps of the form (8.1):



468 F. Bracci et al. / J. Math. Anal. Appl. 270 (2002) 451473

Theorem 8.4. For w € H let
b b
1 n 2
w+nrY2 " (w+r)

be such thaRe(bg) > 0with I"(w) = O(1/|w|1t€). Then there exists an injective
mapv holomorphic inHg for someR > 0 such that for allw € Hg

v(w) =w + h(w)

Fw)=w+bo+ +I'(w+r)

with

lim M—O and v(F(w)) =v(w) + bo.

w—>00 W

Moreover,v(Hg) is fundamental foiw — w + bo.

Proof. For eachw € H and for alln > 0, let

<>“—‘”F"< )47,

Aw(n) de w(n +1) —wh)=bog+ ——— + —— b2 + I'(w(n)),

b1
w2 w(n)
v (w) E'w(n) — wo(n),
Avy, (w) d:‘Efv(n +1) —v(n) = Aw(n) — Awo(n).
Therefore

n—1
v (w) = vo(w) + Y Av;(w)

j=0

1
T w°+b12[ ()72 wo(j)l/z]

n—1
1
rw()) — I'wo(j)]. (8.2
i Zz[wm wo(j)i|+j2:g[ (w() — F'wo(j)]. (8.2)

By Lemma 8.3 forw € Hg, since RéF" (w)) >0

()] > = (IF" )l +7) > —= (ca(lwl +m) + 7).
V2 V2
lwm)| < |F"(w)| +r < cz2(|w| +n) +r. (8.3)
Therefore for alw, wo € Hg
1 1 232

and

- <
w(HY2  wo(HY?| ~ (c1j +r)Y?
‘ 1 1 _ 22

w(j)  wo(j)| erj+r

(8.4)
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We can assume to be large enough so thet (w)| < M/|w|}*€ forall w € Hg
for someM > 0. Then

2M
(c1j +n)t+e’
Moreover, by (8.4) and (8.5), thereM; > 0 such that
_ M
(crj +r)V?
The general term of the second sum in (8.2) is
1 1 vi(w) vo(w)—i—zk OAvk(w)

w()  wo(j)  w(Hwo(j) w(/)wo(/)
and, using (8.5) and (8.6), there awe, M3 > 0 such that

[T (w(j)) = T'(wo(j))| < (8.5)

|Avj(w)| < (8.6)

’

’ 11| 1
w(j)  wo(j)|  (c1j+r)ei(j+ le)+r)

My
(lwl + [wol + Z 7( k+r)1/2)

lw| + M2 M3
X . . + . 3/2’
(crj+r)ci(j+lwh+r)  (c1j+r)
The general term of the first sum in (8.2) is
1 1 _ vi(w) 1
w(HY2 wo(HNY2 w(NY2wo(HY2 w(j)M2 + wo(j)Y?

(8.7)

Now if w = pe'? € H then cogd) > 0 and

Rew'/?) = \/p c05< ) NG 1+C°s(9) > /pcosgh) = Re(w)V/2.

If Re(bg) > 0, by Theorem 4.1 there is> 0 such that
Re(F(w) —w) >c,

and therefore iterating we have
Re(F"(w)) > cn + Re(w).

We can assume; < ¢. Then

lw(HY2 + wo(HY?| = Re(w(j) Y2 + wo(j)Y/?)
Re(w ()2 + Re(wo(j)Y? = 2(c1j +r)Y/?,

and, by (8.3) and (8.4), there ¢, > 0 such that

2
2
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1 1 1
- <
w(HY2  wo(HY2] T 2caj+r)(ea(j + [wh) + )12
1 .
<|w|+|wo|+|b1|2 DO~ waloi?
j—1
My

8.8

+ c1k+r> (8.8)

Moreover, for somés, Mg, M7, Mg > 0

lw| + Ms + Me(c1j +r)Y2+ M7log(c1j +r)
2(c1j + r)3/2
lw| 4+ Ms Mg
T 2c1j+1)%2  ej 41
and there aré/g, M10, M11 > 0 such that

1 1
w(HY2  wo(j)¥2| ™

< !
2(c1j +r)(c1(j + |w]) +r)t/?

j-1 -1
|lw| + Ms My + |b1| Mg
b
+ 1'};2(c1k+r)3/2+§) c1k +r

‘ 1 1

w(H2 ~ wol) 12 i+ ol

Mo|w| + Mio
T (erj +r)(ca(j + lw)) 4 )2
Miilog(c1j +r)
(crj +1r)¥?
The estimates (8.5), (8.7) and (8.9) together with (8.2) imply the uniform conver-

gence of{v,} on compacts subsets é&fr to an injective (by Hurwitz theorem)
mapv holomorphic inHg with the following representation:

v(w) =w + h(w) with IIm %—O

In fact, notice that the bounds in (8.5), (8.7) and (8.9) depend onsuch a way
that, dividing them byw, they are infinitesimal whew tends toco. Moreover,

(8.9)

v (F(w)) = F"™ Y (w) — F"(wo) = vp1(w) + F™ L (wo) — F™ (wo)

1
=Vpp1(w) +bo+ O <W>,

and taking the limit forn — oo, by Proposition 8.3 and the convergence,pjust
proved we find

v(F(w)) =v(w) + bo.
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As in Remark 4.9, we can show that the sél ) is fundamental for the transla-
tion w — w + bg because

Reby) >0 and lm RVREW)_ o
y=+oo IM(v(R +iy))

Proof of Proposition 8.1. By Remark 7.1 we can assumnfeg univalent onA,
continuous up td A and mappingA \ {1} into A. By Lemma 8.2, using; for
somer > 0, we can conjugate¢ restricted toT;l(H) to a holomorphic mag
whose expansion il is

Fay=wtbot —22 42 40 !
w)=w N
T w2 wtr) (w -+ r)TFer2

with bg > 0. Moreover, sincg” (1) = /(1) = —3bg, we can take so large that
¢(T71(H)) c T71(H) andg restricted to the sef1(H) is conjugated by the
mapT, to a holomorphic maj; whose expansion il is

1

Now, proceeding as in Proposition 7.2 but using Theorem 8.& fandG, instead
of Theorem 4.8, we find that andG coincide. Thereforg =¢. O

9. Representativeness of models

Let f e Hol(H, H)N C?(c0) have the following expansion:
fwy=w+a+ I'(w),

wherea = f”(00) #£0, andI' (w) — 0 asw — oco. Let (£2, o, @) be a fractional
linear model forf. From Theorem 4.7 it follows thab (w) = w + B for some
B # 0. Let us study the ratio

o (f" (w))l
|f7 (w)]

for a fixed w € H. Since ® oo = o o f theno(f"(w)) = &"(o(w)) =
o (w) + Bn. Thereforelo (f"(w))|/|f™(w)| can be compared tBn|/| f™(w)|
for n big enough. But now

frw) 1
Bn  Bn

n—1
=ﬂin|:w+an+21“(fj(w)):|,

j=0

(") +a+ (" w)]
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and then, sincg”(w) — oo asn — oo, we find that

lim lo (f" (w))| :ﬁ.

n—oo | f"(w)| a
Hence the model is reallsepresentativeof the behavior of the distribution of
orbits of f in H;i.e., f approaches to its Wolff point as fast a® does. Using

the representativeness of the model we are able to prove:

Proposition 9.1. Let f, g € Hol(H, H) \ Aut(H). Let f, g € C3t¢(c0). Suppose
that f o g = g o f, oo is the WOIff point off, f'(c0) =1 and f”(c0) =a # 0.
Thenoo is the Wolff ofg, g’(c0) = 1andg” (c0) # 0.

Proof. By Theorem 2.3¢ has Wolff pointco. In [11] it is proved thag’ (co) = 1.
So we need only to prove that'(1) # 0. Suppose not. As in Remark 7.1, we
can assum¢ andg univalent onH. Leth = f o g. Note thath € C3t€(c0) and
h"(c0) =a. Then by Theorem 4.13 it follows thate PIS(k). Hence, if($2, o, @)

is the univalent fractional linear model faorgiven by Theorem 4.8, there exists a
Mobius transformatiod such thatr commutes withd ando o g = ¥ oo. Now,
since® (w) = w + a and¥ commutes with® it follows that¥ (w) = w + b for
someb € C, b # 0 (sinceg # idy). As before we find

lim lo(g"(1))] _
n—oo  |g"(1)]
But this contradicts the fact that, by Theorem 4.8,
jim 28Dy
n—co  g"(1)

Notice that even iz = 0 (and f # idy) then there always exists a fractional
linear model($2, o, @). But in this case, after repeating the above arguments we
find that

n
im 10" @)]
n—co | fr(w)|

i.e., the iterates o tend tooo faster than those of . However, if f € C21€(o0)

we produced a “representative (partial) fractional linear model.” Indeed, with the
notations of Lemma 8.2 and Theorem 8.4p|§3f voT,oC 1. Then(H, o, w >

w + bp) is a fractional linear model fogf|C(T_1 It is representative since

o (f"(z)) tends toco as fast ag”(z) does.

)

(Hg))"
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