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Abstract--An explicit Galerkin method is formulated by using rational basis functions. The characteristics 
of the rational difference scheme are investigated with regard to consistency, stability and numerical 
convergence of the method. Numerical results are also presented. 

I N T R O D U C T I O N  

It is well known that classical Galerkin methods applied to convection-diffusion equations, where 
convection dominates the diffusion, generally yield non-physical oscillations when the cell Peclet 
number is large. The disturbances in the solution are rectified by using the technique of upwinding 
[1-3]. In the Petrov-Galerkin method test functions which are biased in the upstream direction are 
implemented. Therefore, the eigenvalues of the discretized scheme have reduced imaginary 
components, thereby increasing dissipative decay and reducing oscillations of the solution [1]. 

The one-dimensional rational basis functions developed by van Niekerk and van Niekerk [4, 5], 
are naturally biased in the upstream direction and therefore simulates the effect of upwinding. In 
this paper an explicit numerical scheme with rational basis functions are devised and the scheme 
is analysed to demonstrate its effectiveness. Higher order rational basis functions are also 
constructed and it is shown that in the numerical scheme the artificial diffusion coefficient becomes 
smaller with increasing order, thereby improving the consistency, stability and convergence of the 
scheme. 

R A T I O N A L  B A S I S  F U N C T I O N  

The (S, T) rational approximant over the interval [0, h] is defined by 

c + c~x + ' ' "  + Cs x s  
Rsr(X)=a+ T'  x e [0, h]. 

x 
1 + ~ + ' " +  

Par t icu la r ly ,  cons ider  the (0, T) r a t iona l  app rox ima n t s ,  namely  

b, 
~l (x) = a, 4 

l+h +'' '  +(h) T 
and 

bo 
~0 (x) = a0 + 

where x • [0, h]. In order to construct a rational basis function the constants a0, b0, al and bl are 
determined from the interpolation constraints 

~ , (o )=o ,  

~l (h)=  1, 

~0(0) = 1 
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and 

4,0(h) = 0. 

From these rational functions a (0, T) rational basis function at an interior node xt with local 
support on [x~_ l ,  & - 1  + 2h] is defined by 

f 4 , , ( x - x , _ , ) ,  x ~ [ x , _ , , x , ] ,  
~ i ( X )  e,l.(bo(x xi), x ~ [xi, xi+ ,]. (1) 

Thus, a (0, 1) rational basis function at node xj is given by definition (1), where 

and 

2x/h 
¢~(x) = x '  O<~x <~h, 

4,0(x) = 1 -  ~ , (x ) ,  O < x ~ h .  

Similarly, for (0, 2) and (0, 3) rational basis functions 

3 3/2 
4', (x)  = 

(7 
and 

4 4/3 
$ , (x )  3 l + X +  

n 

respectively, where x e [0, h]. Note that all cases satisfy the relation 

¢ o ( X ) +  ¢ , ( x )  = 1, x ~[0, h]. 

The (0, T) rational basis functions ~ remain defined on the interval [xt_ ~, x~_, + 2h]. In this 
manner the danger of  introducing real singularities is avoided. A further advantage of  the method 
of  construction is that all (0, T) rational basis functions couple three adjoining nodes leaving the 
banded structure of  the matrices in a Galerkin method intact. 

A (0, T) rational approximation of  the function u over the interval [xi, x~+~] can now be 
respresented by 

u,.(x ) = u(x , ) ,p , (x  ) + u(x ,  + , )¢,  + , (x  ), 

where x ~ Ix,, X i+ I ]" 

D I S C R E T I Z I N G  THE P R O B L E M  

Consider the convection-diffusion equation 

u,=~Uxx-6Ux, E > 0 ,  6 > 0 ,  

with initial condition 
¢- 

u(x ,  O) = "~ 

L 
and boundary conditions 

x e ( 0 , 1 ) ,  t~ (0 ,  T], (2) 

10x- -2 ,  0.2~<x~<0.3, 

--10x + 4 ,  0.3 ~< x ~< 0.4, 

0, elsewhere, 

u(O, t) = o, t~>O, 

u(1, t) = o, t~>O. 
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Divide the interval [0, 1] in N subintervals of length h and the time-interval [0, T] in M subintervals 
of length k. Introduce the rational basis functions 

~kl(x), i - - I  . . . . .  N - I ,  

which are independent of  time at the nodes. Galerkin's method seeks an approximate solution to 
condition (2) in the form 

N-1 
u(x,  t ) =  ~ ui( t )$ , (x) ,  (3) 

i=1 

which satisfies the following system: 

(u, + ~Ux - EUxx, ~ j )  = 0 

where 

j = 1 . . . . .  N - 1, (4) 

fO 1 (u, v) = uv dx. 

Substitution of  forms (3) into (4) leads to 

(~,j_,, ¢,j)~j_, + (~,j, ~j).j  + (¢,j+ ,, ¢,j)uj+, 
(~ i / • 

"~- (~J j _  I , ~]j)Uj_ I "~ ~ ( ~  j , ~Jj)Uj-~- ~(~J j+ |,  ~Jj)Uj+ I 

+E(~b;_, , f ; )u j_ ,  +E(~b; ,$j)uj+E(f j+, ,~kj)uj+,  =0 ,  for j = 1 . . . .  N -  1. 

This system of first order differential equations is discretized forward in time, thus 

tit ~tn n+l I11 ~ n+l (q,j_,. ~ j , . j _ ,  + (¢j, ~j)u; ÷' + (~j+,, ~j,uj+, 

= { ( ~ j _ , ,  q.j) - ~ k ( q . ; _ , ,  ~,j) - E k ( q . ; _ , ,  ~ ; ) } u T _ ,  + {(~,j ,  q.j) - ~ k ( q , ; ,  q,j) - E k ( q , ; , ¢ ; ) } . ;  
t t t n + {(~,/+ ], S j )  - 6 k ( $ j +  t, e j )  - E k ( $ j + , ,  e j  ) }u  j+ ,, (5) 

where 
ui - " u(ih, nk)  and j = I , . . . , N - 1 .  

The ith equation for the (0, 1) rational basis function is typically 

(6h In2 ,+t ,+t - 4 h ) u i _ l  +(9h  - 12h In 2)u7 +1 +(6h  In2 - 4h)ut+ 

= 6 h l n 2 - 4 h + - ~ - +  uT_,+ 9 h - 1 2 h l n 2 - 7 E k ~ u f  
3h ] 

7Ek 6k'~ . 
+ 6h In 2 - 4h + 6h ~-)ui+l. (6) 

In matrix notation the difference scheme may be written in the form 

A (u "+ ] - n") + kBu" + kCu" = O, 

where u = (u~ . . . . .  UN-l) T and A, B and C are tridiagonal matrices. This provides an explicit 
scheme which gives nodal values at time level (n + 1)k. 

CONSISTENCY 

In order to develop the consistency of the rational approximation, consider the discrete equation 
(5). The following relations hold for any (0, T) rational basis function, i.e. 

(~/j-- 1, ~ j )  = (~ j+  ,, [#j), ( ~ j -  1, I#j) + (~Jj, ~ j )  Jr ( ~ j + l ,  ~/j) = h, (~/ ; -  1, ~ j )  Jr (1#;+ 1, ~/j) = 0, 

( ~ j , ~ / ) = O ,  ( ~ j _ ~ , ~ j ) = ( ~ , j . , , ¢ ~ ) ,  ( ~ j _ l , ~ ) + ( ~ , ~ , ~ ) + ( ~ ¢ + t , ~ j ) = O .  (7) 



74 A. VAN NIEKF, RK and F. D. VAN NIEKERK 

Define the local truncation error Tj,. at (jh, nk)  by 

1 
Tin  =h--k [ (~¢ j - i ,  ,b xu n+ l  ,h, ~,,n+ l • Wj] j - - I  "~ ( l # j ,  ~fj)U~ +1 .Jr,. ( l~j+ 1 ' W j l " j + I  

- -  { ( l # j _  t ,  I ,k j )  - -  E k ( I ] / j _ , ,  I , k j )  - -  , ~ k ( ~ / / j _  l ,  ~¢j)}u7_ I 

- { ( , / 6 ,  ~J) - , : k ( ¢ , ; ,  ~ ; )  - , ~ k ( ~ j ,  ~ , , ) } u ;  

- {(,,t,j+,, g,j) - E k ( g , ; + , ,  ~ , ; )  - ,~k(,/,,;+,, 'k,)}uT+ ,1. 
By using the Taylor's expansion and relations (7) it follows that 

Tj.. = u, + Eh(¢/ ;_, ,  ~';)Uxx - 23Ux ($ ;_ , ,  ¢ / j ) +  0(h 2, k ) .  

Since, the (0, 1) rational basis function satisfies 

7 
( f f J -"  SJ) - 6h 

and 

it follows from equation (9) that 

t ( ~ j - , ,  ~j)  = _ ½, 

(8) 

(9) 

7 lim Tj,, = u , -  gEuxx + 6ux. (10) 
h , k ~ O  

This equation differs from the original equation (2) due to the added diffusion coefficient E/6, which 
represents a numerical or artificial diffusion. 

The (0, 2) and (0, 3) rational basis functions yield 

and 

lim Tj. = u, - 1.104&Uxx + 6Ux 
h , k ~ O  ' 

lim Tj. n = U, -- 1.0764EUxx + 6Ux, 
h , k ~ O  

respectively. 
Observe that with higher order rational basis functions the artificial diffusion coefficient decreases 

and the discrete equation almost coincides with equation (2). It is important to note that the 
artificial diffusion coefficient is independent of h and k and is negligible for small values of E. From 
this argument it is evident that the numerical scheme is naturally dissipative and will tend to damp 
out numerical oscillations arising from the convection term. 

STABILITY 

The stability of discrete equation (5) is examined by the standard Fourier stability analysis [6]. 
Substitution of 

(where f2= _ 1 and ?/> 0), into equation (5) and the use of relations (7), yield 

= [h -- {2(~kj_ l, Sj) + Ek(l~j, I//j)} (1 -- cos 7h) 

- 2i6k(~,j+,, ~9) sin ?h]/[h - 2(g9_,, Sj)(1 - cos ?h)]. 

A necessary condition for stability is that the amplification factor ~ satisfies I ~ 12 ~< 1. This condition 
is equivalent to 

2 g ( t ~ j ,  C ; ) [ h  - -  2(@j_ l ,  ~ j ) ( 1  - -  COS 7h ) ]  
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An extreme value is attained at 

which renders the stability condition 

65 = hEe(g'J, Cj)  

h - 4(¢j_ , ,  cj) '  

h - 4(~j_,, ~j) 
k ~  (g,j, 

Thus, in particular the (0, 1), (0, 2) and (0, 3) rational basis functions provide 

h 2 
k ~< 0.156--,  

£ 

and 

h 2 

k ~< 0.168 - -  
E 

h 2 

k ~< 0.174--,  
E 

respectively. From the theoretical investigation it is clear that the stability condition weakens with 
increasing order of the rational basis functions. 

N U M E R I C A L  RESULTS 

In this section, some numerical results for the explicit difference scheme are presented. The 
scheme has been solved for different values of h, namely h = 0.033, 0.02, 0.0167 and 0.0125. The 
parameters are E = 0.01 and 6 = 1 with timestep k = 0.001. The results are compared by means 
of the relative L2-norm, i.e. 

II v - u 112 
II E Ih = 

IIv 112 

where u is the approximant and v the analytical solution which is given in van Niekerk [4]. The 
results at time T = 0.6 for (0, 1), (0, 2) and (0, 3) rational basis functions are shown in Table 1. 

From Table 1 it is clear that higher order methods, except for the first column, improve the results 
and that the accuracy increases with smaller h. In Figs 1-3 the numerical and analytical solutions 
at T = 0.6 with h = 0.0125, k = 0.001 and different rational basis functions are compared. The 
graphs clearly demonstrate the superiority of the higher order rational basis functions. The better 
performances of the higher order basis functions correspond with the consistency analysis. 

The numerical scheme is also implemented at different timesteps to verify the stability condition. 
In Table 2 the discrete Lz-norm, 

N 

II E 11,2 = h Z ( u , -  v,) 2, 

at time T = 1.0 is tabulated for different rational basis functions. A dash in the table indicates that 
the stability condition is being violated. 

The numerical results correspond extremely well with the stability condition and also indicate 
that the higher order rational basis functions have a less rigid restriction on the timestep, which 

Table I. Relative L2-norm for different rational basis functions 

h 

0.033 0.025 0.020 0.0167 0.0125 

(0, I) 6 . 9 3 E -  2 4.80E = 2 4 . 2 3 E -  2 4 . 1 5 E -  2 4 . 2 5 E -  2 
(0, 2) 7.80E - 2 4.1 I E - 2 2.S0E - 2 2.28E - 2 2.07E - 2 
(0, 3) 7.45E - 2 4.22E - 2 2.62E - 2 I.S0E - 2 1.21E - 2 
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0.4 

LI 0 .2 '  

0.0 

0.0 

/ 

. . . .  N u m e r i c a l  | . . . .  Nurr 
Analytical 0,4  

1 
- -  - -  A n a l  

. . . . . . . . .  , . :  . . . . . . .  ; . . .  0 .0  . . . . . . . . .  

0.2  0 .4  0 . 6  0 .8  1.0 0 .0  
X 

F i g .  1.  ( 0 ,  1 )  Rational basis function. 

. . . .  Numerical 
- -  Analytical 

. . . . .  , . . . . . . . . .  , . . . . . . . . .  , . . . . . . . . .  , . . . . . . . . . .  , 

0.2  0 .4  0 .6  0.8 I .( 
X 

F i g .  2 .  ( 0 ,  2 )  Rational basis function. 

0.4, 

U 0.2.  

0 . 0  o 

0 .0  £ 

. . . .  Numerical 
- -  Analytical 

. ,  . . . . . . . . .  , . . . . . . . . .  j . . . . . . . . .  , . . . . . . . . .  • 

0.2 0.4 0.6 0.8 1.0 
X 

F i g .  3 .  ( 0 ,  3 )  Rational basis function. 

Table 2. L2-norrn for different space and timesteps 

k 

h 0 . 0 1  0 . 0 0 5  0 . 0 0 2 5  0 . 0 0 1  

(0, I) Rational Basis Function 
0 . 0 3 3 3  1 . 8 0 E  - 3 0 . 9 1 E  - 3 1 . 7 4 E  - 3 2 . 3 7 E  - 3 

0 . 0 2 0 0  - -  0 . 2 9 E  - 3 0 . 7 6 E  - 3 1 . 4 0 E  - 3 

0 . 0 1 6 7  - -  - -  0 . 6 5 E  - 3 1 . 2 8 E -  3 

0 . 0 1 2 5  - -  - -  5 2 . 9 5 E  - 3 1 . 1 8 E  - 3 

(0, 2) Rational Basia Function 
0 . 0 3 3 3  2 . 3 1 E  - 3 0 . 9 9 E  - 3 1 . 4 0 E  - 3 1 . 9 7 E  - 3 

0 . 0 2 0 0  - -  0 . 2 9 E  - 3 0 . 3 1 E  - 3 0 . 8 8 E  - 3 

0 . 0 1 6 7  - -  - -  0 . 1 4 E  - 3 0 . 7 4 E  - 3 

0 . 0 1 2 5  - -  - -  0 . 0 5 E  - 3 0 . 6 3 E  - 3 

(0, 3) Rational Basis Function 
0 . 0 3 3 3  2 . 5 3 E  - 3 1 . 1 3 E  - 3 1 . 3 1 E  - 3 1 . 8 1 E  - 3 

0 . 0 2 0 0  - -  1 . 0 9 E  - 3 0 . 2 9 E  - 3 0 . 6 7 E  - 3 

0 . 0 1 6 7  - -  1 . 1 5 E  - 3 0 . 2 1 E  - 3 0 . 5 7 E  - 3 

0 . 0 1 2 5  - -  - -  0 . 2 4 E  - 3 0 . 3 8 E  - 3 

is in accordance with the theoretical analysis. The last column, k = 0.001, suggests that the error 
improves with 0(h ~/2) when the order of  the basis function increases. From this observation it is 
evident that higher order basis functions improve the numerical convergence of the scheme. 

Finally, the numerical results validate the theoretical analysis that higher order basis functions 
yield a numerical scheme with improved consistency properties and higher accuracies. Moreover, 
one has the additional advantages of better stability and convergence with higher order rational 
basis functions, while the effect of  upstream differencing is simulated in a natural way. 
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